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The undersides of floating ice shelves and sea ice in the Antarctic and Arctic are

among the least accessible environments on Earth. The interactions between ice

shelves, sea ice, and the ocean are of considerable scientific interest. In order to

fully understand the complex picture of sea ice, and not just its surface, it is quite

necessary tomap the underside to comprehend the full context of its growth and

decay patterns. Autonomous Underwater Vehicles (AUVs) are rapidly becoming

the desired platform of choice for mapping the underside of sea ice to provide

high-resolution 3D views of sea ice topography. To increase the efficiency and

accuracy of AUV sampling behaviors is significant for the under-ice observation

mission given its limited endurance. In this paper, we present a low-cost

underwater ice mapping framework for small-sized AUVs using adaptive

sampling and map reconstruction methods. A small-sized AUV is cost-effective

and convenient for operation in polar regions; however, due to its limited loading

capacity and energy, it is more applicable for the vehicle to carry single-beam

sonar for ice bottom mapping but not multi-beam. Thus, the essential issue in

this application is how to obtain the key information of ice topography and how

to reconstruct the map of ice draft (namely underwater ice thickness) with AUV

sparse mapping swathes. To address this, we propose a graphics-based adaptive

mapping method to densify the measuring of ice bottom surface with

‘noticeable’ variations; moreover, we also present a sparse approximation

method for ice draft map reconstruction using the sparse mapping swathes

from a single-beam sonar. Our efforts are to introduce an effective and efficient

approach for underwater ice mapping using low-cost small-sized AUVs. Our

proposed adaptive mapping and reconstruction methods are validated in the

under-ice scenario created using the field data.
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1 Introduction

The polar regions remain some of the least explored parts of the

planet’s oceans, despite their central role in understanding climatic

processes and change (Singh et al., 2017). The undersides of floating

ice shelves and sea ice in the Antarctic and Arctic are among the

least accessible environments on Earth (Dowdeswell et al., 2008).

The interactions between ice shelves, sea ice, and the ocean are of

considerable scientific interest, as the nature and rate of freezing and

melting processes that take place are of wider significance to the

global environmental system (Broecker, 1991).

Limitations of access have long restricted exploration and

investigation of the cavities beneath ice shelves and the underside

of sea ice to a limited number of drill holes and scientific utilization

of submarines (Dowdeswell et al., 2008). However, the results were

statistically weak and said little about the shape of the ice bottom,

the distribution of pressure ridge depths or the difference between

the roughness levels of ridged and level ice, or between first-year

and multi-year ice. All these aspects are important to understand

the multifaceted concept of sea ice and its effect on the surrounding

climate. In order to fully understand the complex picture of sea ice,

and not just its surface, it is quite necessary to map the underside to

comprehend the full context of its growth and decay patterns

(Wadhams and Krogh, 2019). The topography of sea ice is also

important for such diverse applications as evaluating its

containment potential for oil blowouts, its role as a substrate for a

sea ice ecosystem, its impact on icebreaker design, and its scattering

potential for under-ice acoustic propagation (Wadhams, 2012).

The use of emerging technologies like unmanned underwater

vehicles provides an effective approach by which these very

inaccessible and inhospitable parts of the global ocean and

cryosphere can be investigated safely. The development of free-

flying autonomous underwater vehicles (AUVs) with ranges of tens

to hundreds of kilometres enables extensive missions to take place

beneath sea ice and floating ice shelves (Dowdeswell et al., 2008).

They are rapidly becoming the desired platform of choice for

mapping the underside of sea ice to provide a high-resolution 3D

view of sea ice topography.

The earliest AUV surveys under ice were carried in the Beaufort

Sea in 1972 using a vehicle called the Unmanned Arctic Research

Submersible (UARS), equipped with three narrow-beam upward

sonars (Francois and Nodland, 1972). The observations of under-

ice topography were collected by UARS (Francois, 1977). The

International Submarine Engineering Company (ISE) together

with the Canadian Defence Research Establishment (Atlantic)

developed a large AUV called Theseus for laying optical fiber

cables in ice-covered waters in the Arctic in 1996, but not for

scientific data collection purposes (Ferguson et al., 1999). In 2001,

the UK Autosub vehicle successfully used a single-beam upward

sonar for underwater ice observation in the Antarctic (Brierley et al.,

2002). Similarly, an ice profiling sonar was applied in the ALTEX

AUV, developed by Monterey Bay Aquarium Research Institute, in

an Arctic test cruise (Tervalon and Henthorn, 2002). The research

team at the University of Cambridge pioneered the collection of 3D

ice underside mapping data using a multibeam sonar with the
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Autosub II AUV off NE Greenland in 2004 (Wadhams et al., 2006).

Since then, a systematic measure of the shape of the sea ice

underside has been conducted worldwide. The same vehicle later

collected multibeam sonar data under the Fimbul ice shelf in the

Antarctic (Nicholls et al., 2006).

The SeaBed class twin-hulled AUV developed by WHOI has

conducted a dozen research expeditions to polar regions in the last

decade, including missions in support of biological and geological

mapping, as well as sea ice studies in both the Arctic and Antarctic

(Singh et al., 2017). Ten floe-scale maps of sea-ice draft were

collected by SeaBed AUV missions undertaken during two recent

early spring voyages (IceBell and SIPEX-2) in three regional sectors

around Antarctica. These maps reveal heavy deformation in all

three near-coastal regions, producing a mean sea ice draft well in

excess of that typically observed from drilling data (Williams et al.,

2015). The University of Tasmania used an ISE Explorer class AUV

(named nupiri muka) to collect data from beneath both sea ice and

ice shelves to understand how the oceans interact with Antarctic ice

shelves (King et al., 2018). This powerful vehicle was deployed to

the Sørsdal ice shelf in East Antarctica in 2019. With the valuable

data collected by the nupiri muka AUV, it was found that cold and

salty water present beneath the ice shelf with a deep seafloor trough

at the entrance to the ice shelf, indicative of a cold ocean

environment with low melt rates (Gwyther et al., 2020).

For ease of AUV launch and recovery, such as from holes in the

ice or from boats alongside a sea ice edge, small AUVs were

welcome in the polar missions. The Icelandic Gavia AUV was

deployed in the Beaufort Sea in 2007 and in the Lincoln Sea in 2008

to obtain valuable under-ice sonar images using a GeoSwath multi-

beam sonar system (Wadhams and Doble, 2008; Doble et al., 2009).

The vehicle operated at a 50m depth in order to not collide with the

multi-year ice ridging, at a 30m depth in areas with first-year ice,

and in melt regions at a 20m depth (Wadhams and Krogh, 2019). A

REMUS AUV was deployed beneath coastal sea ice offshore of

Barrow, AK, to obtain cross-shore hydrographic transects

(temperature, salinity, and velocity versus depth) that would

provide estimates of the transport of relatively dense, salty water

from the Chukchi Sea to the Arctic Ocean in winter (Plueddemann

et al., 2012). An echosounder was pointed vertically and used as an

upside-down altimeter to record the distance from the vehicle to

underside of the ice for ice keel avoidance, but not for underwater

ice observation.

