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Real-time detection of
deep-sea hydrothermal
plume based on machine
vision and deep learning

Xun Wang, Yanpeng Cao, Shijun Wu* and Canjun Yang

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
Recent years have witnessed an increase in applications of artificial intelligence

(AI) in the detection of oceanic features with the tremendous success of deep

learning. Given the unique biological ecosystems and mineral-rich deposits, the

exploration of hydrothermal fields is both scientifically and commercially

important. To achieve autonomous and intelligent sampling of the

hydrothermal plume by using AUV, this paper proposes an innovative method

for real-time plume detection based on the YOLOv5n deep learning algorithm

designed with a light-weight neural network architecture to meet the

requirements of embedded platforms. Ground truth labeler app LabelImg was

used to generate the ground truth data from the plume dataset created by

ourselves. To accurately and efficiently detect hydrothermal plumes using an

embedded system, we improved the original structure of YOLOv5n in two

aspects. First, SiLU activation functions in the model were replaced by ReLU

activations at shallow layers and Hard-SiLU activations at deep layers to reduce

the number of calculations. Second, an attention module termed Coordinate

Attention (CA) was integrated into the model to improve its sensitivity to both

channel and spatial features. In addition, a transfer learning training method was

adopted to further improve the model’s accuracy and generalizability. Finally, we

successfully deployed the proposed model in a low-cost embedded device

(NVIDIA Jetson TX2 NX) by using the TensorRT inference engine. We then

installed the Jetson TX2 NX into a hovering-type AUV as its vision processing

unit and conducted a plume detection test in the water tank. The water tank

experimental results demonstrated that the proposed method can achieve real-

time onboard hydrothermal plume detection.

KEYWORDS

hydrothermal plume, deep-sea, real-time, object detection, deep learning, transfer
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1 Introduction

Since its first discovery at the mid-ocean ridge in the eastern

Pacific by the research submersible ALVIN in 1977 (Corliss et al.,

1979), seafloor hydrothermal activity has become a popular topic of

research in many academic fields owing to its unique mineralization

system, ecosystem, and its contribution to the heat and material of

the ocean (Luther et al., 2001; Petersen et al., 2011; Tao et al., 2020).

Collecting hydrothermal fluids with suitable samplers and then

analyzing their chemical composition in the laboratory has always

been an effective means of studying the hydrothermal fluids. In the

past few decades, fluids have been collected from seafloor

hydrothermal systems with a variety of samplers that can be

deployed using remotely operated vehicles (ROVs) and human-

occupied vehicles (HOVs) (Seewald et al., 2002; Chen et al., 2007;

Wang et al., 2020). However, the operation and maintenance

of ROV or HOV are expensive, time-consuming, and might

cause security concerns for the vehicle operator. By contrast,

using autonomous underwater vehicles (AUVs) to explore

hydrothermal deposits is more cost-effective and safer.

Obviously, unmanned and intelligent ocean exploration is the

future development trend. In the past few years, AUV has played an

essential role in the exploration of hydrothermal fields (German

et al., 2008; Kumagai et al., 2010; Minami and Ohara, 2020). To

obtain detailed visual data about seafloor hydrothermal activity

more efficiently, Okamoto et al. (2019) developed a hovering-type

AUV named Hobalin to perform visual observations with

submillimeter image resolution using still cameras. However, the

shutters of the still cameras were triggered every 4 seconds and the

images captured were then analyzed by experts after the recovery of

the AUV. In another word, Hobalin AUV was not capable of

detecting the hydrothermal plume in real-time. To achieve

autonomous sampling, AUV must first be endowed with the

ability of intelligent detection of hydrothermal plumes. Several

decades of exploration have collected a large number of images

and videos of the deep-sea hydrothermal plume, making it feasible

to build and train a deep learning model for plume detection based

on these data.

In recent years, deep learning, part of a broader family of AI

methods, has become a hot research method in various fields,

providing intelligent solutions to some complex problems that

previously required human expertise. Deep learning is a data-

driven technique, learning from a large amount of labeled data to

build a model. The model is then used to analyze unlabeled data and

make predictions. With the continuous advancement of ocean

observation technology, the amount and dimensions of ocean

data have risen sharply. Applying deep learning methods to

marine exploration has attracted more and more attention. For

example, Ditria et al. (2020) utilized the Mask R-CNN model to

analyze fish abundance automatically; Xu et al. (2021) applied three

deep learning schemes to oceanic eddy detection; Li et al. (2021)

proposed an improved YOLOV3 model with densely connected

structures to achieve in situ zooplankton detection; Kandimalla

et al. (2022) developed a fish passage observation platform to

monitor fish with deep learning methods; Liao et al. (2022) used
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the MobileNet-SSD model and key-frame extraction detection

method to detect the damage of far-sea underwater cage. As far as

we know, there is limited research work on deep-sea hydrothermal

plume detection via deep learning techniques.

