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Environment and time
drive the links between
the species richness and
ecosystem multifunctionality
from multitrophic freshwater
mesocosms
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Zhongqiang Li1* and Lifei Wei1*

1Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource
and Environment, Hubei University, Wuhan, China, 2Institute of Hydrobiology, Chinese Academy of
Sciences (CAS), Wuhan, China
Understanding the link between biodiversity and ecosystem functioning is

imperative for ecosystem-based management. The role of multitrophic

diversity in sustaining multifunctionality remains unclear, especially in highly

diverse aquatic ecosystems. We performed a species-addition experiment

consisting of one, two, three, and five species in simulated multitrophic

ecosystems to evaluate biodiversity and ecosystem functioning relationships

within and across trophic levels. Our results showed that there are positive

species richness–productivity relationships within and across trophic levels. We

found significant negative correlations between species richness and the

cumulative variation of total phosphorus, and between species richness and

ecosystem multifunctionality across trophic levels. Also, we found that the

relationships between ecosystem multifunctionality and species richness

within and across the trophic levels are mediated by a combination of

environmental factors, including water temperature, dissolved oxygen, pH,

irradiance, and time, rather than by species richness. Our results imply that

species richness–ecosystem functioning relationships vary for different

ecological functions; the individual ecosystem functions selected and the way

multifunctionality calculated are critical when examining links between

biodiversity and ecosystem multifunctionality. Our study highlights that

multitrophic richness, such as for consumers, is crucial for driving ecosystem

multifunctionality. Furthermore, our study implies that management practices

for restoring the diversity of aquatic macrophytes in wetlands should consider

not only macrophyte richness but also different functional groups and life-forms.

KEYWORDS

ecosystem functioning, multitrophic richness, freshwater ecosystem, temporal
stability, multifunctionality
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1125705/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1125705/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1125705/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1125705/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1125705/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1125705/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1125705&domain=pdf&date_stamp=2023-04-20
mailto:lizhq@hubu.edu.cn
mailto:weilifei2508@163.com
https://doi.org/10.3389/fmars.2023.1125705
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1125705
https://www.frontiersin.org/journals/marine-science


Xu et al. 10.3389/fmars.2023.1125705
1 Introduction

Biodiversity–ecosystem function (BEF) relationships are a

common focus in ecological research programs (Jaillard et al.,

2014; van der Plas, 2019). The detrimental effects of human-

induced biodiversity loss on ecosystem functions (EFs) have

received extensive attention (Jaillard et al., 2014; Schuldt et al.,

2018). Early BEF relationship research mostly focused on the

relationship between species richness and individual EFs,

particularly for productivity and biomass, and revealed that

biodiversity–productivity relationships increase monotonically

(Zavaleta et al., 2010; Jaillard et al., 2014; Slade et al., 2017).

However, other studies have identified other types of

biodiversity–productivity relationships, including positive hump-

shaped, negative U-shaped, monotonically decreasing, and no

apparent relationship (Mittelbach et al., 2001; Hooper et al., 2005;

Duffy, 2009; Jaillard et al., 2014). Other researchers concluded that

biodiversity effects on EFs seem to be consistent across different

groups of organisms, among trophic levels, and across various

ecosystems (Cardinale et al., 2012). These inconsistent results

therefore suggest that biodiversity–productivity relationships vary

depending on the ecosystem (Jaillard et al., 2014).

Most evidence for BEF relationships is from terrestrial systems,

like grasslands, forests, and agricultural ecosystems (Bai et al., 2007;

Messmer et al., 2014; Gagic et al., 2015; Brooker et al., 2021),

whereas freshwater ecosystems have received less attention

(Yasuhara et al., 2016). Some studies showed ambivalent evidence

of whether BEF relationships attained from terrestrial ecosystems

can be extrapolated to aquatic realms (Vaughn, 2010; Duncan et al.,

2015; Gamfeldt et al., 2015; Strong et al., 2015; Daam et al., 2019).

Freshwater ecosystems are among the most threatened ecosystems

in the world (Scheffer, 2004; Davidson et al., 2013; Zhang et al.,

2019), therefore, there is an urgent need for assessing BEF

relationships in freshwater ecosystems to determine whether they

follow the general significance and direction of BEF relationships

(Duncan et al., 2015).

