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Epibacteria of seaweeds play an important role for the development of hosts and

are influenced by the planktonic surrounding seawater bacteria. However, to

date, the knowledges related to both epiphytic and surrounding seawater

bacterial communities associated with northern farmed Saccharina japonica

are very limited. In this study, using 16S rRNA gene amplicon sequencing, the

shifts of epiphytic and surrounding seawater bacterial communities of the

northern farmed S. japonica from mature sporophytes, sporelings (3 time

points) to juvenile sporophytes (2 time points) were investigated. The dominant

genera of epibacterial communities were Alcanivorax (mature sporophytes and

4-week-old sporelings), Bacillus (7-week-old sporelings and 9-week-old

sporelings), Halomonas (4-week-old juvenile sporophytes) and Cobetia (9-

week-old juvenile sporophytes). Meanwhile, the Chao1 indexes and beta

diversity of epibacterial communities were significantly different with the

development of S. japonica (p < 0.05). Furthermore, Alcanivorax, Bacillus and

Halomonas were both dominant and core genera, indicating that these taxa may

be beneficial to the development of S. japonica. The alpha diversity indexes of

both epiphytic and surrounding seawater bacterial communities were

significantly different for 9-week-old juvenile sporophytes. Therefore, the

epibacterial communities were influenced by both development of S. japonica

and the surrounding seawater bacterial communities. This study not only extends

the understanding of the bacterial communities associated with the northern

farmed S. japonica, but also help to make production management by

monitoring the variations in both epiphytic and surrounding seawater

bacterial communities.
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Introduction

Epibacterial communities associated with seaweeds are essential

for the development, metabolic functioning and defense of their

hosts (Morrissey et al., 2019; Paix et al., 2021) and are affected by

physiological and biochemical characteristics of seaweeds during

the development, which may lead to selective enrichment of

bacterial colonizers on the surfaces (Florez et al., 2019; Saha and

Weinberger, 2019). It is found that the dominant genera of

epibacterial communities were various at different developmental

stages (Mancuso et al., 2016; Comba González et al., 2021) and

alpha diversity indexes increased with the development of seaweeds

(Michelou et al., 2013; Weigel and Pfister, 2019; Ihua et al., 2020).

These studies indicated that the composition and diversity of

epibacterial communities shift with the development of seaweeds.

In addition, it has been found that core species play the important

role in the structure and function of microbial community

(Bonthond et al., 2020; Saha et al., 2020; Phelps et al., 2021). Core

species analysis has been applied in studies of epibacterial

communities of seaweeds to identify bacteria that may contribute

to the normal development of host (Tujula et al., 2010; Han et al.,

2021; Phelps et al., 2021). Meanwhile, the planktonic bacteria in the

surrounding seawater also play an important role in the succession

of epibacterial communities associated with seaweeds (Fahimipour

et al., 2017; Lemay et al., 2018a; Cleary and Huang, 2020; Juhmani

et al., 2020). So far, there is no consistent different or similar

conclusions on the relationship between epiphytic and

surrounding seawater bacterial communities. All of these

outcomes achieved in the wild seaweeds provide the reference to

investigate the shifts of epiphytic and surrounding seawater

bacterial communities during the development in the

commercially farmed seaweeds.

Saccharina japonica is an importantly farmed seaweed

worldwide. China contributed about 90% of yield volume globally

(Yan et al., 2022). Compared to wild seaweeds, studies on epiphytic

and surrounding seawater bacterial communities of farmed S.

japonica are still at infant stage. Usually, the cultivation period

for the northern farmed S. japonica in China includes stages of

sporelings (from early time of August to mid-October), juvenile

sporophytes (from mid-October to next January), adult

sporophytes (from February to June) and mature sporophytes

with sporangia (from June to early time of August). Using 16S

rRNA amplicon sequencing, the epibacterial communities of the

northern farmed S. japonica were documented at the stages of

sporelings, juvenile sporophytes, adult sporophytes and mature

sporophytes. The dominant genera, Shannon indexes and beta

diversity of the epibacterial communities exhibited significant

succession from mature sporophytes, sporelings and juvenile

sporophytes (Han et al., 2021) as well as the adult sporophytes

during the harvest season (Zhang et al., 2020b). In addition, it is

found that the relative abundance of dominant genera SAR11_clade

and Candidatus Actinomarina in the seawater bacterial

communities decreased with development of sporelings (Wang

et al., 2022). Regarding to the relationship of epiphytic and

surrounding seawater bacterial communities during the
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only at the stage of adult sporophytes during the harvest season. The

dominant genera were variable and the alpha diversity indexes were

different between epiphytic and surrounding seawater bacterial

communities (Zhang, 2017), indicating that the epibacterial

communities had their own unique bacterial taxa. So far, there

are no comprehensive studies on the succession of both epiphytic

and surrounding seawater bacterial communities during the

cultivation cycle.