It can be assumed that operating an AUV under ice will bring

about many challenges in terms of reliable communication,

localization, obstacle avoidance, and so on. In such a situation, to

increase the efficiency and accuracy of AUV sampling behaviors is

significant for the under-ice observation mission given its limited

endurance. However, the existing studies usually applied the AUVs

for under ice data collection by designing the fixed sampling

trajectory beforehand and offline, which means the vehicle just

followed the fixed trajectory to complete the mission, and was not

able to change its sampling behavior adaptively online for increased

sampling accuracy and efficiency.

Adaptive ocean observation refers to fixed or mobile observing

platforms being able to autonomously adjust measurement/
frontiersin.org
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operational parameters based on the oceanographic environment

and signals, aiming at acquiring key information of the observed

oceanographic processes (Zhang, 2013). Adaptive detection and

sampling by AUVs have achieved unprecedented accuracy and

efficiency in studies of thermoclines (Cruz and Matos, 2010;

Petillo et al., 2010; Zhang et al., 2012a), upwelling fronts (Zhang

et al., 2012b; Zhang et al., 2012c), internal waves (Cazenave et al.,

2011; Petillo and Schmidt, 2014), and other ocean dynamic

phenomena (Zhang et al., 2010; Zhang et al., 2011). However,

adaptive observation techniques have been less considered in

underwater ice mapping missions so far. To the best of our

knowledge, this paper presents the first study on the adaptive

mapping of underwater ice using AUVs.

In our study, we present a low-cost underwater ice mapping

framework for small-sized AUVs using adaptive sampling and map

reconstruction methods. A small-sized AUV is cost-effective and

convenient for operation in polar regions; however, due to its

limited loading capacity and energy, it is more applicable for the

vehicle to carry single-beam sonar for ice bottom mapping but not

multi-beam. Thus, the essential issue in this application is how to

obtain the key information of ice topography and how to

reconstruct the map of ice bottom with AUV sparse mapping

swathes. To address this, we propose a graphics-based adaptive

mapping method to densify the measurements of ice bottom surface

with ‘noticeable’ variations; moreover, we also present a sparse

approximation method for ice map reconstruction using the sparse

mapping swathes of single-beam sonar. Our efforts are to introduce

an effective and efficient approach for underwater ice mapping

using low-cost small-sized AUVs; however, not all the aspects of the

field work are taken into account in our current study, such as the

impact of AUV navigation and sampling errors on the mapping and

reconstruction results.

The rest of this paper is organized as follows. Section 2 presents

the vehicle and sensors we apply for the underwater ice mapping

mission. In Section 3, we introduce the framework of this study as

well as our proposed methods on AUV adaptive mapping and

reconstruction of the regional ice draft. The proposed framework

and methods are validated in Section 4; the applicability analysis is

conducted as well. Section 5 summarizes the main findings and

describes some additional avenues for continuing research.
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2 Platform and sensors

In this section, the platform and sensors we apply for

underwater ice adaptive mapping are presented. As we mentioned

above, for ease of operation, a small-sized AUV is considered; see

Figure 1. The vehicle is 1.8m length and has a diameter of 0.2m. The

maximum working depth is 120m and the nominal forward

running speed is 1m/s (with the maximum speed of 2m/s). In

order to conduct the mission safely and effectively under ice, the

vehicle is equipped with a variety of sensors and sonars, such as the

Conductivity-Temperature-Depth (CTD) sensor and the Doppler

Velocity Log (DVL, including altimeter function) for hydrological

measurements, the forward looking sonar for obstacle avoidance,

the side-scan sonar and the single-beam sonar (altimeter) for

bottom mapping, the acoustic modem for underwater

communication, and the USBL beacon for underwater

localization. The observation section at the bow of the vehicle can

turn 180° to make the sonar scan either upward or downward. In

our application, the underwater ice thickness (namely ice draft) can

be measured by the difference between the pressure sensor and the

altimeter readings, when the altimeter scans upward.

The CTD is from Sea & Sun Technology GmbH. The working

range of the pressure sensor is 20bar, while the accuracy is up to

0.05% full scale in the given temperature range. A Teledyne RD

Instruments Pathfinder 600kHz Phased Array DVL is adopted. The

DVL has both bottom tracking and water tracking capabilities, so it

can tell both the vehicle velocity and current velocity within its

working range, as well as the altitude with respect to the bottom.

The maximum bottom tracking altitude is 150m; the one-way beam

width is 2.2°. A 120kHz Echo Sounder from IMAGENEX is used as

an independent altimeter as well. The beam width of its transducer

is 20°, while its working range is up to 300m. The resolution of the

measured altitude is within 0.1% of the working range. The

sampling rates of both the altimeter and the pressure sensor are

set as 5Hz. Thus, the ice draft measurements are collected sparsely

along AUV trajectory. So, it is challenging to obtain the key

variation information of the underwater ice topography with the

sparse measurements of ice draft efficiently; it is also essential to

reconstruct the ice draft map using the sparse ice draft samplings

effectively. In this work, we will focus on the study of adaptive
FIGURE 1

AUV for underwater ice mapping.
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mapping and map reconstruction methods using our AUV to

address the above two issues (namely increasing the efficiency

and the effectiveness of the mapping mission). Note that the

actual specifications of our AUV and the equipped sensors

mentioned here will be considered in our later simulations for the

proposed methods validation in Section 4.
3 Methods

In this section, the framework of our study on adaptive

mapping and reconstruction of underwater ice is firstly

introduced; then the details of our proposed adaptive mapping

and reconstruction methods are presented, respectively.
3.1 Framework for adaptive mapping and
reconstruction of underwater ice

Given the endurance limitation of the vehicle, and also for safety

consideration, the total mapping area is usually divided into several

blocks in the real mapping mission; the vehicle will map each block

one by one. To make the mission controllable, the mapping area of

each block is set as 500m×500m in our study. The selection of this

scale is reasonable because the sea ice draft measurements within

this range are fine enough to calibrate the estimated sea ice draft

using satellite remote sensing image, such as MODIS data with a

pixel size of 250m.

As shown in Figure 2, in our study the framework for the

generation of underwater ice map starts from AUV rough mapping

of the given block globally along a predetermined trajectory below

the ice surface; then the collected ice draft data is used to reconstruct

the ice map online using interpolation method initially; with this

rough global ice map, the AUV will further identify the regions with

‘noticeable’ ice draft variation based on certain graphical criteria
Frontiers in Marine Science 04
and conduct intensive mapping of these regions locally along an

optimized trajectory, which is designed by a trajectory planner;

finally, both the rough global measurements and the refined local

measurements will be applied together to reconstruct the final ice

map using sparse approximation method.