Some studies have examined the links between biodiversity and

ecosystem functioning (EF) in the freshwater realm, such as the

links between macrophyte species richness and biomass and water

quality (Engelhardt and Ritchie, 2001; Zhang et al., 2019; Hu et al.,

2022), as well as links between benthic macroinvertebrates, the

microbial community, and nutrient cycling (Cao et al., 2018; Zhang

et al., 2021). These studies showed that the shapes of BEF

relationships vary based on the taxonomic group considered, the

nature of multi-trophic diversity interactions, and the type of

biodiversity indicators selected (Daam et al., 2019). Like previous

BEF research in terrestrial ecosystems, studies on BEF in freshwater

ecosystems has focused on single trophic levels and individual EFs,

but studies indicate that biodiversity affects multiple EFs

simultaneously (Jing et al., 2015; Lefcheck et al., 2015; Zhang

et al. , 2021). Thus, considering an individual EF may

underestimate the importance of biodiversity (Lefcheck et al.,

2015; Garland et al., 2021), ignore the synergies or trade-offs

between different EFs (Hector and Bagchi, 2007; Fu and Yu,

2016), and mask that the functional role of any trophic group

may depend on the diversity of others (Jing et al., 2015).
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Ecosystems are composed of multiple trophic levels and

multitrophic communities are especially important in maintaining

multiple EFs (Brose and Hillebrand, 2016; Wang and Brose, 2017;

Anujan et al., 2021). Studies of single trophic levels are insufficient to

understand the functional consequences of biodiversity decline

(Gamfeldt et al., 2015; Lefcheck et al., 2015) because different

trophic groups may have complementary (Eisenhauer et al., 2013;

Ebeling et al., 2018) or opposite effects on EFs (Duffy et al., 2007).

Additionally, some recent studies have shown that the strength of

biodiversity effects on EFs can increase over time (Xu et al., 2021).

Understanding how biodiversity affects ecosystem multifunctionality

(EMF) requires analysis of the diversity within (horizontal diversity)

and across trophic levels (vertical diversity) over time (Duffy et al.,

2007; Xu et al., 2021). Compared with terrestrial and marine

ecosystems, quantitative information about the effect of

multitrophic levels and time on biodiversity–ecosystem

multifunctionality (BEMF) relationships are largely lacking for

freshwater ecosystems (Duffy et al., 2007; Daam et al., 2019). There

is thus an urgent need for strengthening this research on BEMF

relationships in freshwater ecosystems to fill current research gaps

(Guy-Haim et al., 2018).

Due to human activities and global changes, the biodiversity

crisis of freshwater ecosystems is deepening, affecting ecosystem

services (Zhang et al., 2019). Increasing evidence has shown that

freshwater biodiversity loss can cause serious impacts on EFs and

may threaten human welfare (Scheffer et al., 2001; Jackson et al.,

2016; Xu et al., 2016; Janssen et al., 2021; Losapio et al., 2021).

Assessing BEMF relationships within and across trophic levels can

allow prediction of the impacts of biodiversity change on the

provisioning of ecosystem services (Duncan et al., 2015). We

constructed a species-addition microcosm experiment with a

diversity gradient (one, two, or three macrophyte species, and

three macrophyte species with two aquatic animals) to investigate

if (1) the effects of species richness on individual EF and EMF

differed significantly among, within, and across trophic levels and,

(2) there was a positive diversity–ecosystem stability relationship

within and across trophic levels over time.
2 Materials and methods

2.1 Materials and experimental set-up

Three common submerged macrophytes and two common

aquatic animals, Hydrilla verticillata, Vallisneria natans,

Potamogeton maackianus, Cyprinus carpio, and Cipangopaludina

cahayensis were chosen to evaluate the effects of species diversity

within and across trophic levels on EMF. H.verticillata, V. natans,

and P. maackianus are common macrophytes in the middle-lower

reach of the Yangtze River, and they often can grow together and

form a stable aquatic plant community. They were collected from

Shahu Lake, a eutrophic lake near Hubei University, the proximity

facilitating transport. The plants were then washed with running

tap water to remove particles and other adjacent organisms.