Considering that epibacterial communities play crucial roles

during the development of seaweeds and are affected by the

surrounding seawater bacterial communities, however, the

comprehensive knowledges of epiphytic and surrounding

seawater bacterial communities in northern farmed S. japonica

are still unknown. Therefore, we proposed the hypothesis: the

shifts of epibacterial communities are influenced by both the

development stage of farmed S. japonica and the surrounding

seawater bacterial communities. Using 16S rRNA gene amplicon

sequencing, we first investigated the composition and diversity of

the epiphytic and surrounding seawater bacterial communities from

mature sporophytes, sporelings to juvenile sporophytes; then we

identified the important taxa that contribute to the development of

farmed S. japonica by dominant and core genera analysis; finally, we

assessed the influences of surrounding seawater bacterial

communities on the epibacterial communities. Our results not

only enrich the knowledge of microbiota associated with northern

farmed S. japonica, but also will help to develop cultivation

management from the angle of monitoring the variations in both

epiphytic and surrounding seawater bacterial communities.
Materials and methods

Bacterial sampling

In this study, epiphytic and surrounding seawater bacterial

samples were collected at six developmental time points from

mature sporophytes, sporelings to juvenile sporophytes stages at

Qingyutan, Rongcheng, Shandong Province, China (37°10' 2.19" N,

122°34' 54.8" E). Mature sporophytes (MS) with sporangia were

collected on 8th August, 2019 and were rinsed with sterile seawater

to remove the loose epiphytes on the surface (Figure 1). Epibacteria

were sampled by swabbing 50 cm2 of the sporangia surface with

sterile cotton swabs near the one-third of mature sporophytes away

from the meristematic tissue. The swabs with epibacteria were

stored in 50 mL sterile Eppendorf tubes. Usually it takes one

month for the zoospores to develop into sporelings (S), which

cover the substrate curtains (40 ×115 cm) in the greenhouses. The

environmental factors, such as temperature (10 ± 1 °C), salinity

(30‰) and light intensity (80 mE m-2 s-1), were controlled in the

greenhouses. Method for sampling epibacterial samples of

sporelings referred to Han et al. (2021). Epibacteria of 4-week-old

sporelings (S1, 0.1-0.2 mm in length), 7-week-old sporelings (S2, 1-

5 mm in length) and 9-week-old sporelings (S3, 10-20 mm in

length) were sampled by swabbing on the substrate curtains by
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using sterile cotton swabs on 7th September, 27th September and

11th October 2019, respectively (Figure 1). Swabs with epibacteria

were put into 50 mL sterile Eppendorf tubes. Juvenile sporophytes

(JS) are referred to those sporelings which were transferred into the

sea and cultivated for a period of 1-2 month. Epibacterial samples

for both 4-week-old juvenile sporophytes (JS1, 30-40 cm in length)

and 9-week-old juvenile sporophytes (JS2, 50-60 cm in length) were

collected on 29th November 2019 and 4th January 2020, respectively

(Figure 1). The sampling method of epibacteria on juvenile

sporophytes were the same as mature sporophytes.

Regarding to the collection of seawater bacterial samples, 2.5 L

surrounding seawater were collected by using sterile bottles at each

developmental time points. Seawater samples were firstly filtered

through the membrane of 3 mm pore size to wash off the larger biotic

or abiotic particles, and then were filtered through a membrane of

0.22 mm pore size (Whatman, UK). These membranes with seawater

bacteria were put into 50 mL sterile Eppendorf tubes. All bacterial

samples were kept frozen at -80 °C until DNA was extracted. Six
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replicates for both epibacterial and seawater bacterial samples were

designed for each developmental time points, respectively.
DNA extraction, amplification, and 16S
rRNA gene amplicon sequencing

We used HiPure Soil DNA kits (Magen, Guangzhou, China) to

extract DNA of bacteria following the manufacturer’s instructions.