The main intention of this proposed framework is to develop

AUV intelligence to improve the efficiency of underwater ice

mapping. It is worth mentioning that this framework is applicable

to the AUV equipped with either a single-beam sonar or a multi-

beam sonar. Moreover, there are two rounds of ice map

reconstruction: the first one is for rough map reconstruction and

happens before intensive mapping, for which some well-known

linear interpolation method is applied due to its rapidness and

convenience; the second one aims for the final refined map

reconstruction and occurs after intensive mapping, and we use

our proposed sparse approximation method to complete this.
3.2 Rough mapping and reconstruction

The purpose of rough mapping and rough map reconstruction

is to collect and present the ice draft information in the observation

area globally but roughly. In rough mapping, the AUV maps the

observation area at a constant depth along a predetermined

trajectory, which could be zig-zag or lawnmower patterns. Before

running in a zig-zag or lawnmower trajectory, the vehicle will go

around the observation area once to map the ice bottom along the

boundary of the target block. The constant depth for mapping is

decided considering the working range of the pressure sensor and

the altimeter as well as the possible variation range of the ice draft in

that area, according to the available historic information. The

spacing between the trajectory segments is determined by general

estimation before the mission, depending on the size of the

observation area, the endurance of the vehicle, and the expected

resolution of the rough map.
FIGURE 2

Framework for underwater ice adaptive mapping and reconstruction. The mapping and reconstruction results are shown in the right subplots: (A)
Rough mapping, (B) Rough reconstruction, (C) Intensive mapping, and (D) Refined reconstruction.
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The rough mapping data is sampled sparsely in space. In

order to generate the global rough ice draft map of the

observation area in situ, we use the well-developed Kriging

method to reconstruct the rough map online, due to its low

demand on the computing power of AUV processor. Kriging is a

method of spatial interpolation that originated in the field of

mining geology. It is one of several interpolation methods that

use a limited set of sampled data points to estimate the value of a

variable over a continuous spatial field (Le and Zidek, 2006;

Bivand et al., 2013). It differs from simpler interpolation

methods, such as Inverse Distance Weighted Interpolation,

Linear Regression, or Gaussian decays, which use the spatial

correlation between sampled points to interpolate the values in

the spatial field. The interpolation of Kriging is based on the

spatial arrangement of the empirical observations, rather than

on a presumed model of spatial distribution. It can be a helpful

method to preserve spatial variability that would be lost using

a simpler method if there is at least moderate spatial

autocorrelation (Auchincloss et al., 2007).
3.3 Adaptive mapping

Based on the roughly reconstructed global ice draft map after

the predetermined sampling along the zig-zag trajectory, further

adaptive mapping can be conducted. The principle for adaptive

mapping is to firstly identify and extract the local regions of interest

for intensive mapping as these regions present the key variation of

the ice topography in the given area; then, the vehicle will be guided

to cover these regions along an optimized trajectory, considering

the maneuverability of the vehicle and the efficiency of completing

the mission. The methods for the identification and extraction of

the interested regions as well as the trajectory planner for intensive

mapping will be introduced, respectively.

3.3.1 Identification of interested regions
To identify the regions of interest autonomously from

the roughly reconstructed ice map, we need to define the

identification rules quantitatively. As we mentioned before, the

interested regions are the areas that present remarkable topographic

variations; here, we propose three criteria to identify those regions:

the ice draft, the ice draft gradient, and the ice draft

entropy methods.

(1) Ice draft method

It is the simplest method that involves defining a certain

threshold of ice draft for thicker ice regions’ identification, and

regions with larger ice draft than the defined threshold are the

interested regions for intensive mapping. The ice draft method can

be described as below:

d ≥ Dthrd, (1)

where d denotes the ice draft variable; Dthrd is the defined ice draft

threshold, the value of which can be assigned based on the average

of the roughly mapped ice draft measurements, like this
Frontiers in Marine Science 05
Dthrd =
K
N o

N

n=1
Dn, (2)

where N is the number of ice draft measurements in rough

mapping; K is a proportional coefficient, which can be defined as

either a constant or a variable. If the coefficient K is set as a constant,

its value is usually chosen to be larger than 1, in order to identify a

limited number of interested regions for further intensive mapping

within the AUV’s endurance limit. In the latter case, its value could

be adjusted according to the total numbers or the area of the

interested regions adaptively. Or, for simplicity, we can easily take

the value at a certain percentile of the ice draft measurements as the

threshold based on experience.

(2) Ice draft gradient method

The second method is to solve the gradient of the ice draft in the

roughly reconstructed map. The ice draft gradient method detects

the edges of thicker ice regions by looking for the maximum and

minimum in the first derivative of the ice draft in two perpendicular

directions of the roughly reconstructed ice draft map, which can

help to identify the regions of interest with large absolute values of

ice draft gradient for further intensive mapping.

There are many edge detection methods by gradient operators

such as the Sobel, Roberts, and Laplace operators, many of which

are used to clarify the local transformation (for example, sharp

edges) in the optical metrology. Taking the Sobel operator as an

example, it performs a 2-D spatial gradient operation on an image

to enhance the edges. The operator consists of a pair of 3-by-3

convolution kernels, Sx and Sy respectively for the two

perpendicular directions, while the second kernel is simply a

rotation of the first (Jiang and Scott, 2020):

Sx =

1 0 −1

2 0 −2

1 0 −1

2
664

3
775,   Sy =

1 2 1

0 0 0

−1 −2 −1

2
664

3
775 (3)

The above convolution kernels are separately applied to the ice

draft map to produce the approximate Gx and Gy gradients for each

pixel to detect edges in vertical and horizontal directions.

Gx = SxT ,  Gy = SyT (4)

These can then be combined to find the absolute magnitude of

the gradient at each point:

Ga =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x + G2

y

q
(5)

Edges in the map are emphasized because the gradients at the

edges are usually larger than those in the homogeneous region. In

the application of the Sobel operator, coefficients of the convolution

kernels can be adjusted according to our requirement provided the

kernel honors the properties of derivative masks. An increase in the

coefficients of the middle row or column in the 3-by-3 convolution

kernels increases the number of detected edges (Misra and

Wu, 2020).

With the solved ice draft gradient map, the ice draft gradient

method can be described as this:
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g ≥ Gthrd; (6)

where g denotes the ice draft gradient variable; Gthrd is the defined

ice draft gradient threshold, the value of which can be

assigned based on the average or certain percentile of the ice draft

gradient in the map, similar to the one determined in the ice

draft method.

(3) Ice draft entropy method

The last method is to calculate the entropy of the ice draft in the

roughly reconstructed ice map, which is called the ice draft entropy

method. Entropy is a measure of uncertainty or randomness in an

image (Dey, 2018). Local entropy is related to the complexity

contained in a given neighborhood, typically defined by a

structuring element. The entropy filter can detect subtle variations

in the local gray level distribution (scikit-image, 2022). In our case,

the area in the ice map with relatively large values of local entropy

presents the regions of interest with significant ice draft variation.

In information theory, information entropy is the log-base-2 of

the number of possible outcomes for a message. To calculate the

entropy of the ice draft map, the ice draft measurements should be

converted to the gray image format; then the entropy value of the 9-

by-9 neighborhood around the corresponding pixel can be

calculated to compute the local entropy of the map:

e = −o
255

i=0
Pi log2 Pi, (7)

where e denotes the ice draft entropy variable; Pi is the probability

(obtained from the normalized histogram of the gray image)

associated with the gray-level, i. For pixels on the borders of the

map, the symmetric padding method is applied, in which the values

of padding pixels are a mirror reflection of the border pixels in the

map (entropyfilt, MathWorks, 2022).

With the solved ice draft entropy map, the ice draft entropy

method can be described as this:

e ≥ Ethrd, (8)

where Ethrd is the defined ice draft entropy threshold, the value of

which can be assigned based on the average or certain percentile of

the ice draft entropy in the map, similar to the one determined in

the above methods.

