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Ensemble-based data
assimilation for predictable
zones and application for
non-linear deep-water waves

Wataru Fujimoto* and Kinya Ishibashi

Research Institute, Nippon Kaiji Kyokai, Tokyo, Japan
The ensemble-based variational method is easier to implement and parallelize

than the adjoint method. For circumstances in which observed data are too

limited and sparse for oceanographic data assimilation, the surface wave

reconstruction by ensemble adjoint-free data assimilation (SWEAD) method

was developed in a previous study. SWEAD generates ensembles of search

directions from Fourier modes to numerically differentiate the squared error

between observed data and a physical model. However, Fourier modes are

global bases and could be redundant for a narrow predictable zone confined by a

dispersion relationship. To concentrate ensembles on the predictable zone, we

propose using singular value decomposition (SVD) of the approximated Jacobian

of the squared error. Here, the Jacobian was first approximated by the linear

dispersion relationship and successively updated to consider the non-linearity of

the physical system. A new criterion for reusing the ensemble was also devised

for this new method, increasing the dimension of search directions. A twin

experiment was conducted for non-linear deep-water waves, and the

optimization efficiency of the new method—SWEAD using SVD (SWEAD-S)—

was significantly greater than that of SWEAD. Expansion of the predictable zone

caused by the effect of non-linearity on the wave group velocity is thought to be

essential for this improvement.

KEYWORDS

ensemble-based 4DVar, non-linear dispersive wave, singular value decomposition,
predictable zone, freak wave, higher order spectral method
1 Introduction

Observed ocean data are often spatially sparse, and the unobserved physical state needs

to be estimated from the observed data for a certain period. The four-dimensional

variational (4DVar) method estimates the physical state by minimizing the squared

error between the value estimated by the physical model and the observed data as a cost

function. To solve this least-squares problem, the linear approximation of the cost function

must be determined. Methods to do this include the adjoint method, which uses the adjoint
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code of the physical model, and the ensemble method, which

numerically differentiates the cost function by perturbed ensemble

simulation. In recent years, the 4DVar method has been studied

using the ensemble method because it does not require adjoint

codes, which are expensive to implement, and because parallel

computation is straightforward.

The ensemble-based 4DVar (En4DVAR) method utilizes the

ensemble members of meteorological forecasts (Liu et al., 2008; Liu

et al., 2009). The maximum likelihood ensemble filter (Zupanski,

2005) provides perturbed ensemble members from the square root

decomposition of the error covariance matrix. The adjoint-free

4DVar (a4dVar) method alternates perturbation vectors in each

iteration of the optimization process (Yaremchuk et al., 2009). The

ensemble members are taken from the empirical orthogonal

function (EOF) of the model trajectories (Panteleev et al., 2015)

or the misfit derived from the model and observed data (Yaremchuk

et al., 2016; Yaremchuk et al., 2017). In contrast to meteorological

forecasts, a4dVar is generally suitable for oceanographic problems,

given that there is no reliable information on their perturbation

modes, which have a faster growth rate. a4dVar stacks the perturbed

ensemble simulation to construct an approximate of the Hessian

matrix of the cost function for efficient optimization. Similar to the

Krylov subspace method, a4dVar reinitializes the perturbed

ensemble simulation at certain conditions defined for the decay

rate of the cost function (Yaremchuk et al., 2016) or the eigenvalues

of the Hessian matrix (Yaremchuk et al., 2017).

Fujimoto andWaseda (2020) modified a4dVar and named their

modified version SWEAD (surface wave reconstruction by

ensemble adjoint-free data assimilation). SWEAD stacks the

perturbed ensemble simulation to approximate the Hessian

matrix while ensuring conformity to the linear approximation.

Eventually, the dimension of the Hessian matrix has no

limitations owing to the reinitialization, thereby increasing

convergence speed. SWEAD was originally developed to estimate

non-linear deep-water waves from observed data and has already

been applied to field measurements in the ocean. SWEAD has been

used to reconstruct a wave field around an observational tower with

stereo camera data (Watanabe et al., 2019), and a non-linear wave

group, called the oblique soliton, was captured (Waseda

et al., 2021).

In dispersive waves such as deep-water waves, Wu (2004) and

Qi et al. (2018) showed that the dispersion relationship confines the

predictable zone for a limited amount of observational data.

Meanwhile, SWEAD uses Fourier modes to generate perturbed

ensembles (see Figure 2 of Fujimoto and Waseda (2020)), which are

global bases and would be redundant for the limited predictable

zone. Wu (2004) also showed the SVD analysis yields modes that

are most sensitive to the cost function. The predictable zone can be

evaluated by singular value decomposition (SVD) of the linear

dispersion relationship (see Section 2.3.1). To improve optimization

efficiency, we proposed using SVD to concentrate ensembles on the

predictable zone and accumulate the generated ensembles. Several

new techniques for efficient optimization were also devised. We

name the method proposed in this study SWEAD-S (SWEAD

utilizing SVD).
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Section 2 reviews the ensemble methods, including SWEAD,

and describes SWEAD-S. A typical example of non-linear

dispersive waves is deep-water waves. This study targeted non-

linear deep-water waves to demonstrate the performance of

SWEAD-S. Section 3 provides a brief background of non-linear

deep-water wave studies and the configuration of twin experiments.