Cyprinus carpio that were 7.78 ± 0.80 cm (n = 24) in length and

4.93 ± 1.95 g (n = 24) in weight, and Cipangopaludina cahayensis
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were 5.68 ± 0.40 g (n = 12) in weight, were brought from Chongqing

Yongchuan Yuxi aquaculture base. The protocols involving animals

were reviewed and approved by the Animal Ethics and Welfare

Committee of Hubei University. Before the experiment, the three

macrophytes and the two aquatic animals were cultivated in

aquariums with tap water in the greenhouse; the temperature

varied from 12.5 °C to 30.4 °C and the average temperature was

23.1 ± 6.1 °C during the experiment.

A species-addition experiment, consisting of twelve 110 L

polyethylene buckets (diameter = 0.4 m, height = 0.65 m), was

carried out from August 20 to November 20, 2021. The buckets

were placed in the experimental greenhouse of Hubei University

and filled with tap water which had total nitrogen (TN) and total

phosphorus (TP) concentrations of 1.8 and 0.02 mg/L, respectively,

and a water depth of 47 cm. The buckets were randomly divided

into four treatments, each replicated three times, including H.

verticillata monoculture (Mon), H. verticillata + V. natans mixed

culture (Mixtwo), H. verticillata + V. natans + P. maackianus mixed

culture (Mixthree), and H. verticillata + V. natans + P. maackianus +

C. carpio + C. cahayensis mixed culture (Mixfive). During

the experiment, the water temperature varied from 10.7 °C to

28.6 °C, the average water temperature was 21.3 ± 6.0 °C, and the

pH of the water varied from 8.3 to 9.9.

Before the experiment, H. verticillata, V. natans, and P.

maackianus were washed thoroughly with tap water followed by

deionized water, and the lateral branches or stolons of the plants

were removed. Then, complete clean plants of V. natans (10 cm

length) and apices of H. verticillata and P. maackianus cut at 10 cm

below the top were prepared and planted in small plastic pots

(length 18 cm and width 12 cm), which were filled with 5 cm fine

sand. Fourteen plants were planted in each plastic pot. The density

of H. verticillata was 14 in monoculture, the densities of H.

verticillata and V. natans were eight and six in Mixtwo, and the

densities of H. verticillata, V. natans, and P. maackianus were eight,

three, and three in Mixthree in each pot, respectively. In total, 168

young seedlings of similar size were transplanted into 12 small

plastic pots, which included three H. verticillata monoculture pots,

three H. verticillata + V. natans mixed culture pots, and six H.

verticillata + V. natans + P. maackianus mixed culture pots. Then,

12 small plastic pots were placed randomly into the 12 polyethylene

buckets. At the same time, three polyethylene buckets of the H.

verticillata + V. natans + P. maackianus mixed cultures and two C.

carpio and three C. cahayensis were randomly added to each

polyethylene bucket. We used a line to lift and lower the pots,

which allowed gentle and nondestructive sampling. During the

experiment, deionized water was replenished every 2 days to

compensate for evaporation losses and assure that the water levels

were similar in all 12 polyethylene buckets. Also, dead C. carpio

were replaced with live ones of approximately similar size.
2.2 Sampling and chemical analyses

At the beginning of the experiment, the height/length and fresh

weight of all 168 macrophytes were measured with a ruler and an
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analysis balance. Macrophytes were measured on days 14, 28, 42,

56, and 70 after the start of the experiment. This was done by

pulling up the tray on which the plant pots were standing, making

handling and measuring easy and non-destructive. The height and

length of each branch were measured with a ruler. After each

measurement (except the last time), we put the macrophytes back

into the corresponding polyethylene bucket. At the end of the

experiment, all macrophytes were harvested and weighed, and the

biomass of phytoplankton in the water column was proxied

by total chlorophyll. Chlorophyll content was measured according

to the method described by Jampeetong and Brix (2009).

Filamentous macroalgae growing on the macrophytes or at the

water surface were collected by hand, and epiphyton growing on the

bucket wall and on the sand surface was collected by brush and

then weighed.