Thus, with the above proposed methods, the interested regions

for further intensive mapping can be identified and compared,

which will be discussed in the later section.
3.3.2 Shape extraction of interested regions
Actually, the identified regions of interest are outlined by spatial

point sets, while the boundaries of the interested regions should be

further generalized using shape extraction algorithm. We use Alpha

shape algorithm to generalize the boundaries of the interested

regions, which is an approach to formalize the intuitive notion of

“shape” for spatial point sets. The Alpha shape is a concrete

geometric concept which is mathematically well defined: it is a

generalization of the convex hull and a subgraph of the Delaunay

triangulation. Given a finite point set, a family of shapes can be

derived from the Delaunay triangulation of the point set; a real
Frontiers in Marine Science 06
parameter, “alpha,” controls the desired level of detail

(François, 2022).

Since some of the extracted regions are large and some small, we

choose to calculate the area of the Alpha shapes to sort the scale of

the regions, and abandon the small ones by defining a certain

threshold. Considering the limitation of AUV maneuverability, we

neglect the extracted Alpha shapes with areas less than 1% of the

total mission area.

The identified regions of interest usually have irregular

boundaries and random distribution, which is less convenient for

following AUV trajectory planning for intensive mapping. Hence, it

is necessary to extract the regions of interest using regularized

shapes, such as rectangle, circle, or ellipse, to envelope the boundary

of the interested region. For the sake of simplicity, in our study we

use a rectangle to envelop each region of interest; thus, the shape

extraction problem turns into finding the minimum area bounding

rectangle of the interested region.

In general, the minimum area bounding rectangle method

could find the minimum area rectangle of the target graph by

gradually rotating the graph and projecting it into the coordinate

axis (D'Errico, 2022). The rotation method has the disadvantage

that the accuracy of the solved minimum area bounding rectangle

depends on the size of the rotation interval. In our study, the

rotation interval is tuned for the acceptable accuracy and

calculation time. We also set a certain area threshold to filter the

minimum area bounding rectangles with small areas, given the

limitation of AUV maneuverability.

3.3.3 Trajectory planning for intensive mapping
Once the regularized shapes of the interested regions are

extracted, the trajectory planner will plan an optimal trajectory

for the vehicle to cover the interested regions for intensive

sampling. The trajectory planning is not only to intensively cover

each individual interested region but also to connect the total

regions of interest together to generate one executable and

optimal trajectory.

The coverage for the intensive mapping of each individual

region of interest also uses a zig-zag trajectory in the horizontal

plane below the ice bottom. The heading switch angle is controlled

according to the aspect ratio and the area of the interested

rectangular regions adaptively, also considering AUV heading

maneuverability limitation. For trajectory planning, we define a

coverage ratio to determine the spacing of the zig-zag segments

within each rectangle:

R =
WswathNseg Lseg

LrectWrect
, (9)

where Lrect and Wrect are respectively the length and width of the

extracted rectangular region; Wswath indicates the swath width of

the single-beam sonar; Nseg is the segment number of the zig-zag

trajectory within one rectangle; and Lseg is the length of each

segment in zig-zag trajectories and can be calculated by the

following expression:

Lseg =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

rect +
Lrect
Nseg

� �2
r

: (10)
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The swath width of the sonar will vary with the varied vertical

distance between the vehicle and the ice bottom if the vehicle runs at

a given water depth constantly. We assume the vehicle maintains

level flight with the pitch angle fixed at 0, so that the sonar

performance will not be affected by the attitude adjustment of the

vehicle. Nseg can be tuned if the values of Lrect and Wrect are known,

in order to make the value of the coverage ratio R within a certain

range (like between 30% and 40%). This range is chosen considering

both the efficiency of the mapping mission and AUV heading

maneuverability limitation, based on our existing experience. The

heading switch angle of zig-zag trajectory should satisfy:

jswitch = 2*arctan
Lrect

NsegWrect
≥ jlimit : (11)

where jlimit is decided upon the heading maneuverability limit of

our vehicle, and is set as 10° in our study. Moreover, we can choose

whether to use an even number or an odd number for Nseg to

control the location of the entry and exit of the zig-zag trajectory

within the rectangular region, so as to facilitate the connection

between the interested regions. The definitions of the symbols

mentioned above are illustrated in Figure 3.

As for the planning of the global trajectory that connects all the

interested regions, the total running time is considered as the

optimization objective, while the maneuverability of the vehicle is

taken as the boundary condition. For simplicity, we consider that

the total AUV trajectory is composed by straight running lines and

heading switch arcs. The total AUV trajectory for intensive

mapping can be optimized by solving the following formula:

min(T) = min (kline
Lline
v

+ karc
jarc

w
), s : t :    jswitch ≥ jlimit (12)

where T is the total running time; Lline denotes the total length of the

straight lines; jarc presents the total arc for heading switch; v is the

velocity of straight running and w is the angular rate of heading

switch, while both v and w can be solved from AUV dynamic

model. Here, kline and karc are respectively the weights of straight

running time and heading switch time.

In our study, the AUV trajectory is planned on an AUV

dynamics level; that means both the translational and the angular
Frontiers in Marine Science 07
velocities are solved from AUV dynamic model in the trajectory

planner. Thus, the cost of both straight running and turning motion

can be taken into account in AUV trajectory planning. Generally, a

longer trajectory will consume more running time, and more

turning motion will take more running time as well. Therefore,

we use the running time as the metric to evaluate the trajectory

planning results.
3.4 Refined reconstruction

In our previous work (Zeng et al., 2021), we proposed a sparse

approximation method to solve the Doppler smearing and aliasing

problems when AUV samples and reconstructs ocean dynamic

fields with temporal and spatial variation, such as gravity plume or

internal waves. Sparse approximation is a technique to reconstruct a

function by using a small number of basis functions chosen from a

large set of basis functions (Girosi, 1998). A sparse signal means that

it can be represented on a basis where most basis coefficients are

zero. As fields of ocean phenomena are generally continuous and

smooth, one could safely assume that they have sparse

representations on an appropriate basis, either in the spatial

dimensions or in the time dimension (Candes and Wakin, 2008;

Mitra et al., 2015).

For our underwater ice mapping mission, the sea ice bottom is a

frozen topographic field with slow temporal variation and

unpredictable spatial variation during the mission duration (of

several hours). So, in our current study we propose a sparse

approximation method to reconstruct a spatially varying

underwater ice field using AUV mapping data, while the

temporal variation of the ice bottom in a much larger time scale

will be considered in our future work. As we explained above, the

sparse approximation method is applied for the final refined

reconstruction of the ice draft map using both the rough and the

intensive mapping data. Usually, this is conducted by data post-

processing offline given its higher computing power requirements.
3.4.1 Theory of method
The sparse approximation method for ice bottom map

reconstruction is mainly based on the general theory of Adcock

(2017). Assume that a spatially varying ice draft field of sea ice in a

horizontal section can be sparsely represented by a function f in a 2-

dimensional bounded domain D = [-1,1]2, and

f =   o
i∈N2

0

cifi, (13)

where i denotes a 2-dimensional multi-index i = (i1, i2) ∈ N2
0, ffigi∈N2

0

presents the 2-dimensional Legendre Polynomials (LP) basis, and

(ci)i∈N2
0  
∈ ‘2(N2

0) are the sparse coefficients of the basis. The

dimensions of i are orderly representing the two spatial dimensions

in the horizontal plane. The basis ffigi∈N2
0
is the tensor product of the

univariate LP basis in each direction,

fi = fi1 ⊗ fi2 (14)
FIGURE 3

AUV trajectory for intensive mapping in the minimum area bounding
rectangles (Top view).
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Note that the basis ffigi∈N2
0
consists of infinite modes and is not

numerically computable. For the sake of computability, the basis

ffigi∈N2
0
is truncated by a truncation parameter matrix K ∈ N2�2 :.