In Section 4, the performance of SWEAD and SWEAD-S are

compared through twin experiments. Finally, Section 5 outlines

the findings and directions for future research.
2 Methodology

The 4DVar method minimizes the squared error between a

model prediction and observed data as the cost function as:

L(~x) =
1
2
(~A(~x) − ~y)*R−1(~A(~x) − ~y) +

1
2
~x*D−1~x, (1)

where ~A(~x) is the prediction by the physical model, ~x is the

initial condition, ~y is the observed data, and R and D are the

observational and background error covariance matrices,

respectively. To simplify the equation, the variables are scaled as:

x = D−1=2~x, y = R−1=2~y,A(x) = R−1=2~A(~x) : (2)

The cost function can be reduced to:

L(x) =
1
2
‖A(x) − y ‖2 +

1
2

xk k2, (3)

where ‖·‖2 denotes the L2 norm. We considered only the

observational error term (sometimes called misfit) to simplify the

discussion:

L(x) =
1
2

A(x) − yk k2 (4)

The case where the regularization term is included is explained

in Section 2.3.5.
2.1 Fundamentals of ensemble-based
4Dvar

The gradient of the cost function is written as:

∇ L(x) = A*(A(x) − y) : (5)

where A denotes the Jacobian matrix of A(x) For a non-linear wave
system, its Jacobian A cannot be expressed analytically and must be

obtained numerically. Therefore, the adjoint method requires

differentiating all procedures of the physical model and the

observational operator, transposing it, and implementing it in a

program. On the other hand, the ensemble-based 4DVar method

differentiates the cost function numerically by ensemble

simulations. Let V denote a matrix representing the perturbation

of the initial values and let wn denote weight coefficients for

updating the initial values xn+1=xn+Vwn, where n is an index of

iteration. The cost function is rewritten as:
frontiersin.org
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L(wn) =
1
2

A(xn + Vwn) − yk k2: (6)

The perturbations dY of the physical model A(x) are obtained
by comparing an unperturbed simulation and perturbed ensemble

simulations:

dY(m) =
A(xn+ϵv(m))−A(xn)

ϵ

dY = (⋯ dY(m) ⋯ ),  V = (⋯ v(m) ⋯ ),  m = 1⋯Nens

(7)

e is a sufficiently small number, such as 0.001. Eq. (6) is summarized

as dY = AV in matrix form. Therefore,

L(wn) ≈
1
2

A(xn) + AVwn − yk k2= 1
2

A(xn) + dYwn − yk k2 (8)

The optimal update wn is such that the gradient of its cost

function is zero ∇L(wn) = 0; therefore, the following equation is

solved for wn:

∇L(wn) = dY*(A(xn) + dYwn − y) = 0

∴ dY*dYwn = −dY*(A(xn) − yÞ:
(9)

The cost function L(wn) is optimized in the search subspace of

wn spanned by V. Hence, V is crucial for efficient optimization

efficiency. As described in the introduction, perturbed ensembles

can be generated in several ways. For example, in the a4dVar

method, ensembles of search directions are generated based on

model trajectories and misfit EOFs. SWEAD uses Fourier modes as

perturbations instead of EOFs because it is intended for

water waves.
2.2 Summary of a4dVar and SWEAD

Solving Eq. (9) corresponds to the Gauss–Newton method

because the Hessian matrix of the cost function is approximated

by a product of the Jacobian matrix dY*dY = V*A*AV in the

subspace spanned by V. To improve optimization speed, the

dimension of subspace V should be increased. a4dVar and

SWEAD stack perturbations to approximate the Hessian matrix

and expand the dimension of subspace V. The perturbations

generated in previous iterations Vs,n-1 and dYs,n-1 are reused,

combined with the new perturbations Vn and dYn in the n-th

iteration, and stacked (Vs,n−1|Vn)!V and (dYs,n−1|dYn)!dY. Then,
Eq. (9) is solved with the stacked V and dY.

The perturbations for the next iteration Vn should be

orthogonal to the stacked perturbations Vs,n-1 to keep dY*dY well

conditioned. In other words, Vn should be drawn from an

orthogonal complement V⊥
s,n−1 of Vs,n-1, which is obtained by the

Gram–Schmidt orthogonalization method. Yaremchuk et al. (2009)

state that this orthogonalization-optimization process is analogous

to the generalized minimal residuals (GMRES) method (Saad and

Schultz, 1986), which is a Krylov subspace method. SWEAD uses

Fourier modes as the perturbations because they are an orthogonal

basis, and Gram–Schmidt orthogonalization is not required.