The macrophyte biomasses of different sampling times were

estimated by the fitted linear relationship between plant height

and biomass using the data of height and biomass measured at

the beginning of the experiment and at 70 days. The linear

fitting equations for the three tested macrophytes were as

follows:

H :  verticillata : y =  3:10  +  0:015x

V :  natans : y =  1:19  +  0:018x

P :  maackianu : y =  0:16  +  0:013x

where x is the plant height in cm and y is the plant biomass in g.

The water temperature, dissolved oxygen content and pH,

total nitrogen (TN), and total phosphorus (TP) concentration of

each polyethylene bucket were measured at the beginning of the

experiment and on days 14, 28, 42, 56, and 70. The water

temperature, dissolved oxygen content, and pH of the water

bodies were measured at 30 cm depth between 10:30 and 12:00

using a YSI (YSI 6600V2). The irradiance was measured by an

illuminance meter (MODEL ZDS-10W-2D). TP content was

measured using a colorimeter, an AutoAnalyzer (Bran+Luebbe

GmbH, Inc., Germany), following sulfuric acid/hydrogen

peroxide digestion and the ammonium molybdate ascorbic

acid method. TN content was measured using an IL-500N

nitrogen analyzer (Hach Company, Loveland, USA).

During the experiment, different volumes of NH4CL and

KH2PO4 were added every 14 days to maintain 1.8 mg/L TN

and 0.02 mg/L TP concentration in the water column in

each bucket.
2.3 Statistical analysis

Three ecological functions, including total net primary

productivity (the total biomass of macrophyte, phytoplankton,

filamentous macroalgae, and epiphyton) and cumulative variation

of TN and TP, at the end of the experiment in each polyethylene

bucket, were used to quantify EMF.
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The cumulative variation of TN and TP was calculated as:

CTN =o
n

i=1
(C0 − Ci)

where CTN(TP) represents the cumulative variation of TN or TP,

Ci represents the TN or TP content of the water measured at

different sampling periods, and C0 represents the value of the TN or

TP content at the beginning of the experiment.

According to Maestre et al. (2012), we used the mean value

method to quantify EMF because it simply and intuitively reflects

the ability of communities to maintain EMF (Jing et al., 2015). We

calculated the average of standardized data of the total net primary

productivity and TN and TP cumulative variation. The

multifunctionality index (M) for each polyethylene bucket was the

average of the three evaluated functions M can be calculated

according to the method used by Xu et al. (2016):

M =
1
Fo

F

i=1
g(ri(fi))

where F represents the number of functions being measured, fi
represents the measures of function i, ri represents a mathematical

function that converts fi to a positive value, and g represents

standardizing of all index values (the top 5% of the measured

values of each function are averaged as the maximum value of the

function, and the ratio of each measured value to the maximum

value is calculated).

The mean value method cannot distinguish between one

function being provided at a high level and another being

provided at a low level vs. two functions being provided at an

intermediate level (Byrnes et al., 2014). As such, we calculated MFt
using 20%, 30%, 40%, 50%, 60%, and 70% of our threshold values.

Thus, we supplemented the mean value method with a threshold

analysis method for further analysis of the relationship between

species richness and EMF.

Community temporal stability of macrophyte productivity was

calculated for each treatment using the ratio of m to s:

St =
m
s

where m represents mean net macrophyte primary productivity

and s represents net macrophyte primary productivity

standard deviation.

Before statistical analysis, all data were tested for normality and

were subjected to Levene’s tests. Non-normal data were
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transformed (log10) to obtain normality. Repeated-measures

ANOVA was used to test the effects of species richness, time, and

their interaction on the total primary productivity, CTN(TP), and

temporal stability of macrophyte productivity. A one-way ANOVA

was applied to determine the statistical significance (P< 0.05) of the

differences in the total primary productivity and the productivity of

macrophytes, filamentous macroalgae and epiphyton, and

phytoplankton at the end of the experiment, as well as CTN(TP),

EMF, and temporal stability of macrophyte productivity among

different treatments. The relationships between species richness and

individual EFs, EMF, and temporal stability of macrophyte

productivity were evaluated using simple OLS regressions within

and across trophic levels. Variation partitioning analysis was used

to analyze the degree of explanation of three indicator systems

(environmental factors including water temperature, dissolved

oxygen, pH, irradiance, time, and species richness) for the

variation in EMF within and across trophic levels.