The V3-V4 hypervariable regions of the bacterial 16S rRNA gene

were amplified by PCR (95°C for 2 min, followed by 27 cycles at 98°C

for 10 s, 62°C for 30 s, 68°C for 30 s and a final extension at 68°C for

10 min) with the primers 341F (5′- CCTACGGGNGGCWGCAG-3′)
and 806R (5′- GGACTACHVGGGTATCTAAT -3′). PCR reactions

were performed in 50 mL mixture, containing 10 × Buffer KOD (5

mL), dNTPs (5 mL, 2 mM), primers 341F and 806R (1.5 mL of each, 10
mM), KOD DNA Polymerase (Toyobo, Japan) and 100 ng

template DNA.
FIGURE 1

Experimental design for the shifts of epiphytic and surrounding seawater bacterial communities of northern farmed S. japonica. MS: mature
sporophyte; S1: the 4-week-old sporeling; S2: 7-week-old sporeling; S3: 9-week-old sporeling; JS1: 4-week-old juvenile sporophyte; JS2: 9-week-
old juvenile sporophyte. Bars, MS: 12 cm; S1: 30 mm, S2: 1.7 mm; S3: 3.3 mm; JS1: 3.8 cm; JS2: 5.0 cm.
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PCR amplicons were purified from 2% agarose gels using an

AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City,

CA, USA). Quantification was performed using ABI StepOnePlus

Real-Time PCR System (Life Technologies, Foster City, USA). The

2 × 250 bp paired-end reads were generated with Guangzhou

Genedenovo Biotechnology (China) on the Illumina Novaseq6000

platform (Guo et al., 2017).
Analysis of illumina sequencing data

The DADA2 (version 1.14) was used to denoise and remove

low-quality reads (Callahan et al., 2016). Then paired end denoised

reads were merged as tags with a minimum overlap of 12 bp.

Chimera sequences were identified and were deleted by UCHIME

algorithm (Edgar et al., 2011). The high-quality tags were clustered

into ASVs (amplicon sequence variants) with 100% similarity. The

confidence threshold values ranged from 0.8 to 1.0. All ASV

sequences were classified into organisms by a naive Bayesian

model using RDP classifier 2.2 (Wang, 2007) based on SILVA

database (version 132) (Pruesse et al., 2007). Because there were

much higher standard errors in some groups, we removed the three

replicates with outliers. Thus, finally, only three replicates close to

the average value were selected for the analysis in this study. The

sequences of chloroplast, mitochondria and archaea origin were

removed from the dataset.
Core species analysis

Genera present in all replicates of epiphytic or surrounding

seawater bacterial communities were selected and defined as the

core genera. Core genus analysis of both epiphytic and surrounding

seawater bacterial communities were performed in R project Venn

Diagram package 1.6.16 (Chen and Boutros, 2011). Further, top

core genera were identified by screening the core genera with

relative abundance more than 1.0%, and was visualized in R

project ggplot2 package 2.2.1 (Wickham, 2011).
Statistical analysis

The stacked bar plot of the communities composition was

visualized in R project ggplot2 package 2.2.1 (Wickham, 2011).

The Chao1, Pielou’s and Shannon diversity indices were calculated

in QIIME (version 1.9.1) and the comparison between samples were

calculated by Welch’s test. Non-metric multidimensional scaling

(NMDS) and Permutational multivariate analysis of variance

(PERMANOVA) were calculated based on unweighted unifrac

dissimilarities in R project Vegan package 2.5.3.