SWEAD uses Fourier modes Vn different from Vs,n-1.
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The difference between a4dVar and SWEAD is how Vs,n-1 and

dYs,n-1 are reused. As shown in Figure 1A, a4dVar reuses all

ensembles, i.e., V!Vs,n and dY!dYs,n, but it reinitializes V and

dY in a certain condition (Yaremchuk et al., 2016; Yaremchuk et al.,

2017). This reinitialization corresponds to the restart technique of

GMRES to keep dY*dY well conditioned. In contrast, SWEAD

reuses some ensemblesVreused and dYreused, conforming to the linear

approximation dYreused≈AVreused from V, then ensembles are

stacked Vreused!Vs,n and dYreused!dYs,n, as shown in Figure 1B.

To check the conformity to the linear approximation, a certain

criterion is employed, as described later in Section 2.3.4. The

stacking procedure of SWEAD does not limit the dimension of V

and could contribute to faster optimization of the cost function.
2.3 Proposed method: SWEAD-S

The following sections explain what is changed in SWEAD-S

from SWEAD, taking deep-water waves as an example.

2.3.1 Predictable zone and singular
value decomposition

A wave group conveys wave energy and information, and the

wave group velocity determines how far the wave field can be

predicted from observed data. Wu (2004) and Qi et al. (2018)

analyzed the predictable zone of linear deep-water waves. The

predictable zone, which is an area confined by the lowest and

fastest wave group velocities, becomes narrower if the measurement

period is shorter, or if the directional spread of the wave becomes

broader (see Figures 2, 3 of Qi et al. (2018)).

The predictable zone is related to the singular vectors of the

Jacobian A, and its SVD is A=USV* , where U and V are unitary

matrices containing the left and right singular vectors. ∑ is a

rectangular diagonal matrix with non-negative real numbers on

its diagonal. Let Vo be the right singular vector corresponding to the

kernel space Ker(A) and V⊥
o be the right singular vector

corresponding to the orthogonal complement space (Ker(A))⊥ .

Let S⊥
o be the diagonal matrix with the singular value corresponding

to V⊥
o ; A=USV* can be rewritten as  A = US⊥

oV
⊥
o . The structure of

the matrices is illustrated in Figure 2. We assumed that the observed

data were sparse, and the physical dimension Nphys (column) was

larger than the observational dimension Nobs (row).

The solution to Ax = y is:

x = V⊥
o S

⊥−1
o U*y + Voc : (10)

c is an arbitrary vector, andVoc corresponds to an indefinite part of

the solution. The term V⊥
o S⊥−1

o U*y corresponds to a definite part of

the solution known as the minimum-norm solution. From the

observed data y, only the first term of the above equation can be

calculated; the second term is unknown owing to the arbitrary

vector c. Therefore, the subspace spanned by V⊥
o corresponds to the

predictable zone.

If the wave system is linear, then the Jacobian A is approximated

by the linear dispersion relationship as A'. For example, the linear

dispersion relationship of deep-water waves is w2 = gk, where w
frontiersin.org

https://doi.org/10.3389/fmars.2023.1125342
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fujimoto and Ishibashi 10.3389/fmars.2023.1125342
denotes the angular frequency, g denotes the gravitational

acceleration, and k denotes the wavenumber. If the observed data

are from a water level gauge and ~x is the Fourier coefficient of the

initial surface elevation, then (R(−1/2)A'D(1/2))qr = exp [i(wrtq)], where

q is the index of time and r is the index of the angular frequency and

wavenumber. The approximated Jacobian is also decomposed as

A'= USV*. An example of the right singular vectors V⊥
o and singular

values S⊥
o are shown in Figure 3. Here, we assumed that the length of

the time series of the water level gauge was 25Tp and that the spatial

domain was 32lp, where Tp denoted the peak wave period and lp
denoted the peak wavelength. This setting is the same as that of the

twin experiment of this study, as described later in Section 3.2. The

spatial extents of the right singular vectors were limited to< 25lp, as
shown in Figure 3D, and depended on their wavenumber

components, as shown in Figure 3C.
2.3.2 Generating ensembles in the
predictable zone

SWEAD uses Fourier modes, which are global bases and could

be redundant for the limited predictable zone. SWEAD-S utilizes
Frontiers in Marine Science 04
SVD to find the most effective perturbations to decrease the

cost function.

The gradient is estimated with the approximated Jacobian and

its SVD A'=USV* as:

A0*(A(xn) − y) = VS*U*(A(xn) − y) : (11)

Let a vector d be defined such that Vd = A′*(A(xn)−y), and
then:

d = S*U*(A(xn) − y) : (12)

d reflects larger singular values of the approximated Jacobian A' and

the misfit and indicates the singular vectors that are most sensitive

to the misfit. Therefore, SWEAD-S generates perturbations from

the right singular vectors V corresponding to leading components

of d. SWEAD-S automatically neglectsVo, which corresponds to the

zero-singular value, and the generated ensembles are limited to the

predictable zone.