This paper proposes a real-time object detection model for

deep-sea hydrothermal plumes based on machine vision and deep

learning. Firstly, a large number of hydrothermal plume images and

videos were collected and then labeled manually to build a dataset

for model training. Secondly, several state-of-the-art models, such

as Faster R-CNN, SSD, and YOLO series were custom trained on

the hydrothermal plume dataset. By comparing the plume detection

performance, we selected the YOLOv5n algorithm as the baseline

model in this paper. In addition, according to the characteristics of

the hydrothermal plume and the real-time detection requirement,

the original YOLOv5n network was optimized and improved,

which not only maintains a good performance in inference speed

but also achieves a tremendous increase in detection accuracy.

Finally, the proposed plume detector was deployed on an edge AI

computing device NVIDIA Jetson TX2 NX using TensorRT deep

learning accelerator, as a vision processing unit on the AUV.

The main contributions and innovations of this paper are

summarized below:
• We proposed a novel deep-sea hydrothermal plume dataset,

which consists of 1589 images of the hydrothermal plume

and 756 images of the seafloor background.

• We proposed a lightweight model based on the YOLOv5n

algorithm to perform real-time plume detection. The

original structure of YOLOv5n was improved in two

aspects, including (1) replacing the SiLU activation

functions with ReLU functions at shallow layers and

Hard-SiLU functions at deep layers to increase the

inference efficiency on the embedded system and (2)

insetting an attention module termed Coordinate

Attention (CA) into the backbone network to improve

the overall accuracy.

• We adopted a transfer learning approach to utilize the

knowledge learned from a fire and smoke dataset to

better train the deep-sea hydrothermal plume detection

model and enhance the model ’s robustness and

generalization.

• We deployed the proposed plume detection model on an

embedded AI device NVIDIA Jetson TX2 NX using the

TensorRT inference framework and achieved the real-time

on-board high-accuracy plume detection.
2 Materials and methods

2.1 Object detection deep learning models

Deep learning in the machine vision field includes image

classification, object detection, and instance segmentation. Object

detection refers to the technique for recognizing and locating some
frontiersin.org
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specific objects in an image. As one of the primary tasks in machine

vision, it has been extensively studied in the past few decades. In

recent years, convolutional neural networks (CNNs) have gradually

been the mainstream of object detection with the tremendous

successes of deep learning in image classification (Liu et al.,

2020). Generally, CNN-based object detection algorithms could

be further classified into two-stage detectors and one-stage

detectors (Wu et al., 2020). The former methods firstly generate

the region proposals from input images and then do object

classification and refinement for each region proposal. The latter

innovatively reframe the object detection as a simple regression

problem and perform the localization and classification in one

network. Thus, one-stage methods normally have a better real-

time performance.

Typical two-stage object detection methods are the R-CNN

series, which include R-CNN (Girshick et al., 2014), Fast R-CNN

(Girshick, 2015), and Faster R-CNN (Ren et al., 2015), etc.

Representative one-stage object detection models are SSD (Liu

et al., 2016) and YOLO series (including YOLO (Redmon et al.,

2016), YOLOv2 (Redmon and Farhadi, 2017), YOLOv3 (Redmon

and Farhadi, 2018), YOLOv4 (Bochkovskiy et al., 2020), and

YOLOv51). YOLOv5 is the latest version of the YOLO series and

its structure remains close to YOLOv4. The major difference

between YOLOv4 and YOLOv5 is that they are developed in

different deep learning frameworks. They are comparable in terms

of accuracy, but YOLOv5 outperforms YOLOv4 in the aspect of

speed and ease of model deployment. Unlike previous versions of

YOLO developed in the Darknet2, YOLOv5 is built in the PyTorch3

framework. Darknet is an open-source neural network framework

written in C and CUDA. PyTorch, written in python, is much more

easily configurable than Darknet, making YOLOv5 much more

production ready.