For simplicity, we let K be a symmetric matrix, where all diagonal

elements are set to be KL and others are set to be KS. KL and KS are

chosen to be positive integers, and kL ≥ kS. Larger KL and KS

increase the potential of the reconstructions for representing higher

frequency and larger wavenumber components of the field.

However, larger KL and KS will increase the problem scale as well

as the solving time, so they are usually set to be as large as possible,

as long as the computational power allows. The selection of KL and

KS is discussed in detail in (Zeng et al., 2021). Define a subset L   ⊂
N2

0:

L =   ∪
2

m=1
k ∈ N2

0  : kd ≤ Kd,m − 1,  d = 1, 2
� �

: (15)

where k denotes the element of the matrix K. Thus, the truncated LP

basis is denoted by ffigi∈L, in which only the lower modes of the

basis are retained.

In this way, the truncated approximation to f can be represented

by

~f =   o
i∈L 

ĉ ifi, (16)

where (ĉ i)i∈N2
0  
denotes the sparse coefficients of the truncated LP

basis to be estimated.

It is assumed that the AUV collects N normalized ice

draft measurements fyngNn=1 ∈ ½−1, 1�N at dispersed spatial points

of fqngNn=1, qn ∈ D when sampling the observation area. To exploit

the information of all AUV sampling data and reconstruct the ice

bottom map, one can estimate ĉ and find the sparse approximation

of the ice draft distribution ~f fromNAUVmeasurements by solving

the following Least Absolute Shrinkage and Selection Operator

(LASSO) problem:

min
1
2N

‖ yn − ~f (qn) ‖2 +l ‖ ĉ ‖1, n = 1, :::,N , (17)

where l is the nonnegative regularization parameter. In this paper,

the value of l is typically in the range of 10-6 to 10-5. ĉ 1 is the ‘1

-norm of ĉ , ∥ · ∥2 denotes the ‘2 -norm. Once the LASSO problem

Equation (17) is solved, the ice bottom map can be reconstructed by

Equation (16) with the estimated ĉ and presented by substituting a

grid to ~f (x).

Furthermore, since the sparse approximation method is not

sensitive to the spatial rotation of the field, we can smooth the

reconstruction results by using average value method. We firstly

rotate the sample points at multiple angles to calculate the

corresponding reconstructed ice bottom map, then reverse the

rotation of the reconstructed maps back to the original angle, and

finally superimpose the multiple reconstructions to obtain the final

ice bottom map by averaging. The proposed rotation and averaging

method can effectively improve the quality of the reconstructed

results, which benefits from the rotation-insensitivity characteristics

of the sparse approximation method.
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The LASSO problem given in Equation (17) is coded and solved

using MATLAB. All the computation in our study is executed on a

PC with a 16-core Ryzen9 5950X CPU and 128G of RAM.

3.4.2 Performance metrics
The performance of reconstructions can be evaluated by

comparing the reconstructed underwater ice field ~fwith the actual

field f in the mapping area. Two metrics are adopted to assess the

performance of reconstruction: Peak Signal-to-Noise Ratio (PSNR)

(Huynh-Thu and Ghanbari, 2008) and Structural Similarity Index

(SSIM) (Wang et al., 2004). They are commonly used as

quantitative indexes for image or video quality evaluation.
• PSNR is a logarithmic ratio of the power of maximum

possible value of the actual field f to the power of Root Mean

Square Error (RMSE) between the actual field f and the

reconstructed field ~f . A larger PSNR value means relatively

less corruption in the reconstruction. The RMSE is defined

as
RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I�J o
I,J

i,j=1
fi,j − ~fi,j

� �2
:

s
(18)

where I and J are the resolutions of each dimension of rasterized f

and ~f . And the PSNR is formulated as

PSNR = 20 log10
max(f )

RMSE(f ,~f )

� �
, (19)

where max (f) is the peak value of f.
• SSIM is a perceptual metric used to quantify the similarity

of images or videos. A higher SSIM value indicates a greater

degree of similarity between the actual and the

reconstructed fields. The formulation of SSIM is
SSIM =
2mf m~f +C1ð Þ 2sf~f +C2ð Þ

m2
f +m

2
~f
+C1

� �
s 2
f +s

2
~f
+C2

� � , (20)

where mf , m~f , sf ,  s~f , and sf~f are respectively the local means,

standard deviations, and cross-covariance of the actual and

reconstructed fields f and ~f ; C1 = (k1L)
2 and C2 = (k2L)

2 are

constants for stabilization, preventing the denominator from

being zero, where k1 << 1, k2 << 1 and L is equal to 2B − 1,

determined by the bit depth B of f.

With the above sparse approximation method, the ice draft

measurements from both rough and intensive mappings can be

used to reconstruct a refined map of the ice bottom in the given

observation area.
4 Method validation

Currently, our own vehicle is still under general tests and the

available polar mission is under planning. In order to validate the

above proposed framework and methods for AUV adaptive

mapping and ice map reconstruction, we construct the testing
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scenario using the available ice bottom mapping data from other

polar missions, so that our proposed algorithms could be tested by

numerical simulations before the field tests. The actual

specifications of our AUV and the equipped sensors mentioned

in Section 2 are considered in our simulations here. Moreover, we

also conduct the applicability analysis to briefly discuss the

applicability of our proposed adaptive mapping method by

classifying underwater ice scenarios.
4.1 Simulation scenario setup

We apply floe-scale 3-D mapping data of sea ice draft to

generate our test scenario. The dataset was collected using a

multibeam sonar mounted on an AUV, from the SIPEX II voyage

of the Aurora Australis, 2012-2013 season, and the AUV utilized
Frontiers in Marine Science 09
was the ‘JAGUAR ’ Seabed-class vehicle from the Deep

Submergence Laboratory at the Woods Hole Oceanographic

Institution (Williams et al., 2017).

There were in total four missions conducted beneath sea ice

during the SIPEX-II voyage, in the region of (60.0 ~ 65.0°S, 115.0 ~

125.0°E); see Figure 4. Apart from the multibeam sonar data, the

CTD, ADCP, and hyperspectral data were also collected by the AUV.

Although the multibeam sonar was used in the mapping

mission, the field data was still sampled sparsely in space. Here,

we use the Kriging method to generate a sea ice draft map within the

given mapping area, which is taken as the “real” map of the testing

scenario. The interpolated sea ice draft map is shown in Figure 5A.

Since the available field data is limited, we rotate and splice the

pieces of interpolated images, to generate our testing scenario with

desired size and interested distribution of ice features. As a result,

the obvious symmetrical patterns can be found in the generated
A B

FIGURE 5

Ice draft map of testing scenario (Black solid lines present the predetermined trajectory for rough mapping). (A) 3D mapping of ice draft.
(B) Underwater ice thickness surface in 2D.
FIGURE 4

Mission area of JAGUAR AUV during SIPEX II voyage.
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map. The total area of the generated sea ice draft map is 500m ×

500m. We can see that the sea ice draft in the map has remarkable

variation in the three-dimensional space. Most of the ice draft is less

than 8m, but there are several isolated regions with larger ice draft.