As mentioned in Section 2.2, the perturbations for the

next iteration Vn should be orthogonal to the stacked perturbations

Vs,n-1. After projecting the approximated Jacobian A' onto an

orthogonal complement V⊥
s,n−1 of the projection operator V⊥

s,n−1
A B

FIGURE 1

Schematic illustration of stacking algorithm for (A) a4dVar and (B) SWEAD and SWEAD-S. This figure is a modification of Fujimoto and Waseda
(2020). © American Meteorological Society. Used with permission.
FIGURE 2

SVD of the Jacobian matrix A = U∑V*.
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V
⊥*
s,n−1, SWEAD-S calculates SVD as described below:

A0V⊥
s,n−1V

⊥*
s,n−1 = USV*,   d = S*U*(A(xn) − y) : (13)

V⊥
s,n−1 is obtained by the Gram–Schmidt orthogonalization

method. SWEAD-S selects new perturbations Vn from V

corresponding to leading components of d.

2.3.3 Updating the approximated Jacobian
If the approximated Jacobian is fixed, the optimization becomes

slower because the non-linearity is not reflected in the perturbation

generation, as demonstrated in Section 4. SWEAD-S updates the

approximated Jacobian sequentially as A'Vn dYn .

From Eq. (2), the amplitudes of the spectral peaks and the rest are

all normalized. However, because the non-linear wave interaction is

active in a wavenumber range near the spectral peak, the generated

perturbations should concentrate on the spectral peak. Therefore, Vn

and the approximated Jacobian A' are restored to the original scale:

VDn  ¼  D1=2Vn, ~A
0   ¼  A 0D−1=2 : (14)

The approximated Jacobian is projected to the subspace spanned

by V*Dn with the projection operator PD = VDn(V*DnVDn)
−1V*Dn and

updated with A 0 Vn =  ~A 0 VDn ! dYn as:

~A 0 =  ~A 0   +  ~A 0 (PD − PD)

= ~A 0 + ~A 0  (VDn − VDn)(V
∗
DnVDn)

−1VD∗
n

← ~A 0 +(dYn − A 0 Vn)(V
∗
DnVDn)

−1V∗
Dn

: (15)
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The second term on the right side of Eq. (11) indicates the

updated dYn−A′Vn of the linear approximation dY = AV by

changing the control variable xn projected to the subspace

spanned by VDn. By multiplying D1/2 by both sides of Eq. (15),

we obtain the following equation of updated A':

A A 0   +  (dYn  −  A 0 Vn)(V
∗
nDVn)

−1V∗
nD : (16)
2.3.4 Criteria for perturbations to be reused
The Hessian matrix H of the cost function L(wn) is:

H = dY*dY +o
NT

t=1
(At(xn) − yt)V*∇2AtV, (17)

where At and yt denote elements of A and y, respectively, in the

time index t. NT is the total number of time steps. Let S denote the

second term on the right side of the equation; then, H=dY*dY+S.
Ensemble 4Dvar methods such as a4dVar can be regarded as a type

of Gauss–Newton method because the second term S is truncated as

H=dY*dY. If xn is close to the optimal solution, At(xn)−yt is small,

and this approximation is reasonable. Otherwise, S should be

considered for the optimization.

The following condition, called the secant condition, should

hold for the H=dY*dY+S and the gradient ∇L(xn) :

Hwn = (dY*dY + S)wn = V*∇L(xn+1) − V*∇L(xn) : (18)
A B

DC

FIGURE 3

Approximated Jacobian obtained from the linear dispersion relation. (A) The real part of the approximated Jacobian A’, (B) the singular values of the
approximated Jacobian, (C) the absolute values of the right singular vectors of the approximated Jacobian in the wavenumber domain, and (D) the
absolute values of the right singular vectors transformed to the spatial domain.
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The secant condition underlies the derivation of quasi-

Newtonian methods such as the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) formula (Nocedal and Wright, 2006).

Let us introduce w
0
n, which satisfies the following equation:

dY*dYw
0
n ≡ V*∇L(xn+1) − V* ∇ L(xn) : (19)

SWEAD-S considers S by comparing wn and w
0
n.

If dY*dY and S are both diagonal matrices, then:

(wn)i =
1

(dY*dY)ii+(S)ii
(V*∇L(xn+1) − V*∇L(xn))i

(w
0
n)i =

1
(dY*dY)ii

(V*∇L(xn+1) − V*∇L(xn))i :

∴   (wn)i
(w
0
n)i

− 1 = (S)ii
(dY*dY)ii

:

(20)

(wn)i=(w
0
n)i − 1 indicates the ratio of S compared with dY*dY in

each ensemble dimension. For the assumption H=dY*dY to be

valid, S should be suppressed. Therefore, only perturbations

satisfying the following criterion are reused in SWEAD-S:

(wn)i
(w

0
n)i

− 1

����

���� < eTOL, (21)

where eTOL denotes the error tolerance. In SWEAD, the

following criterion equation is used:

(wn)i − (w
0
n)i

���
���

swn
< eTOL : (22)

swn denotes the standard deviation of wn. Fujimoto andWaseda

(2020) did not offer a rationale for the old criterion in Eq. (22), but

now the new criterion in Eq. (21) has a rationale.