Like EfficientNet (Tan and Le, 2019), YOLOv5 adopts a simple

yet effective compound scaling method that uniformly scales the

network width and depth through a set of fixed scaling coefficients,

called depth_multiple and width_multiple respectively. Based on

differences in network depth and width, there are five models in the

official release of YOLOv5-v6.1, named YOLOv5l, YOLOv5m,

YOLOv5s, YOLOv5n, and YOLOv5x. Among them, YOLOv5l is

the baseline model with both depth_multiple and width_multiple

equal to 1, and the other four models are acquired at different

scaling scales. Figure 1 shows the overall structure diagram of the

YOLOv5-v6.1 series models. The CBS module is the basic module

in YOLOv5-v6.1. It is composed of a 2D convolution (conv2d)

layer, a batch normalization (BN) layer, and a sigmoid-weighted

linear unit (SiLU) activation layer. YOLOv5 adopts CSPDarknet53

as the backbone and uses the same head as YOLOv3. Different from

YOLOv4, YOLOv5 introduces the CSP network into PAN and then

uses it as the neck. There are two kinds of CSP modules: the CSP in

the backbone (noted as CSP1) and the CSP in the neck (noted as
1 https://github.com/ultralytics/yolov5

2 https://pjreddie.com/darknet/

3 https://pytorch.org/
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CSP2). The former consists of three CBS modules and several

Bottleneck modules, while the latter only replaces a Bottleneck

module with two CBS modules based on the former. It should be

pointed out that the number of the Bottleneck modules is

determined by the depth_multiple. In addition, YOLOv5

implements a new cascaded SPP module (called SPPF) that

produces mathematically identical results to SPP with faster

speeds. Finally, YOLOv5 has some small but useful tricks, such as

the auto-learning bounding box anchors generating mechanism for

custom datasets and the maximum batch-s ize auto-

computing mechanism.
2.2 Deep-sea hydrothermal plume dataset

Deep Learning models are data-hungry for creating the best

model or system with high performance. Finding or creating a

quality dataset is a fundamental requirement for developing any

real-world AI application. To our knowledge, there are currently no

publicly available deep-sea hydrothermal plume datasets. As

mentioned before, we have collected a lot of videos and images of

the hydrothermal plume during the sampling process using ROV or

HOV in the past few years. According to these private data and

other small parts of images acquired from the internet, we built the

first deep-sea hydrothermal plume dataset, consisting of 1589

images of the hydrothermal plume and 756 images of the deep-

sea background. The plume dataset serves as a valuable resource for

deep learning-based object detection model. Specifically, the

background images are instrumental in training models to

differentiate between areas with and without objects, which can

reduce false positives and improve the accuracy of plume detection.

Figure 2 shows some example images of the plume dataset.

2.2.1 Image extraction and labelling
The initial plume dataset contains about 60 videos filmed by

ROV or HOV in different hydrothermal fields. In total there are

approximately 10 h of video. We extracted 68 clips with

hydrothermal plume target. Object detection models require still

images with precisely labelled bounding boxes for training.

However, the original video clips do not match the requirements.

To meet the demands, we further extracted frames from these video

clips at intervals of 2 seconds and then manually labelled the images

using the LabelImg4 application. We saved these label files in the

YOLO format, needed for YOLO models’ training. In addition, we

wrote a python script to convert the YOLO format labels to the

COCO format automatically. The COCO format labels are used to

train and evaluate Faster-RCNN and SSD models developed in

MMDetection open source object detection toolbox (Chen

et al., 2019).

2.2.1 Dataset partitioning
All images and their corresponding labels were divided into 3

subsets, namely Train, Val, and Test. The former two subsets (also
4 https://github.com/heartexlabs/labelImg
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FIGURE 1

YOLOv5-v6.1 network structure diagram. a is the depth_multiple, b is the width_multiple, and nclsis the number of object classes. 640*640*3,
320*320*64b etc. indicate the height*width*channels of the feature maps.
B

A

FIGURE 2

Example images from the deep-sea hydrothermal plume dataset: (A) images of hydrothermal plume; (B) images of deep-sea background.
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can be seen together as TrainVal set) are used for model training,

while the latter one subset is used for final model performance

evaluation. To better assess the trained model’s real performance,

the images in the Test set and the images in the TrainVal set are

from different videos. The numbers of images in different subsets of

the plume dataset are shown in Table 1. We randomly picked 80%

samples of the annotated images in the TrainVal set for model

learning, with the remaining 20% used to form a validation set for

best learning result assessment. Overfitting, which refers to a

phenomenon that the model tries to fit the training data entirely

and ends up performing poor in the case of unseen data scenarios, is

a common problem in deep learning. We minimized overfitting by

using the early-stopping technique. In our case, this was achieved by

assessing the AP@0.5 on the Val set at intervals of one epoch and

stopping the training when there were at least 50 epochs

without improvement.