All the statistical analyses were performed with SPSS 20.0 for

Windows (IBM Inc., Chicago, IL, USA) and R version 4.2.1 (https://

www.r-project.org/), and figures were generated in Origin 2021 for

Windows (OriginLab, Inc., USA).
3 Results

3.1 Effects of experimental treatments on
individual EFs, EMF, and temporal stability
of macrophyte productivity

For the three tested individual EFs (total primary productivity

and the cumulative variation of TN and TP) and the temporal

stability of macrophyte productivity, repeated-measures ANOVA

showed that experimental treatments only significantly influenced

total primary productivity (P< 0.001, Table 1, Figure 1). Time

significantly influenced total primary productivity and the

cumulative variation of TN (Table 1, Figure 2). The interactions

of experimental treatments and time affect the three tested

individual EFs (Table 1).

The response patterns of the total primary productivity and the

macrophyte productivity for experimental treatments were similar.

At the end of the experiment, the highest total primary productivity

and macrophyte productivity both occurred in the Mixtwo
treatment, but significant differences in total primary productivity

and macrophyte productivity were only found between the Mon
TABLE 1 Results from the repeated-measures ANOVA testing the effects of experimental treatments, time, and their interaction on the total primary
productivity, the cumulative variation of TN and TP, and temporal stability of macrophyte productivity.

Effects

Total primary
productivity (g)

The cumulative
variation of TN (mg)

The cumulative
variation of TP (mg)

Temporal stability of
macrophyte productivity

F P F P F P F P

Experimental treatments (E) 17.10 <0.001 2.81 0.11 3.38 0.08 1.53 0.28

Time (T) 81.41 <0.001 123.37 <0.001 2.21 0.07 1.40 0.24

E × T 3.36 <0.01 4.74 <0.001 3.27 <0.01 0.87 0.60
frontiersin.org

https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.3389/fmars.2023.1125705
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2023.1125705
and Mixtwo treatments (P< 0.05, Figures 1A, B). For other primary

producers, the productivity of phytoplankton showed no significant

difference among the four experimental treatments, and the

productivity of filamentous macroalgae and epiphyton under the

Mixthree treatment was significantly higher than Mon and Mixtwo
treatments (P< 0.05, Figures 1C, D).

For the cumulative variation of TN and TP, the values of the two

tested individual EFs in the Mixfive treatment were significantly lower

than that under other experimental treatments at the end of the

experiment (P< 0.05). However, no significant differences were found

in the amount of cumulative variation of the two aforementioned

individual EFs among the three experimental treatments within a

trophic level (Figures 2A, B). For the temporal stability of macrophyte

productivity, there was no significant difference among the four

experimental treatments (Figure 2C).

A one-way ANOVA showed that trophic complexity had a

significant effect on EMF (P< 0.05, Figure 3). At the end of the

experiment, the value of EMF across trophic levels was significantly

lower than that within a trophic level (P< 0.05), while there was no

significant difference among different macrophyte species richness

treatments within a trophic level (Figure 3).
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3.2 Relationship between species richness
and individual EFs, EMF, and temporal
stability of macrophyte productivity

For individual EFs, simple OLS regression analyses showed that

species richness positively correlated with the total primary

productivity within and across the trophic levels (Figure 4A).

Across the trophic levels, there was a significant negative

relationship between species richness and the cumulative

variation of TP and EMF (P< 0.05, Figures 4C, D). However,

there were no significant correlations between species richness

and the cumulative variation of TN and temporal stability of

macrophyte productivity within and across the trophic levels

(Figures 4B–E).