For dY*dY and S to both be diagonal matrices, dY*dY needs to

be an eigenvalue decomposed as dY*dY =MLM*, where L denotes

the eigenvalue matrix. dY*dY is a Hermitian matrix and M is a

unitary matrix; then,MM*=M*M=I . Although S has N2
ens elements,

wn and w
0
n are vectors of Nens elements, and only Nens elements of S

can be estimated. We assumed thatM*SM is a diagonal matrix and

estimated the Nens diagonal elements using a heuristic approach:

dY*dY + S = MLM* + S = M(L +M*SM)M* (23)

After these matrices are replaced as dY dYM , V VM, and

S M*SM, Eq. (18) still holds. dY*dY and S are already

diagonalized, and Eq. (20) is valid.

Note that the difference in gradients was approximated by:

V*∇L(xn+1) − V*∇L(xn)

= V*A*(A(xn+1) − y) − V*A*(A(xn) − y)

≈ dY*(A(xn+1) − A(xn)) : (24)
2.3.5 Inclusion of the regularization term
Eqs. (9) and (19) are rewritten to include the regularization

term:

(dY*dY + V*V)wn = −dY*(A(xn) − y) − V*x (25)
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(dY*dY + V*V)w
0
n ≡ dY*(A(xn+1) − A(xn)) + V*Vwn : (26)

Additionally, for the eigenvalue decomposition of dY*dY, the
background error covariance matrix is also considered:

dY*dY + V*V = MLM* (27)

dY dYM,  V VM : (28)

The differences between SWEAD and SWEAD-S are

summarized in Table 1.
3 Twin experiment for non-linear
deep-water waves

As described in Section 2.3.3, SWEAD-S updates the

approximation of the Jacobian matrix, starting from the linear

dispersion relationship. In this study, we tested SWEAD-S for

deep-water waves, which are a typical example of non-linear

dispersive waves.

Non-linearity is essential for accurately predicting

propagation of deep-water waves (e.g., Mei et al., 2005). The

third-order non-linearity increases the propagation speed of

Stokes waves. If a is wave amplitude, then the angular

frequency of the Stokes wave is w2=gk(1+1/2 a2k2) . This

equation means that the wave phase velocity w/k increases with

1/2 a2k2 . The third-order non-linearity could also increase the

probability of large waves in irregular wave fields (Janssen, 2003).

For irregular waves, Hm0 denotes the significant wave height,

which is a typical wave height corresponding to 4s, where s is the

standard deviation of the surface elevation. If the crest height of a

wave is > 1.25Hm0, or if the wave height is > 2Hm0, the wave is

commonly called a “freak wave” or “rogue wave” (Haver, 2004).

Recent studies on non-linear deep-water waves have been

summarized by Waseda (2019).

The higher-order spectral method (HOSM) (Dommermuth

and Yue, 1987; West et al., 1987) is a promising method for

predicting the propagation of non-linear deep-water waves and

has been used in many studies (e.g., Ducrozet et al., 2007; Xiao

et al., 2013; Bitner-Gregersen et al., 2020). The advantage of

HOSM is that it can be applied to a wave field with a broad

spectrum, like real ocean waves.

Some studies (Yoon et al., 2015; Wang and Pan, 2021) have

applied the Kalman filter to HOSM. Additionally, other studies

(Wu, 2004; Aragh et al., 2008; Blondel-Couprie et al., 2010; Blondel-

Couprie et al., 2013; Qi et al., 2016; Köllisch et al., 2018) have

applied the variational method to HOSM. The Kalman filter is

adequate when the observed data are sufficient, but otherwise it

might suffer filter divergence. We adopted the variational method in

this study because it is relatively stable, even if the observed data

are insufficient.

As described in the next section, HOSM is based on the Taylor

expansion of governing equations of water waves and includes

many expanded terms, which can make the implementation of the
frontiersin.org

https://doi.org/10.3389/fmars.2023.1125342
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fujimoto and Ishibashi 10.3389/fmars.2023.1125342
adjoint method for HOSM difficult. Therefore, SWEAD and

SWEAD-S adopt the ensemble-based variational method.
3.1 Wave model: HOSM

Deep-water waves can be regarded as inviscid, irrotational, free-

surface flows. The governing equations of deep-water waves are as

follows (Zakharov, 1968):

The equation of continuity:

∂2 f
∂ z2

= −∇2 f,  −d ≤ z ≤ h (29)

The bottom boundary condition:

∂F
∂ z

= 0   at   z = −∞ (30)

Kinematic free surface boundary condition:

∂h
∂ t

+∇F ·∇h = (1 + (∇ h)2)W  at   z = h (31)

Dynamic free surface boundary condition (Bernoulli’s law):