2.2.3 Data augmentations
Deep convolutional neural networks have significantly

improved the state of the arts on object detection machine vision

tasks. However, their impressive performances are heavily reliant

on massive amounts of labelled data for supervised learning. To

improve the performance, we use the data augmentation technique

to increase both the size and the diversity of the labelled plume

dataset by leveraging label preserving transformations.

Common augmentations can be divided into two categories:

geometric transformations and photometric transformations.

Geometric transformations alter the geometry of the image to

make the CNN insensitive to changes in position and orientation.

Example transformations include flipping, cropping, scaling,

translating, and rotating; As for photometric transformations, it

adjusts the color channels or adds some noise to make the CNN

insensitive to changes in illumination and color (Taylor and

Nitschke, 2018). YOLOv5 not only contains these generic

augmentations, but also has some unique augmentations such as

Mosaic, MixUp, and Copy-Paste. However, it does not mean that

the more data augmentation methods are used, the better the

performance of the detector will be. For a specific dataset, it is

necessary to choose some appropriate data augmentations.

Obviously, flapping up-down is not practical in plume detection.

In the proposed plume detector, we used a combination of Mosaic

and some suitable traditional augmentation methods. To make the

plume detector insensitive to changes in illumination and color, the

enhancement coefficient of hue (H), saturation (S), and lightness
Frontiers in Marine Science 05
(V) were set to 0.1, 0.8, and 0.5, respectively. Other coefficients were

kept the same as those in YOLOv5.
2.3 Deep-sea hydrothermal plume detector

2.3.1 Model architecture
Prior studies have shown that network depth and width are

both important for models’ expressive power. Normally, deeper

CNN networks can capture richer and more complex features, and

wider networks are capable of capturing more fine-grained features

and are easier to train (Zagoruyko and Komodakis, 2016; Raghu

et al., 2017). However, with the network getting deeper and wider,

the number of weights increases and the inference speed goes

slower. For a specific object detection task, choosing suitable

depth and width is necessary for the trade-off between accuracy

and efficiency. Through a comprehensive comparative experiment

(related results are detailed in section 3.1), we finally chose to build

the real-time deep-sea hydrothermal plume detector based on

YOLOv5n. Furthermore, to accurately and efficiently detect

hydrothermal plumes by using an embedded system, the original

structure of YOLOv5n was improved in two aspects. First, SiLU

activation functions in the model were replaced by ReLU at shallow

layers and Hard-SiLU at deep layers to reduce the number of

calculations (see section 2.3.1.1 for more details). Second, a CA

attention module was integrated into the backbone network to

improve the model’s sensitivity to channel and spatial features (see

section 2.3.1.2 for more details). The architecture of the proposed

hydrothermal plume detector is shown in Figure 3.

2.3.1.1 Activation functions

The choice of activation functions in deep neural networks has a

significant effect on the training dynamics and task performance.

Currently, the most successful and widely-used activation function

is the Rectified Linear Unit (ReLU) (Nair and Hinton, 2010;

Krizhevsky et al., 2017), defined as:

Re LU(x) =
0, x ≤ 0

x, x > 0

(
(1)

Thanks to its simplicity and effectiveness, ReLU has become the

default activation function used across the deep learning

community. In YOLOv5, a nonlinearity called SiLU (Elfwing

et al., 2018), also called Swish (Ramachandran et al., 2017), was

employed as the activation function, which significantly improves

the accuracy of neural networks. The activation of the SiLU is

computed by the sigmoid function multiplied by its input. This

nonlinearity is defined as:

SiLU(x) =  x · s (x) = x ·
1

1 + e−x
(2)

where the s (x) = 1
1+e−x denotes the sigmoid function.

While this nonlinearity improves accuracy, it comes with a

higher cost in embedded environments as the sigmoid function is

much more expensive to compute than ReLU. Inspired by
TABLE 1 Numbers of images of different subsets in the deep-sea
hydrothermal plume dataset.

Train
+Val

Train
(80%)

Val
(20%) Test Train+Val

+Test

Plume 1205 963 242 384 1589

Background 666 532 134 90 756

Sum 1871 1495 376 474 2345
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MobileNetV3 (Howard et al., 2019), we handled this problem by

replacing the sigmoid function with its piece-wise linear hard

analog ReLU6ðx+3)
6 , where

ReLU6ðxÞ =
0, x ≤ 0

x, 0 < x ≤ 6

6, x > 6

8>><
>>: (3)

ReLU6 is a modification of the ReLU with a maximum size of 6.