They will be taken as the regions of interest in this study, which will

be identified and sampled intensively using our proposed adaptive

mapping methods. The ice draft surface in 2D is presented in

Figure 5B, which is a filled contour plot containing ice draft isolines

every 0.5m interval.
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4.2 Results and discussion

In this section, we present the simulation results of our

proposed framework and methods for underwater ice mapping

and reconstruction. The proposed AUV adaptive sampling

algorithms have been validated, including autonomous

identification and shape extraction of the interested regions, and

trajectory planning for intensive mapping. In addition, the

reconstruction results of ice draft map are compared and discussed.
A B

D

E F

C

FIGURE 6

Roughly reconstructed ice draft results and interested regions identified by different criteria. (A) Rough reconstruction of ice draft map. (B) Interested
regions identified by ice draft criterion. (C) Ice draft gradient of the roughly reconstructed map. (D) Interested regions identified by ice draft gradient
criterion. (E) Ice draft entropy of the roughly reconstructed map. (F) Interested regions identified by ice draft entropy criterion.
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4.2.1 Identification of interested regions
In the given observation area, the AUV first moves underwater

at the speed of 1m/s at a constant depth of 20m along a

predetermined zig-zag trajectory to map the ice bottom very

roughly, while the heading switch angle of the zig-zag trajectory

is 12°. With the roughly collected mapping data, the global ice draft

map is reconstructed online in real time using the Kriging

interpolation method. The roughly reconstructed map is shown

in Figure 6A. It can be imagined that the rough map only presents

the very general features of the observation area and loses the fine

details. The accuracy of the roughly reconstructed map is evaluated;

Figure 7 gives the deviation error of the ice draft between the

reconstructed and the real map, which varies between -4.16m and

7.33m. It is obvious that the spacing of AUV zig-zag trajectory

segments will affect the reconstruction accuracy as large

reconstruction errors appear beyond the AUV trajectory.

Globally, the reconstruction errors distribute uniformly within the

observation area with RMSE=0.8689m, while the values of the

performance metrics of the rough reconstruction are

PSNR=19.4895 and SSIM=0.7834, which can be taken as the

baseline for further comparison. In our study, we find if RMSE is

smaller than 1m, PSNR is larger than 17, and SSIM is larger than

0.7, then the accuracy of the roughly reconstructed map is

acceptable for further adaptive mapping.

Figures 6C, E respectively present ice draft gradient and entropy

in the roughly reconstructed ice map. We can see the regions of

interest respectively identified by the three identification criteria are

shown in the right-column subplots of Figure 6. The interested

regions identified by ice draft in Figure 6B seem more focused in

large scale, while the ones identified by ice draft gradient and

entropy coincide with each other generally, which look more

scattered in relatively small scale in Figures 6D, F. This indicates

that these two criteria are more sensitive to represent the variation

of ice draft, although the difference in the threshold selection of the

three criteria will influence the identified results. In our study, we
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take the value of the ice draft parameters at the 90% percentile as the

threshold of each criterion for the interested region identification. It

is also found that the ice draft gradient around the edge of the map

looks more cluttered and broken, which is caused by the inherent

defect of the algorithm on the solving of feature gradient at the edge

of the image.

4.2.2 Shape extraction of interested regions
Figure 8 presents the extracted areas for intensive mapping by

the three different criteria for further intensive mapping. The white

dotted contours indicate the interested regions extracted by Alpha

shape algorithm with areas larger than 1% of the total observation

area; we refer to this percentage as the area ratio for Alpha shape

extraction in our study. The identified regions are enveloped by the

red rectangles, using the minimum area bounding rectangle

method. Note that the number and the size of the extracted

bounding rectangles can be tuned by adjusting the threshold of

each identification criterion as well as the area ratio for Alpha shape

extraction, by which the fineness of the intensive mapping as well as

the maneuverability of the vehicle could be balanced.

The areas extracted by ice draft criterion seem continuous and

gathered in blocks in Figure 8A, while the ones extracted by either ice

draft gradient or entropy look patchy and scattered in irregular stripes

or donut shapes in Figures 8B, C. From the results in Figure 8, we can

see the distribution of the extracted rectangles is different among the

three cases, which is due to the principle and the threshold selection in

the three criteria. It seems that the ones extracted by ice draft entropy

include most of the regions identified by the other two criteria.

Figure 8 also reveals that some minimum area bounding rectangles

may exceed the mission area; however, in the trajectory planning for

AUV intensive mapping, if the vehicle touches the boundary of the

observation area, it will switch its heading to run away from the

boundary, which will be illustrated in the later subsection.

4.2.3 Trajectory planning for intensive mapping
The trajectory for intensivemapping is planned based on the rough

mapping results, and in the real application the vehicle performs the

rough and the intensive mappings one by one continuously in one

running round within the given observation area. From Figure 9, it can

be found that the vehicle both starts and ends at the same point (in the

left bottom corner) of the mapping area. It firstly runs around the

rectangular mission area and then moves in the predetermined zig-zag

trajectory to roughly map the given area. With the reconstructed rough

ice draft map online, the vehicle continues to map the regions of

interest adaptively one by one in an optimal trajectory generated by the

trajectory planner. As we mentioned before, the trajectory is optimized

by minimizing the total running time under the constraint of vehicle

maneuverability. We can see that the trajectory of the vehicle is

restricted within the given mission area even if the extracted

rectangle exceeds the boundary of the area and only the inside parts

aremapped. This indicates that the trajectory planner is able to adapt to

the scenarios with irregular boundaries.

The total running time for adaptive mapping (including both

rough and intensive mapping) under the three different criteria are

respectively 8691s, 8911s, and 9218s. It shows that the total running
FIGURE 7

Deviation error between reconstructed and actual ice draft (Black
solid track presents the predetermined trajectory for rough
mapping).
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time varied a little bit for the three cases and the variation is within

several minutes. The planned trajectory under ice draft entropy

criterion takes the longest time as the total area of the interested

regions extracted by this criterion is the largest, which is

mentioned above.

4.2.4 Underwater ice map reconstruction
With the above rough and intensive mapping data, the

refined sea ice draft map can be further reconstructed. For

comparison, the refined maps are respectively reconstructed by

Kriging interpolation method and our proposed sparse

approximation method. Besides, we also compare the effect of

the three criteria for interested region identification on the

reconstructed results.

Figure 10 presents the reconstructed ice draft maps by Kriging

interpolation and sparse approximation under different adaptive

mapping criteria. In general, the reconstructed maps both look

sketchy and smooth compared with the ‘real’ map. That is because

our purpose is to map the main variation and key features of

underwater ice topography and generate a sea ice draft map in a

cost-effective and efficient way, while the very detailed features are
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not our focus. This is especially true since the vehicle has limited

energy, and the underwater ice topography varies with the

surrounding environment, so it is better for the vehicle to

complete the mapping mission as soon as possible.

In Figure 10, we can see that the refined reconstruction results

by both Kriging interpolation and sparse approximation are able to

reflect most of the features of the regions with large ice draft or

obvious ice draft variation in Figure 5 (real map). In total, five

regions with ice draft larger than 8m can be identified and

reconstructed. However, the reconstructed maps by sparse

approximation seem more stratified than the ones reconstructed

by Kriging interpolation comparing the regions marked by red

ellipses in Figure 10. Note that all the reconstructed maps are

presented as filled contour plots containing ice draft isolines of

every 0.5m interval, so the more stratified map indicates that more

detailed features are captured.