∂F
∂ t

+
1
2
(∇F)2 + gh =

1
2
(1 + (∇ h)2)W2 at   z = h, (32)
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where

h x,   y,   tð Þ   is the surface elevation
∇ = ∂x ,   ∂y

� �
:   is the nabla for the horizontal axis

F x, y, tð Þ = f x, y, z = h, tð Þ   is the velocity potential at the surface
W = ∂zf x, y, z = h, tð Þ   is the vertical velocity at the surface
g :   is the gravitational acceleration:

In the governing equations, the vertical surface velocity W is

unknown. By assuming non-breaking waves, HOSM expands the

vertical velocity as:

W = o
M

m=1
w(m) (33)

w(m) = o
m−1

l=0

hl

l !
∂l+1

∂ zl+1
  f(m−l) jz=0 (34)

O(1) : f(1) jz=0 = F

O(m) :  f(m) jz=0 = −o
m−1

l=1

 
hl

l !
∂l

∂ zl
  f(m−l) jz=0,m ≥ 2

(35)

Substituting W with the free-surface boundary conditions in

Eqs. (32) and (33) (West et al., 1987):
TABLE 1 Scheme of SWEAD and SWEAD-S.

Procedure SWEAD SWEAD-S

Initialization Setting the first
guess

Set the first guess x0 assuming that the system is linear. Initialize the misfit A(x0) - y by the physical model (HOSM in this study) and
estimate the misfit power spectrum

Initialization of
the
approximated
Jacobian
matrix

Approximated Jacobian A' is initialized by the linear dispersion
relation

Loop until
convergence

Ensemble
generation

Choose new cosine or sine wave perturbations from
wavenumber components around the peak of the misfit power
spectrum, except for components already considered in

previous perturbations Vs,n−1. Vn = (⋯ vn(m) ⋯ )

Conduct SVD of the approximated Jacobian A'. From Eq. (13) (or
Eq. (12) in the first iteration), select a few ensembles from leading
components of d and extract them from the corresponding right

singular vectors. Vn = (⋯ vn(m) ⋯ )

Ensemble
simulation

Perform the unperturbed and perturbed ensemble simulations and evaluate the respective value.
dYn(m)=A(xn+vn(m))−A(xn) (m=1. . .Nens)

Updating the
approximated
Jacobian

Update the approximated Jacobian using Eq. (16)

Calculate w
0
n If the iteration is after the second, calculate w

0
n using Eq. (26)

Choose
perturbations
to be reused

Choose the perturbations Vs satisfying the old criterion Eq.
(22)

Choose the perturbations Vs satisfying the new criterion Eq. (21)

Stacking Stack the chosen previous perturbations and the newer perturbations (Vs,n−1|Vn)!V, (dYs,n−1|dYn)!dY

Diagonalization Diagonalize dY and V using Eqs. (27) and (28)

Updating the
solution

Solve Eq. (25) and update the initial conditions and perturbations xn+1=xn+Vwn, V!Vs,n, dY!dYs,n
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∂h
∂ t = −∇F ·∇h + o

M

m=1
w(m) + (∇ h)2o

M−2

m=1
w(m),

∂F
∂ t = − 1

2 (∇F)2 − gh + 1
2 o
M−1

m=1
w(m)w(M−m)

+ 1
2 (∇ h)2o

M−3

m=1
w(m)w(M−2−m) :

(36)

HOSM solves these equations under periodic boundary

conditions for utilizing the fast Fourier transform (FFT) to

evaluate spatial derivatives. Because w(m) consists of M terms of

f(m)|z=0 from Eq. (34), W involves O(M2) terms. HOSM can

represent the free-surface boundary conditions accurately if terms

of the fifth and higher orders are included, but this can result in

boundary conditions that consist of several tens of terms.
3.2 Configuration of the twin experiments

To compare the performance of SWEAD and SWEAD-S, we

conducted a twin experiment similar to that of Fujimoto andWaseda

(2020). Time series of surface elevations were extracted from the

output of the HOSM simulation initialized by a given spectrum and

were contaminated by random noise. Those time series were

considered as virtual observed data, which were assimilated into

HOSM. Then, the whole wave field was estimated by SWEAD or

SWEAD-S, and the true and estimated wave fields were compared.

HOSM generated a freak wave with a crest height of 1.5 Hm0. The

generated wave field was taken as the truth. The power spectrum is a

standard wave spectrum: the JONSWAP spectrum with g = 3.3

(Hasselmann et al., 1973). The wave steepness was Hm0kp/2=0.11 so

that the non-linearity of the wave field was significant; kp=2p/lp was
the peak wavenumber. The computational domain for the initial

simulation of the truth was 128lp to suppress the influence of the

periodic boundary condition. In the wavenumber region, the

computational domain spanned up to 8kp (Tanaka and Yokoyama,
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2004). According to Dommermuth (2000), a linear wave field gradually

transitions to a non-linearly consistent wave field, including bound

waves. The control variable x was set to the initial value of the water

level before the non-linear spin-up (t=−5Tp). The time step was set to

Dt=Tp/50 , and the fourth-order Runge–Kutta method was used.