Similarly, the hard version of SiLU becomes:

 Hard-SiLU ðx) = x ·
ReLU6(x + 3)

6
=

0, x ≤ −3

x2+3x
6 , −3 < x ≤ 3

x, x > 3

8>><
>>: (4)

The values of constants in Hard-SiLU was determined by being

a good match to the original smooth version. Replacing SiLU with

Hard-SiLU has no discernible difference in accuracy, but the piece-

wise implementation of Hard-SiLU can reduce the number of

memory accesses, improving the training and inference efficiency

substantially. In addition, since most of the benefits of SiLU are

obtained by using them only in the deeper layers, Hard-SiLU was

only used in the deep layers in our modified model architecture. We

replaced SiLU activations in the shallow layers with more simple

ReLU activations to further reduce the calculation.
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2.3.1.2 Attention modules

Attention modules, inspired by the attention mechanisms in

the human brain, have been widely used for boosting the

performance of modern deep neural networks, thanks to their

ability to provide additional information on “where” and “what”

to focus on. However, their application for lightweight networks

deployed in the embedded systems with limited computing power

significantly lags behind that for large networks running in the

workstation with powerful and expensive GPU graphics cards.

This is mainly because the computational overhead brought by

most attention modules is not affordable for embedded devices.

Considering the restricted computation competence of embedded

systems, to date, the most popular attention mechanisms for

lightweight neural networks are still the Squeeze-and-Excitation

(SE) (Hu et al., 2018), Convolutional Block Attention Module

(CBAM) (Woo et al., 2018), and Coordinate Attention (CA) (Hou

et al., 2021). Among them, the SE attention only considers

encoding inter-channel information but neglects the position

information. The CBAM network exploi ts posi t ional

information by reducing the channel dimension of the input

tensor and then computing spatial attention using convolutions.

However, convolutions can only capture local relations but fail in

modeling long-range dependencies. The CA module embeds

positional information into channel attention to attend over

large regions. It can capture not only cross-channel but also
FIGURE 3

Network structure diagram of the proposed hydrothermal plume detector.
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position-sensitive information and generates coordinate-aware

attent ion maps whi le avoiding increas ing significant

computation overhead. A previous study demonstrates that the

CA module outperforms the SE and CBAM in object detection

tasks (Hou et al., 2021). Thus, we inserted a CA module in the

plume detector’s backbone network to lift its performance.

The block diagram of the CA module is shown at the top of

Figure 3. Unlike channel attention that converts a feature tensor to a

single feature vector via 2D global pooling, the CA module employs

two 1D global pooling operations to respectively aggregate the input

features map X (dimension is H*W*C) along the vertical and

horizontal directions into two separate direction-aware feature

maps X1 (dimension is H*1*C) and X2 (dimension is 1*W*C).

These two feature maps embedded with direction-specific

information are then concatenated to form feature map X3

(dimension of 1*(H+W)*C) which is subsequently passed through

a CBHmodule. The CBHmodule reduces the channels from C to C/

r based on a specified reduction ratio r (in our implementation, r

was set to 32). After that, the feature map acquired is split into two

tensors which are then individually passed through two 2D

convolution kernels to increase the channels back to C from C/r.
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Finally, two sigmoid activations are separately applied on the

resultant two tensors to form the two attention maps, each of

which captures long-range dependencies of the input feature map

along one spatial direction. Therefore, the positional information

can be preserved in the generated attention maps. The two attention

maps are then sequentially element-wise multiplied with the

original input feature map to emphasize the representations of

interest. The dimension of the feature map does not change after it

was processed by the CA module. Thus, it is convenient to plug the

CA module into any classic deep neural network.

2.3.2 Model training and deployment
After preparing the plume dataset and defining the model’s

structure, we trained the plume detector in the Pytorch deep

learning framework. A weights file was obtained after the

training. For model deployment on Jetson TX2 NX, we firstly

rebuilt the plume detector by the NVIDIA TensorRT C++ API

and then generated the plume detection TensorRT engine file with

the weights file obtained in the model training process. The detailed

flow chart of the proposed plume detection method including

model training and deployment process has been shown in Figure 4.
FIGURE 4

Flow chart of the proposed method, including model training (left) and model deployment (right) two parts.
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2.3.2.1 Model training platform

A workstation running the Ubuntu 20.04 operating system was

used as the model training platform. The Pytorch framework and

the proposed plume detection algorithm were built in the

Anaconda3 environment. The program was written in Python

3.7, and the CUDA version was 11.1. For hardware, the processor

was an AMD 64-Core Ryzen Threadripper Pro 3995WX with 3.5

GHz main frequency, the memory was 126G, and the graphics card

was a GeForce RTX 3090 24G.