The deviation errors of the ice draft reconstruction results by

Kriging interpolation and sparse approximation under different

adaptive mapping criteria are shown in Figure 11. It shows that the

reconstruction results by ice draft criterion have the smallest

variation range of deviation error, which is between -2.51m and
A B

C

FIGURE 8

Extracted rectangles for intensive mapping by different criteria (White dash-dotted contours indicate the extracted regions of interest. Red
rectangular boxes show the minimum area bounding rectangles of the interested regions). (A) Interested area extracted by ice draft criterion.
(B) Interested area extracted by ice draft gradient criterion. (C) Interested area extracted by ice draft entropy criterion.
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4.49m, while the ones by the other two adaptive mapping criterion

have relatively large variation range of deviation error from -2.60m

to 7.33m, as the thicker region at the upper left of the real map is not

fully recognized by either ice draft gradient or entropy criterion

with given threshold values for interested region identification and

extraction. The difference of deviation error between Kriging

interpolation and sparse approximation is obvious if comparing

the shade and texture of the two sets of deviation error images; we

can see that the deviation errors by sparse approximation look

lighter and smoother in color than the ones by Kriging

interpolation, which indicate smaller and steadier deviation

errors, especially in the regions marked with red ellipses

in Figure 11.

To demonstrate the performance advantage of adaptive

mapping, we also conducted benchmark mapping using a fixed

zig-zag trajectory. The fixed trajectory is similar to the rough

mapping trajectory as illustrated in Figure 5 but with denser zig-

zag segments. To make the comparisons fair, the total fixed but

denser zig-zag trajectory takes the comparative running time, which

is no less than the maximum running time of adaptive mapping

(including rough and intensive mapping, which is in total 9218s). In

our simulation, the total running time for fixed mapping is set as
Frontiers in Marine Science 13
9219s. With the measurements along the fixed but denser zig-zag

trajectory, the ice draft map is reconstructed using Kriging

interpolation, as shown in Figure 12.

The deviation error of the reconstruction result varies from

-3.94m to 9.19m; the variation range is even larger than the one of

rough mapping in Figure 7. That is because some thicker regions

happen to locate in the spacing area of the fixed but denser zig-zag

trajectory, and cannot be sampled and reconstructed accurately. So,

the performance of fixed mapping tends to be random in nature

depending on the ice draft feature distribution in the given

observation area. In spite of this, the color of the deviation error

image in Figure 12B is generally lighter than the one in Figure 7.

Since the spacing of the fixed zig-zag trajectory becomes denser

than the rough mapping, the reconstructed map contains more

detailed features and looks more stratified, if comparing Figure 12A

with Figure 6A. Moreover, as the vehicle moving in fixed but denser

zig-zag trajectory maps the observation area uniformly, the general

variation characteristics of the ice draft can be captured, and we can

see that the total five regions with obvious ice draft variation are

reflected in Figure 12A. However, some reconstructed features are

still too rough to present the real features in Figure 5B, see the red

ellipses marked regions in Figure 12A; besides, some reconstructed
A B

C

FIGURE 9

Planned trajectory for adaptive mapping under different criteria (Black solid track presents the optimized trajectory for both rough and intensive
mapping). (A) Planned trajectory under ice draft criterion. (B) Planned trajectory under ice draft gradient criterion. (C) Planned trajectory under ice
draft entropy criterion.
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features seem less accurate, see the black ellipse-marked region

in Figure 12A.

Apart from the above qualitative analysis, we also conducted

quantitative comparison among different mapping and reconstruction

results, using the performance metrics defined in Section 3.4.2. The
Frontiers in Marine Science 14
comparison results are summarized in Table 1. We can see that

generally the reconstruction results by adaptive mapping are better

than the fixed mapping one given the comparative running time of the

AUV, as smaller RMSE, larger PSNR, and larger SSIM are achieved. In

the given mapping scenario, adaptive mapping using the ice draft
A B

D

E F

C

FIGURE 10

Reconstructed ice draft map by different adaptive mapping and reconstruction methods (Red ellipses indicate the area for performance comparison).
(A) Kriging interpolation under ice draft criterion. (B) Sparse approximation under ice draft criterion. (C) Kriging interpolation under ice draft gradient
criterion. (D) Sparse approximation under ice draft gradient criterion. (E) Kriging interpolation under ice draft entropy criterion. (F) Sparse
approximation under ice draft entropy criterion.
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method for interested region identification takes the minimum

running time, but can generate the best reconstruction results, while

the ones using the other two identification methods produce similar

reconstruction performances to each other, if evaluated by the defined
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performance metrics. We guess the proposed three identification

methods may be more competent in their individual preferable

mapping scenarios, which will be further discussed in the

following subsection.
A B

D

E F

C

FIGURE 11

Deviation errors of different adaptive mapping and reconstruction methods (Red ellipses indicate the area for performance comparison). (A) Kriging
interpolation under ice draft criterion. (B) Sparse approximation under ice draft criterion. (C) Kriging interpolation under ice draft gradient criterion.
(D) Sparse approximation under ice draft gradient criterion. (E) Kriging interpolation under ice draft entropy criterion. (F) Sparse approximation under
ice draft entropy criterion.
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From the results in Table 1, it can be found that in the

adaptive mapping missions, there are only slight differences

between the refined reconstruction results by Kriging

interpolation and sparse approximation, respectively. For the

adaptive mapping using ice draft method, the reconstruction by

Kriging interpolation performs a little bit better; for the

adaptive mapping using ice draft entropy method, the

reconstruction result by sparse approximation looks slightly

better; for the adaptive mapping using ice draft gradient

method, each reconstruction method has its own superiority

in performance metrics. Overall, it can be concluded that the

advantage of sparse approximation in the reconstruction of a

static ice draft field is not that obvious from the defined

performance metrics; from our previous qualitative analysis,

however, we know that the sparse approximation can

reconstruct more detailed features in the ice draft map (in

shade and tex ture ) than the Kr ig ing in te rpo la t ion .

Sparse approximation is also capable of reconstructing

the t empora l l y dynamic fie ld which wi l l be key to

reconstructing the time variation of the ice draft field. To save

the length of this paper, the reconstruction of the time-varied

ice draft field will be considered and discussed in our

future work.
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4.3 Applicability analysis

Based on our discussion above, it is noticed that our proposed

adaptive mapping and reconstruction methods may be more

competent in their individual preferable under-ice mapping

scenarios. So, it is necessary to discuss the distribution characteristics

of ice draft features and the applicability of our proposed methods.
From the IPCC the Fifth Assessment Report (IPCC, 2013), we

know that two relatively thin floes (pieces of ice) colliding with each

other can ‘raft’, stacking one on top of the other and thickening the ice.

When thicker floes collide, thick ridges may be built from broken

pieces, with a height above the surface (ridge sail) of 2 m or more, and

a much greater thickness (~10 m) and width below the ocean surface

(ridge keel). The ridge keel is caused by deformed ice, which is exposed

to be the dominant features of sea ice in polar regions. The existing

surveys indicate that the floes are much thicker and more deformed

than reported by most drilling and ship-based measurements of

Antarctic sea ice (Williams et al., 2015). It is also suggested that

thick ice in the near-coastal and interior pack may be under-

represented in existing in situ assessments of Antarctic sea ice and

hence, on average, Antarctic sea ice may be thicker than previously

thought. As a result, the area of the deformed thicker ice is taken as the

regions of interest for intensive mapping in our observation missions.
TABLE 1 Comparison of reconstruction results.