A threshold analysis showed that species richness positively

affected the number of functions exceeding the threshold at values

of 40% and 50%, and the relationships between species richness and

the number of functions became flatter at higher and lower

threshold values of 70% and 30%, respectively. By contrast, when

the threshold value was 20%, species richness negatively affected the

number of functions exceeded (Figure 5).
B

C D

A

FIGURE 1

The total primary productivity (A) and the productivity of macrophyte (B), filamentous macroalgae and epiphyton (C), and phytoplankton (D) under
different treatments at the end of the experiment. Bars represent mean values ± SD (n = 3), and different letters indicate significant differences (P<
0.05) between the treatments. (Mon: H. verticillata monoculture, Mixtwo: H. verticillata + V. natans mixed culture, Mixthree: H. verticillata + V. natans +
P. maackianus mixed culture, and Mixfive: H. verticillata + V. natans + P. maackianus + C. carpio + C. cahayensis mixed culture).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1125705
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2023.1125705
3.3 Estimation of the relative contribution
of the driving factors of EMF

Variation partitioning analyses showed that the number of

variances of EMF explained by environmental factors, time, and

species richness were similar among, within, and across the trophic
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levels, and the total explanations for EMF within and across trophic

levels both were 99.60%, although the independent effects of the

three driving factors were weak (Figure 6). Variation partitioning

showed that the shared effects of environmental factors and time

accounted for a high percentage, with their combined effects for

EMF within and across trophic levels 94.10% and 89.00%,

respectively (Figure 6). Furthermore, our results showed that time

has the strongest independent effects on EMF within and across

trophic levels among the three tested factors.
4 Discussion

4.1 Individual EFs within and across
trophic levels

For individual EFs, as found in several other studies (Tilman

et al., 1997; Engelhardt and Ritchie, 2001; Isbell et al., 2011; Chang

et al., 2022), we showed that species richness–productivity

relationships are positive both within and across trophic species

diversity levels. Previous studies showed that the two main

mechanisms responsible for the positive species richness–

productivity relationship are the niche complementarity effect

hypothesis and the selection effect hypothesis (Loreau and Hector,

2001). In this study, our results indicated that positive richness–

productivity relationships may be largely due to the selection effect.

Some studies demonstrated that higher productivity from greater
B

C

A

FIGURE 2

The cumulative variation of TN (A) and TP (B) and the temporal stability of macrophyte productivity (C) under different treatments at the end of the
experiment. Bars represent mean values ± SD (n = 3), and different letters indicate significant differences (P< 0.05) between the treatments.
FIGURE 3

The EMF in different treatments at the end of the experiment. Bars
represent mean values ± SD (n = 3), and different letters indicate
significant differences (P< 0.05) between the treatments.
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species richness sometimes arises from the greater chance that

superior competitors with high productivity are present in species

mixtures (Tilman et al., 1997; Engelhardt and Ritchie, 2001). Our

results indicated that H. verticillata became dominant due to

environmental selection and competition and provided higher

productivity within a community. Similar life-forms of submerged

macrophyte species involved in our study may reduce the niche

complementarity effect on system productivity. This may be because

complementarity among submerged macrophyte species, especially

for species of a similar type, might be rather weak, resulting in species

diversity having no significant effect on vegetative production (Zhang

et al., 2019). Thus, it is important to note that the types of species used
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in such experiments may lead to different outcomes (Zhang et al.,

2019). Besides macrophyte productivity, our results showed that there

were higher filamentous macroalgae and epiphyton productivity in

communities with greater species richness. The most plausible

explanation may be through a niche complementarity effect

because various macrophytes can access different and more overall

resources (Vanderstukken et al., 2011; Zhang et al., 2019). Therefore,

our results suggest that the underlying mechanisms of species

richness–productivity relationships were primary producer

taxonomic group-specific.

Different from the positive correlation between species richness

and productivity, our findings showed that species richness did not
B

C D

E

A

FIGURE 4

The correlations of species richness on total primary productivity (A), the cumulative variation of TN (B), the cumulative variation of TP (C), EMF (D),
and temporal stability of macrophyte productivity (E) within and across trophic levels.
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significantly relate to the cumulative variation of TN and TP within