2.3.2.2 Training with transfer learning

Transfer learning, inspired by human beings’ capabilities to

transfer knowledge across domains, is an effective model training

method that can leverage knowledge from a different but related

source domain to improve the performance of target learners in a

specific target domain where labelled data is scarce (Zhuang et al.,

2020). As we described before, there are no open-source deep-sea

hydrothermal plume datasets. The plume dataset created by

ourselves only contains 2345 images in total. For training of deep

learning models, it is not large enough. Although the data

augmentation technique can rich the plume dataset to a certain

extent, its improvement is still limited. Thus, we further utilized the

transfer learning method to boost the plume detector ’s

performance. As can be seen in Figure 5, the deep-sea

hydrothermal plume is very similar in shape, texture, and color to

the smoke on land. After searching, a fire and smoke dataset5,

consisting of 23.7k images, was found in the Kaggle community. We

treated the fire and smoke dataset as the source domain in our

transfer learning experiment.

The transfer learning method commonly used in the field of

deep learning is to copy the weights of the base network trained on

the source dataset to the target network, and then train the target

network on the target dataset. For the transferred weights, there are

two methods to deal with: fine-tuning or freezing. The former

method backpropagates the errors from the new task into the

copied features to fine-tune them to the new task. The latter

method leaves the transferred feature layers frozen in place,

meaning that the copied features do not update during training

on the new task. How to handle the copied features of the target

network is determined by the size of the target dataset and the

number of parameters of the network. On the one hand, when the

number of parameters is large and the target dataset is small, an

overfitting phenomenon may occur if only fine-tune the transferred

features, so some of the weights (first n layers) can be left frozen. On

the other hand, when the target dataset is large or the number of

parameters is small, there are enough data for parameter update to

make that overfitting do not happen, so all the copied features can

be fine-tuned to the new task to boost performance. Of course, if the

target dataset is very large, there would be no need to utilize the

transfer learning method since the labelled images in the dataset are

rich enough for model training from scratch (Yosinski et al., 2014).

In our case, we conducted some comparative experiments to do a

better choice. An overview of the experimental treatments and
5 https://www.kaggle.com/datasets/hhhhhhdoge/fire-smoke-dataset
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controls of the transfer learning method is shown in Figure 6.

Through experiments, we found that the best detection

performance was obtained by only fine-tuning the target network

with no need for freezing the first n layers. Although the plume

dataset is not very large, our proposed plume detector is a

lightweight network with few parameters, so this result is

reasonable. The detailed experimental results can be seen in

section 3.4.

2.3.2.3 Model deployment platform

NVIDIA Jetson TX2 NX6 is a powerful but compact embedded

product. It provides up to 1.33 TFLOPs AI performance, which is

2.5 times the performance of Jetson Nano. Jetson TX2 NX shares

form-factor and pin compatibility with Jetson Nano. It consists of

an NVIDIA Pascal architecture GPU with 256 CUDA cores, a CPU

complex with Denver 2 (Dual-Core) processor and ARM Cortex-

A57 MPcore (Quad-Core) processor, and a 4GB-128bit-LPDDR4

memory. Thanks to its high performance, low power consumption,

and small form-factor, Jetson TX2 NX is a preferred hardware

platform to deploy a hydrothermal plume detection model for AUV

with limited space and constrained battery. The trained plume

detection model has been transplanted into the Jetson TX2 NX

using the TensorRT7 inference engine, a C++ library for high-

performance inference on NVIDIA GPUs.
3 Results

3.1 Performances of different scale models
of YOLOv5

To find a suitable baseline model for real-time plume detection,

besides the officially released four models (YOLOv5 l, m, s, n), we

still trained and tested three custom models (named YOLOv5 s1,

n1, n2) on the plume dataset. The tested seven models have a

similar structure with only differences in depth (layers) and width

(channels). In this experiment, the number of training epochs was

set to 600, and the optimal batch-size, which refers to the number of

training examples utilized in one iteration, was auto-computed for

the 90% utilization of GPU memory. All the hyper-parameters used

were the default values in the hyp.scratch-low.yaml8 file.

The parameters and plume detection performances of different

scale models of YOLOv5 are detailed in Table 2. From Table 2, the

following conclusions can be drawn:
8 h

scrat
• As the network gets deeper and wider, the required inference

time increases dramatically.
ttps://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.

ch-low.yaml
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Fron
• In general, large models have better accuracy performance in

plume detection than small models, but the difference is not

as big as that of inference time.

• Reducing the computation of model, the maximum batch-

size that GPU can support increases.