The water level time series, including the freak wave, was used

as the observed data (Figure 4). The white Gaussian noise was added

to the time series, and the standard deviation was 10% of the

standard deviation of the original water level time series. To emulate

a situation in which the computational domain was redundant

when compared with the predictable zone, the computational

domain was set to 32lp (Figure 4), which was roughly twice as

large as the linearly predictable zone corresponding peak

wavenumber (LPZP) of 15lp for the observed time series 25Tp.

Owing to insufficient observed data, the minimization of the cost

function could be unstable. Regularization is a technique to stabilize a

solution to an ill-posed problem by constraining the solution with prior

information (Tikhonov and Arsenin, 1979). In SWEAD and SWEAD-

S, the control variable ~x is the Fourier coefficient of the initial wave field

in the wavenumber space, and D is a diagonal matrix with a prior

estimation of the power spectrum S(k) in its diagonal components, i.e.,

diag(D)= aS(k) . a is the regularization parameter. In this twin

experiment, S(k) was the JONSWAP spectrum defined above. In

reality, S(k) must be obtained by some other means, for example by

spectral wave models such asWAVEWATCH III (Tolman, 2016). The

regularization parameter a was determined to be a = 0.001 by the L-

curve method (Hansen, 1992). Data assimilations were performed with

10 realizations of the noise with 10 ensembles Nens=10 . eTOL was

selected as the best value for the old and new criteria: eTOL = 0.2 and

0.5, respectively.

4 Results and discussion

The methods SWEAD and SWEAD-S were compared. As

shown in Table 2, (a) is the conventional method, SWEAD, (b) is
FIGURE 4

Generated truth (contours), measured points in the water level time series (dashed white lines), and linearly predictable zone corresponding peak
wavelength (LPZP, solid black line). The wave groups, including the freak wave, are shown as red dotted lines. The initial value was taken as the
control variable in the analysis.
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the SWEAD-S variant using the new criterion of reusing the

perturbations in Eq. (21), and (c–e) are SWEAD-S variants,

differing in whether they conduct the Jacobian update in Eqs.

(12) and (13) and the diagonalization in Eq. (16).

Figure 5 shows the root mean square error (RMSE) (Figure 5A)

and correlation (Figure 5B) within the LPZP for each iteration

averaged over the 10 realizations of the white Gaussian noise, and

Figure 6 shows the averaged cost function for each iteration.
4.1 Improvements by generating
perturbations with SVD

SWEAD (a) and SWEAD-S (c) at the 20th iteration are

compared in Figure 7. Because SWEAD (Figure 7A) did not

explicitly consider the predictable zone in the ensemble

generation, there was innovation, a difference between the

analytical value and the linear first guess, beyond the LPZP. In

contrast, as shown in Figure 7B, the innovation of SWEAD-S (c)

was within the range of the LPZP because the SVD concentrated the

search direction within the predictable zone.

The optimization efficiency of SWEAD-S (c) exceeded that of

SWEAD (a) by up to approximately 85 iterations (Figure 5).

However, SWEAD (a) caught up with the SWEAD-S variant that

fixed the approximated Jacobian (c) in approximately 85 iterations

(Figure 5). As described next, the method using SVD can be

improved by updating the approximated Jacobian.
4.2 Improvements by updating the
approximated Jacobian

The SWEAD-S variant with the updated Jacobian (d) optimized

more efficiently than that without the updated Jacobian (c) after the

20th iteration (Figure 6). The variant with the updated Jacobian (d) also

outperformed SWEAD (a) in terms of efficiency and accuracy

(Figure 5). The correlation reached 0.9 in 94 iterations in SWEAD

(a), but in 52 iterations in the SWEAD-S variant with the updated

Jacobian (d). In other words, the SWEAD-S variant with the updated

Jacobian (d) was twice as fast as SWEAD (a).

The reason for this improvement could be that the approximated

Jacobian given by the linear dispersion relation (Figure 3) limited the

predictable zone of eachmode up to x = 25lp, which corresponds to the
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LPZP. Meanwhile, no such limit appeared in the updated

approximated Jacobian (Figure 8). As shown in Figure 8B, the

number of non-zero-singular values of the approximated Jacobian

obtained after 100 iterations in the SWEAD-S variant with the updated

Jacobian (d) was approximately 100. In contrast, that of the

approximated Jacobian given by the linear dispersion relation was

approximately 50 (Figure 3B). The spread of right singular vectors in

the spatial dimension of SWEAD-S (e) increased from the linear

dispersion relation, as shown in Figures 3D, 8D. Therefore, updating

the approximated Jacobian is essential to expand the predictable

zone. The non-linearity increases the wave group velocity, and

the predictable zone should expand. It seems that this expansion

of the predictable zone was reflected by the updates in the

approximated Jacobian.
4.3 Effects of different criteria on
reusing perturbations

We confirmed that the old criterion in Eq. (22) resulted in an

unstable optimization in SWEAD-S and then devised the new criterion

in Eq. (21). Although the old criterion optimized faster than the new

criterion in the SWEAD variant with the new criterion (b) (Figure 6),

the SWEAD-S variants combining SVD and the new criterion formula

(d, e) were the most computationally efficient among all cases.