a trophic level. Previous studies demonstrated that BEF

relationships for different EFs are not always congruent, and there

are many different BEF relationships with positive, negative,

nonlinear, and non-significant correlations (Mittelbach et al.,

2001; Hooper et al., 2005; Duffy, 2009; Jaillard et al., 2014; Brose

and Hillebrand, 2016). The observed non-significant correlations

between species richness and the cumulative variation of TN and

TP can be explained by other important processes besides nutrient

uptake by plants and algae, including nutrient recycling by

microorganisms or nutrients retained by sediment or surface

structures, playing vital roles in nitrogen and phosphorus removal

(Engelhardt and Ritchie, 2001; Zhang et al., 2019). We found a

significant negative relationship between species richness and the

cumulative variation of TP across trophic levels, but there were no

significant correlations between species richness and the cumulative

variation of TN. The main reason may be due to the different

removal mechanisms of TN and TP in the water column, e.g., TN

loss is mainly via denitrification by microorganisms; however, TP

loss is mainly by plant absorption (Kyambadde et al., 2004; Paerl
Frontiers in Marine Science 08
et al., 2011; Ma et al., 2017; Xing et al., 2020). Another reason may

be that consumer excretion and decomposition of dead bodies

release nutrients to the water column, resulting in increased

phosphorus concentrations in the water column (Northcote,

1988). Our results further suggest that consumers play an

important role in the EFs of freshwater systems (Duffy, 2002;

Thébault and Loreau, 2003; Duffy et al., 2005) and that

multitrophic species diversity has a greater impact on EMF than

macrophyte diversity (Lefcheck et al., 2015).
4.2 EMF and temporal stability of
macrophyte productivity within and across
trophic levels

Quite different from most research results that biodiversity

enhances EMF (Hector and Bagchi, 2007; Lefcheck et al., 2015;

Perkins et al., 2015; Moi et al., 2021), our results showed a significant

negative correlation between species richness and EMF across trophic

levels. Early research about the relationship between biodiversity and
FIGURE 5

The relationships between species richness and multifunctionality. Panels show the relationships for six different thresholds (20%, 30%, 40%, 50%,
60%, and 70%).
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EF showed similar negative species richness–EMF relationships and

suggested that greater diversity caused by poor competitors results in

reduced productivity (Loreau, 1998; Lasky et al., 2014). In our study,

the negative species richness–EMF relationships were not due to

primary productivity because there were non-significant differences

in total primary productivity. Two reasons account for this

phenomenon. First, it may be due to selected individual EFs and the

functions used to calculate EMF (Edlinger et al., 2020; Garland et al.,

2021; Jing and He, 2021), because different individual EFs would

influence EMF through different trade-offs or synergies (Zavaleta

et al., 2010; Byrnes et al., 2014). Second, the average approach used

to calculate EMF in our study may affect the objective weight and

general weight of the three selected individual EFs, which can lead to
Frontiers in Marine Science 09
higher contribution rates of TN and TP cumulative variation for EMF

(Byrnes et al., 2014). The effects of nutrients released via consumer

excretion and the decomposition of dead bodies may be additive (or

synergistic). Thus, our results emphasize the importance of selecting

individual EFs, as well as the fact that the calculation of EMF can result

in different outcomes for BEMF relationships.

Increased diversity facilitates the temporal stability of community

productivity (Cottingham et al., 2001; Valone and Hoffman, 2003;

Tilman et al., 2006). Although we hypothesized that there were

positive diversity–ecosystem stability relationships within and

across trophic levels, the lack of consistent differences in temporal

stability of productivity among the four experimental treatments did

not support this hypothesis. In agreement with some other studies
A

B

FIGURE 6

Relative effects of environmental factors, time, and species richness on EMF (A) within a trophic level, (B) across trophic levels. U, unexplained.
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(Jiang and Pu, 2009; Sasaki and Lauenroth, 2011; Ma et al., 2017), our

results also showed that increased macrophyte species richness does

not affect the temporal stability of macrophyte productivity within a

trophic level. The most probable explanation is that productivity was

controlled by dominant macrophyte species, rather than species

richness, which results in no effect of species richness on

macrophyte productivity (Sasaki and Lauenroth, 2011; Ma et al.,

2017). Another possible reason may be lower species richness and

lower trophic level complexity, as the relationship between species

richness and temporal stability of community productivity was

critically dependent (Jiang and Pu, 2009). Our study uses low

species richness and fewer trophic levels and, therefore, almost

certainly underestimates the levels of diversity needed for EMF.
4.3 Effect of species richness, time and
environmental factors on EMF

Our results showed that the links between EMF and biodiversity

within and across trophic levels are mediated by the combination of

environmental factors and time, more so than by species richness.