• To balance accuracy and efficiency, YOLOv5n is a better

choice for building the plume detector. Compared with

YOLOv5m, it only has a slight loss of accuracy (0.069 AP

decrease, i.e., from 0.741 to 0.672) but almost 4 times

increase of inference speed (i.e., from 3.7 ms/image to 0.9

ms/image). Compared with YOLOv5n2, it has comparable

speed but much higher accuracy performance.
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3.2 The effectiveness of CA module

For the qualitative analysis of the CA module’s impact on the

performance of the plume detector, we apply the Grad-CAM as our

visualization tool to visualize the class activation maps of models

with and without attention mechanism. Grad-CAM is a recently

proposed visualization method that uses gradients to calculate the

importance of the spatial locations in convolutional layers

(Selvaraju et al., 2017). The visualization results of Grad-CAM

can clearly illustrate the attended regions of models. Figure 7A is the

original input image with ground truth marked, Figure 7B shows

the Grad-CAM heat-map and predicted plume bounding box
FIGURE 5

Schematic diagram of the knowledge transfer.
FIGURE 6

Overview of experimental treatments and controls of the transfer learning.
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produced by the baseline model (YOLOv5n), and Figure 7C

displays the visualization results of the model with the CA

module integrated (YOLOv5n+CA). It is evident that the Grad-

CAM mask of the CA-integrated model can more precisely cover

the target plume region than that of the model without the CA

module, which fully reveals the CA module’s effectiveness in

promoting the plume detector to exploit information in target

object regions. Consequently, the CA module improves the

prediction of the plume bounding box. For the quantitative

analysis, the CA-integrated model outperforms the baseline

model by 3.1% AP (from 0.672 to 0.703) with only a bit of

parameters increase (from 1.76M to 1.77M).
3.3 The effectiveness of activations

Table 3 shows the ablation study of YOLOv5n with and without

activations changed. From Table 3, one can find that replacing SiLU
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with Hard-SiLU can guarantee a larger batch-size under the same

GPUmemory condition and less inference time, which confirms that

the Hard-SiLU activation can offer a model with reduced memory

utilization and computation. In addition, there is even a slight

increase in the AP performance, which indicates that replacing

SiLU with Hard-SiLU has no discernible difference in accuracy.
3.4 The effectiveness of transfer learning

In the transfer learning experiments, we first trained the

improved YOLOv5n model (i.e., our proposed model) on the fire

and smoke dataset for 600 epochs. After about 12 hours of training, a

weights file of about 3.9 MB in size was obtained. Subsequently, we

trained the improved YOLOv5nmodel on the custom-made deep-sea

hydrothermal plume dataset with loading the fire and smoke pre-

trained weights. We choose to freeze the first n (from 0 to 10)

modules of the model and then see the performance differences in

different situations. Figure 8 shows the results of this transfer learning

experiment. From Figure 8, one can see that the best AP performance

can be obtained by only fine-tuning the target network without

freezing. With transfer learning, we achieved the best AP of 0.765.
3.5 Comparisons with state-of-the-arts
(other alternatives)

Table 4 shows the performance comparisons of our proposed

plume detector with the other three state-of-the-art methods. One
TABLE 2 Plume detection performance comparisons between different
scale models of YOLOv5-v6.1.

l m s1 s n1 n n2

depth_multiple 1 0.67 0.33 0.33 0.33 0.33 0.33

width_multiple 1 0.75 0.625 0.50 0.375 0.25 0.125

layers 468 369 270 270 270 270 270

channels 64 48 40 32 24 16 8

batch-size
(training)

40 65 98 118 149 206 392

weights (MB) 92.9 42.23 22.3 14.5 8.3 3.9 1.3

GFLOPs 107.9 48 24.5 15.8 9 4.2 1.2

AP@0.5_test 0.73 0.741 0.704 0.712 0.626 0.672 0.578

inference time
(ms/image)

5.1 3.7 2.5 1.7 1.4 0.9 0.7
The number of layers is counted before layer fusing. The channels denotes the output channels
of the first CBS module. The inference time is tested at shape (16, 640, 640, 3) on NVIDIA
RTX 3090 24G graphics card (16 is the batch-size, (640, 640, 3) is the dimension of image).
The batch-size denotes the maximum number of images for 90% utilization of GPU memory
during model training.
B CA

FIGURE 7

Grad-CAM visualization results. (A) The input image with ground truth marked. (B) The visualization result of baseline model (YOLOv5n). (C) The
visualization result of CA-integrated model (YOLOv5n+CA).
TABLE 3 The ablation study of YOLOv5n with and without activations
changed.