The SWEAD-S variant with the diagonalization in Eqs. (27) and

(28) (e) was optimized faster than the variant without diagonalization

(d) at the early stage of the iteration, but variant (e) was caught up later

by variant (d). Although the diagonalization was introduced to clarify

the rationale of the new criterion equation, it had little advantage for

optimization efficiency. As the optimization progresses, term S

decreases, and the criterion equation should become uncritical.

The analytical values obtained after 100 iterations of the SWEAD-S

method (e) are shown in Figure 9. As shown in Figure 4, the freak wave

was located at approximately x = 10lp at t=−5Tp. In SWEAD-S, the

freak wave was reproduced with sufficient accuracy.
5 Conclusion

This study proposes the use of SWEAD-S, which uses the SVD of

the approximated Jacobian to generate perturbations only in the

predictable region. SWEAD-S updates the approximated Jacobian
TABLE 2 Procedures of SWEAD and some variants of SWEAD-S.

Ensemble generation Criterion for ensemble reuse Jacobian update Diagonalization

a. SWEAD Fourier Old criterion Eq. (22)

b. SWEAD with the new criterion Fourier New criterion Eq. (21)

c. SWEAD-S without the Jacobian update SVD:
Eqs. (12) and (13)

New criterion Eq. (21)

d. SWEAD-S without the diagonalization SVD:
Eqs. (12) and (13)

New criterion Eq. (21) Eq. (16)

e. SWEAD-S SVD:
Eqs. (12) and (13)

New criterion Eq. (21) Eq. (16) Eqs. (27) and (28)
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for generating ensembles, considering non-linearity. Furthermore, we

devised a new criterion equation with a clear rationale for reusing

perturbations by referring to the secant condition. This method is

relevant where the physical system is weakly non-linear and a linear

dispersion relation can roughly approximate the Jacobian. Non-linear

deep-water waves are an appropriate example. We tested SWEAD-S

using a twin experiment on a large wave called a freak wave, which was

generated by HOSM. SWEAD-S reconstructed the freak wave well

from only time series data of surface elevation. Furthermore, the

optimization speed of SWEAD-S was twice as fast as that of SWEAD.

Updating the approximated Jacobian contributes to improving the
Frontiers in Marine Science 10
convergence speed and estimation accuracy by reflecting the

expansion of the predictable zone due to non-linearity.

SWEAD-S is not limited to deep-water waves and might apply

to other media of weakly non-linear dispersive waves. Nonetheless,

strongly non-linear phenomena involving wave breaking are

currently unsuitable for SWEAD-S. SWEAD-S is thought to apply

to multi-directional waves; Fujimoto and Waseda (2020)

demonstrated that SWEAD was applicable to a multi-directional

wave field in a 32lp square, where the physical dimension of HOSM

was O(~105). However, a supercomputer was needed for such a

high-dimensional problem, and a further decrease in computational

burden is required. Storing the approximated Jacobian requires a

large memory, limiting the dimensions of the physical space.

Data assimilation with a phase-resolved non-linear wave model

such as HOSM will have many uses in both industry and academia.

The wave field around ships or offshore structures could be monitored

for marine safety. Additionally, the wave estimation itself could be a

tool used for researching wave dynamics both in the ocean and in

wave tanks. This study offers a theoretical framework for data
A

B

FIGURE 7

The analyses of SWEAD (a) and SWEAD-S variant (c) are compared to the truth and the linear first guess in panel (A, B), respectively.
A

B

FIGURE 5

Estimation error within the LPZP averaged over the 10 realizations of
the white Gaussian noise.
FIGURE 6

Cost function averaged over the 10 realizations of the white
Gaussian noise.
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assimilation of deep-water waves. However, SWEAD-S was assessed

only via simulations; integrating the data assimilation technique and

measurements remains challenging. Future studies could develop a

method to represent modeling and observational errors in the ocean.
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FIGURE 9

Analytical values for the initial value (t = -5Tp) obtained after 100 iterations with SWEAD-S (e). The truth is shown as a black dashed line, and the
analytical value is shown as a gray dashed line for each realization. The wave group leading to the freak wave existed around x/lp = 11 (Figure 4).
A B

DC

FIGURE 8

Approximated Jacobian obtained from the linear dispersion relation. (A) The real part of the approximated Jacobian A’, (B) the singular values of the
approximated Jacobian, (C) the absolute values of the right singular vectors of the approximated Jacobian in the wavenumber domain, and (D) the
absolute values of the right singular vectors transformed to the spatial domain.
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