Refined reconstruction method Mapping method Running time RMSE PSNR SSIM

Kriging interpolation Fixed mapping with zig-zag trajectory 9219 (s) 0.7083 19.7271 0.7981

Kriging interpolation Adaptive mapping By ice draft 8691 (s) 0.6330 25.6001 0.8507

By ice draft gradient 8911 (s) 0.7181 24.4308 0.8442

By ice draft entropy 9218(s) 0.6852 23.6812 0.8403

Sparse approximation Adaptive mapping By ice draft 8691 (s) 0.6366 24.6113 0.8354

By ice draft gradient 8911 (s) 0.6822 24.1738 0.8347

By ice draft entropy 9218(s) 0.6559 24.0127 0.8414
fr
The running time for fixed mapping (9219s) is larger than the maximum running time of adaptive mapping (9218s), which are marked in bold.
A B

FIGURE 12

Reconstruction results by Kriging interpolation with fixed trajectory (Red and black ellipses indicate the area for performance comparison).
(A) Reconstructed ice draft map. (B) Deviation error between reconstructed and actual ice draft.
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As is shown in Figure 13, the variation of regional ice draft can be

generally classified into four categories: flat or gradual feature,

uniformly distributed small-scaled coarse feature, uniformly

distributed large-scaled sharp feature, as well as separated or

clustered large-scaled sharp feature. Here, the small-scaled feature

means the maximum fluctuation of ice draft is less than 2m, while the

large-scaled feature indicates the maximum fluctuation of ice draft is

more than 5m. It can be imaged that our proposed adaptive method

is less applicable to the first two categories of underwater ice scenarios

as few regions of interest can be identified there with moderate varied

features. As for the third category, if the deformed ice regions are

distributed dispersedly and densely in the observation area, the

interested region for adaptive mapping will be identified as a large

whole area, even filling up the observation area; such a situation is

similar to the first two categories. If the deformed thicker ice regions

are distributed separately or clustered in the field, it is more appliable

for our proposed adaptive mapping method to identify and

intensively map a limited number of interested regions.

Moreover, the selection of the thresholds in the identification

methods will affect the adaptive mapping performance and heavily

depend on the ice draft variation of the individual interested region,

the values of which are currently assigned based on the average or

certain percentile of the ice draft parameters. From the interested

region identification results in Section 4.2, we can see that if the ice

draft variation of the interested region is slow with a gentle slope (like

the left feature in Figure 13D), the ice draft method for the interested

region identification may be more applicable as the deformed ice

regions could be identified as large blocks, while the ice draft gradient

and entropy methods are more sensitive to ice draft variation and

suitable for the scenario where the ice draft variation of the interested

region is sharp with a steep slope (see the right feature in Figure 13D),

and the deformed ice regions could be identified as patchy stripes or

donuts. Moreover, the identification performances of the ice draft

gradient and entropy methods are similar as the identified regions of

interest by the two methods coincide in general. Besides, the selection

of the area ratio for Alpha shape extraction will also influence the

accuracy and the efficiency of the mapping and reconstruction results.

Based on the above findings, we notice that it is necessary to apply

some more intelligent mapping methods, such as self-learning of the

ice draft features from online measurements, which will be

considered in our future study.
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5 Conclusions

This paper presented a low-cost underwater ice mapping

framework for small-sized AUVs using adaptive sampling and

reconstruction methods. The goal of our study is to adaptively

obtain the key information of ice topography and reconstruct the

map of ice draft efficiently, given the limited AUV endurance and the

sparse mapping measurements. A graphics-based adaptive mapping

method was proposed to densify the measuring of ice draft in the

regions with ‘noticeable’ variations. Three criteria were proposed to

identify the interested regions with remarkable variation of ice draft

(namely the deformed ice regions) based on the roughly reconstructed

ice draft map. The Alpha shape algorithm was used to extract the

boundaries of the interested regions. To make it convenient for AUV

trajectory planning for intensive mapping, the regions of interest were

further enveloped by the minimum area bounding rectangles.

Moreover, a trajectory planner was designed to generate an optimal

trajectory for the vehicle to map all the interested regions intensively,

by minimizing the total running time under the constraint of vehicle

maneuverability. The sparse approximation method was proposed to

reconstruct the slowly varied ice draft map with the limited sparse

mapping swathes. We also defined the quantitative indexes to assess

the performance of reconstruction, which are Peak Signal-to-Noise

Ratio (PSNR) and Structural Similarity Index (SSIM).

In order to validate the above proposed framework and methods

for AUV adaptive mapping and reconstruction of underwater ice

topography, the testing scenario was created using the available ice

bottom mapping data from the field, and our proposed algorithms

were tested and compared by a set of numerical simulations. For

comparison, the refined ice draft maps are reconstructed both by

Kriging interpolationmethod and our proposed sparse approximation

method. In general, the reconstructed maps by both methods looked

sketchy and smooth compared with the ‘real’ map, while the ones

reconstructed by sparse approximation seemed more stratified than

the ones reconstructed by Kriging interpolation, which indicated that

more detailed features were captured. The difference of deviation error

of ice draft between Kriging interpolation and sparse approximation

was obvious if comparing the shade and texture of the two sets of

deviation error images. We could see that the deviation errors by

sparse approximation looked lighter and smoother in color, which

denoted smaller and steadier deviation errors.
A B

DC

FIGURE 13

Underwater ice scenario comparisons (2D profile of ice draft). (A) Flat or gradual feature. (B) Uniformly distributed coarse feature. (C) Uniformly
distributed sharp feature. (D) Separated or clustered feature with different ice draft gradient.
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Apart from the qualitative analysis, we also conducted

quantitative comparison among different mapping and

reconstruction results, using the defined performance metrics. It

was found that the reconstruction results by adaptive mapping

were generally better than the fixed mapping one given the

comparative running time of the AUV, as smaller RMSE, larger

PSNR, and larger SSIM were achieved. In the given mapping

scenario, adaptive mapping using the ice draft method for

interested region identification took the minimum running time,

but could generate the best reconstruction results, while the ones

using the other two identification methods produced similar

reconstruction performances to each other. It revealed that the

proposed three identification methods for adaptive mapping may

be more competent in their individual preferable mapping scenarios.

There were only slight differences between the refined reconstruction

results by Kriging interpolation and sparse approximation in the

values of the performance metrics. In the end, the applicability

analysis was conducted to discuss the applicability of the proposed

adaptive mapping method by classifying the underwater ice

scenarios. It was concluded that our proposed method was more

applicable to the underwater ice scenarios where the deformed

thicker ice regions were distributed separately or clustered.

Since the selection of the thresholds in the identification and

extraction methods will affect the adaptive mapping and

reconstruction performance heavily depending on the ice draft

variation in the individual interested region, some more intelligent

mapping methods based on self-learning of the ice draft features from

the online measurements will be considered in our future study.

Moreover, only the reconstruction of the spatial variation of the ice

draft was considered in our current work; as sparse approximation is

also capable of reconstructing the temporally dynamic field, we will

consider reconstructing the temporal variation of the ice draft field in the

future. There are also some key practical issues that should be carefully

addressed, such as the impact of AUV navigation and sampling errors

on the adaptive mapping and reconstruction results, to ensure the

performance of our proposed methods in the future field applications.
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