Many studies have proved that environmental factors and time can

affect the interactions between the various elements of an ecosystem

which results in effects on the EMF (Bai et al., 2022). Changing

environmental factors can affect EF both directly via altering rates of

ecosystem processes (Spaak et al., 2017) and indirectly via altering

species dynamics and interactions (Dornelas et al., 2014; Blowes et al.,

2019); environmental factors could also interact with biodiversity in

regulating EF (Eisenhauer et al., 2019; Benkwitt et al., 2020). For

example, individual responses to environmental variations cause

changes in population abundance, generating interactions between

populations, which in turn affect community structure and

composition that extend to entire ecosystems (Hofmann and

Todgham, 2010). Some studies indicated the effects of

environmental factors on EMF may change over time (Tilman et al.,

2001; Xu et al., 2021; Guo et al., 2022; Hong et al., 2022), and the

response rate of EF to environmental change depends on the resilience

of ecosystem functions over time (Wu et al., 2018; Qu et al., 2019).

Long-term experiments are revealing that the slope of the BEF

relationship can vary with environmental context across sites and

through time (Isbell et al., 2011; Qiu and Cardinale, 2020). Thus, some

researchers strongly emphasize that the dimension of time should be

taken into consideration in experiments and observational studies

which can predict whether, when, and to what extent ecosystems will

be affected by altered conditions (Edlinger et al., 2020).

We found a weak influence of species richness on EMF within

and across trophic levels. This also may be due to selected individual

EFs and the diversity of the taxonomic group considered. In our

study, we only took macrophytes, snails, and fish as representatives

for biodiversity. Other groups of organisms, such as microbes, can

drive many ecosystem processes, especially nutrient cycling, but our

study does not directly address the functional role played by these

and other important groups. Obviously, our results underestimated

the effects of some organisms on EMF, especially for microbes
Frontiers in Marine Science 10
which can significantly influence the nitrogen cycle in our study.

Therefore, our results further highlight the significance of selecting

individual EFs and considering the diversity of the taxonomic

groups for BEMF relationship research (Vaughn, 2010; Zhang

et al., 2019).
5 Conclusion

In this study, we examined how biodiversity affects the

individual EFs and EMF within and across trophic levels over

time in freshwater ecosystems. Although our study used low

levels of species richness and fewer trophic levels, we found the

following: 1) positive diversity–productivity relationships within

and across trophic levels, 2) significant negative correlations

between species richness and the cumulative variation of TP and

EMF across trophic levels, and 3) the links between EMF and

biodiversity within and across the trophic levels are mediated by the

combination of environmental factors and time, rather than by

species richness. Together with other research, these results indicate

that BEF relationships for different EFs are not always the same, and

multitrophic species diversity has a greater impact on EF than

plant diversity.

Beyond experimental limitations, our study provides important

insights and implications for the conservation and management of

shallow lakes. Species richness of multiple trophic groups, such as

consumers and primary producers, are crucial moderators of EMF.

Similar submerged macrophyte species involved in this study may

have influenced the experimental outcomes because individual

species with unique traits can be as important to ecosystem

function as high species richness. Furthermore, species within

functional groups are not necessarily ecological equivalents. The

composition of aquatic plant functional groups is directly related to

community productivity (Fu et al., 2014; 2019). Some studies have

shown that differences in ecosystem function among different life

forms due to plant phylogeny or plant adaptations to the

environment, and the complex interactions between species of

different functional groups in natural ecosystems can have

significant effects on the structure and function of ecosystems

(Thébault and Loreau, 2003; Ives et al., 2005). Thus, our results

imply that management practices that restore the diversity of

aquatic macrophytes in wetlands should consider not only species

diversity but also different functional groups and life forms. Future

research should study these relationships between different

functional groups and life forms in the context of global change

to more comprehensively study the functional dynamics of

freshwater ecosystems to achieve better predictive power for

conservation and restoration initiatives.
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