YOLOv5n YOLOv5n with activations
changed

batch-size (training) 206 225

AP@0.5_test 0.672 0.681

inference time (ms/
image)

0.9 0.8
The inference time is calculated at shape (16, 640, 640, 3) on NVIDIA RTX 3090 24G graphics
card.
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can see that our proposed plume detector outperforms Faster-

RCNN and SSD-512 in both accuracy and inference speed.

Compared to the baseline model YOLOv5n, our model can

make a 9.3% AP improvement (i.e., from 0.672 to 0.765) and

requires the same inference time, which fully reveals that our

improved plume detector can not only maintain a good

performance of efficiency but also achieves a tremendous

increase in detection accuracy.
9 https://github.com/rbonghi/jetson_stats
3.6 Test results on Jetson TX2 NX

We tested the deployed plume detector as a stand-alone

application in Jetson TX2 NX to evaluate its final application

performance. As shown in Figure 9, a USB camera and a monitor

are connected to the Jetson TX2 NX. The camera was exposed to

another computer that was playing a video with the target of the

deep-sea hydrothermal plume. The monitor was used to present

the detection results. we recorded various parameters when the

proposed plume detector was running in the Jetson TX2 NX. The

resolution of the USB camera is 640x480. Although this camera

only supports a 30 fps frame rate at this resolution, the video

processing speed of the plume detector calculated was about 37

fps. It should be noted that we take not only the inference time but

also the pre-processing and post-processing into account to
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calculate the fps. The pre-processing includes converting BGR

to RGB and resizing the image to 640x640. The post-processing

includes non-maximum suppression (NMS) processing of the

predicted bounding box and putting the final bounding box on

the image. The real-time on-board detection capability of the

proposed plume detector is demonstrated. During the test, the

power consumption and GPU temperature of the Jetson TX2 NX

were also measured using jtop9, a system monitoring utility. The

power consumption was 2.58 W on average and the temperature

was 40.5°C when the plume detector was off. While our method

was executed, the power consumption was 4.02 W and the

temperature was 49.5°C. Thus, the power consumption of our

proposed plume detector is only 1.44 W, which benefits a lot for

application in battery-powered devices.
3.7 Plume detection test in water tank with
AUV

We then installed the Jetson TX2 NX into a hovering-type

AUV as its vision processing unit. A water tank test was

conducted in the laboratory. As shown in Figure 10, we

simulated a dynamic hydrothermal plume in the water tank,

and then used the hovering-type AUV to explore it. The

experimental results show that our proposed hydrothermal

plume detector can endow the AUV with the ability of real-

time and intelligent detection of the hydrothermal plume. Based

on the detection result, we also designed an image-based visual

servo (IBVS) algorithm to help the AUV approach the target

automatically and did some tests in the water tank. Since that is

out of the scope of this paper, we will present the related results

in another paper.
4 Conclusion and discussion

This paper proposed a rea l - t ime and embedded

implementat ion of the deep-sea hydrothermal plume

detection technique that can give AUV the competence of

intelligent hydrothermal plume detection. The proposed

solution achieved more promising results for accuracy and

efficiency performance compared to other state-of-the-art

methods. The preliminary water tank test verified the

feasibility of the proposed method and laid the foundation for

the accurate detection or sampling of deep-sea hydrothermal

plumes by using AUV. However, only the static spatial features

are considered in our proposed plume detector now, as only the

still images are used for training. In the future, we will further

improve our algorithm by taking the dynamic and temporal

characteristics of the hydrothermal plume into account. One

possible method is to combine CNNs and LSTM (long short-

term memory) neural networks in a consecutive way so that the
FIGURE 8

Results of the transfer learning experiment.
TABLE 4 The comparison results with other state-of-the-art methods.

Faster-
RCNN

SSD-
512 YOLOv5n ours

weights (MB) 330.3 195.2 3.9 3.9

parameter size 41.12M 24.39M 1.76M 1.77M

AP@0.5_test 0.598 0.661 0.672 0.765

inference time (ms/
image)

482.9 463.0 4.9 4.9
The inference time is tested on NVIDIA RTX 3090 24G graphics card with batch-size equals
to 1. The parameter size refers to model complexity.
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model can learn the dynamic and temporal features of the

hydrothermal plume. However, the LSTM usually causes high

computational costs. How to make this method be practically

used on AUV needs to be further studied. Finally, we will extend

our research to deploy the proposed plume detection system on

an AUV for achieving automatic plume sampling by providing

real-time visual status and feedback on the hydrothermal

plumes in actual sea trials.
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