Indicator species were those genera which influence structure

differences in both epiphytic or surrounding seawater microbial

communities. Indicator species were analyzed by calculating the

indicator value (IndVal) in labdsv package (version 2.0-1) of R

project and performing cross-validation test (Roberts, 2016) based

on the abundance and occurrence frequency at genus level. Genera
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with IndVal ≥ 0.7 and p value ≤ 0.05 was selected as indicator genus

(Glasl et al., 2019).
Results

The compositional variation of
epiphytic and surrounding seawater
bacterial communities

There were 18 epibacterial and 18 seawater bacterial samples

were analyzed from mature sporophytes, sporelings to juvenile

sporophytes of northern farmed S. japonica (Figure 1). A total of

4,653,122 paired-end raw reads and 4,499,030 clean reads were

obtained after filtering low quality reads and removing the

mitochondria, chloroplasts and eukaryotes sequences. The 24,821

amplicon sequence variants (ASVs) and were assigned across 36

samples. Among the samples, 14,035 ASVs were clustered in the

epibacterial (EB) group, which much higher than those in the

seawater (SW) group (13,406 ASVs). Only 10.6% ASVs were

shared between epiphytic and seawater bacterial communities

(Supplementary Figure 1). ASVs were classified into 41 phyla, 111

classes, 247 orders, 372 families and 958 genera. The rarefaction

curves showed good diversity coverage (> 99.2%), indicating the

sequencing amount was sufficient (Supplementary Figure 2).

Temporal shifts of epibacterial communities associated with

northern farmed S. japonica were analyzed from mature

sporophytes to juvenile sporophytes (Figure 2). In the epibacterial

communities, Proteobacteria (mean relative abundance: 49.1% to

71.1%) was the most dominant phylum at each time point

(Figure 2A). At the genus level, Alcanivorax was the most

dominant genus at both MS-EB (20.4%) and S1-EB (5.5%).

Bacillus was the most dominant at S2-EB (19.9%) and S3-EB

(17.0%). Halomonas and Cobetia were the most dominant genera

at JS1-EB (12.1%) and JS2-EB (15.5%), respectively (Figure 2B).

Regarding to the surrounding seawater bacterial communities, the

most dominant phylum was Firmicutes at MS-SW (85.8%) and S3-

SW (33.5%). Actinobacteria was the most dominant phylum at S1-

SW (51.5%). Meanwhile, Proteobacteria was the most dominant

phylum at S2-SW(42.2%), JS1-SW(71.8%) and JS2-SW (52.5%).

From mature sporophytes, sporelings to juvenile sporophytes, the

relative abundance of Firmicutes decreased from 85.8% to 24.6%,

and Proteobacteria increased from 6.5% to 62.1% (Figure 2A). At

genus level, the most dominant genera were Virgibacillus at MS-SW

(30.8%), Rubritalea at S2-SW (29.2%), Stenotrophomonas at JS1-

SW (22.0%) and Cobetia at JS2-SW (25.2%). Oceanobacillus was the

most dominant genus at both S1-SW (4.4%) and S3-SW

(19.6%) (Figure 2B).
The temporal shifts in diversity of
epiphytic and surrounding seawater
bacterial communities

There were significant differences in Chao 1 indexes among six

developmental time points (p < 0.05). Except S1-EB, the Chao 1
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(species richness estimates) indexes of epibacterial communities

exhibited increasing trend with the development with northern

farmed S. japonica (Figure 3A). Regarding to Pielou’s evenness and

Shannon indexes, there were no significant shifts with the

development of S. japonica (Figures 3B, C; p > 0.05). In
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surrounding seawater bacterial communities, Chao 1 indexes were

significantly different with development of S. japonica (Figure 3D, p

< 0.05). The Pielou’s evenness was not significantly different

(Figure 3E, p > 0.05), but the Shannon indexes exhibited

significant differences (Figure 3F, p < 0.05). At the same
A B

D E F

C

FIGURE 3

Alpha diversity of the epiphytic and surrounding seawater bacterial communities. (A, D): Chao1 species richness; (B, E): Pielou’s evenness; (C, F):
Shannon diversity indexes.
A B

FIGURE 2

The composition of epiphytic and surrounding seawater bacterial communities. MS: mature sporophyte; S1: the 4-week-old sporeling; S2: 7-week-
old sporeling; S3: 9-week-old sporeling; JS1: 4-week-old juvenile sporophyte; JS2: 9-week-old juvenile sporophyte. Top 10 ASVs with relative
abundance in both epiphytic and seawater bacterial communities at (A) phylum and (B) genus level.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1117926
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cai et al. 10.3389/fmars.2023.1117926
developmental time point, the Chao 1 indexes (Table 1, p < 0.01)

and Pielou’s evenness (Table 1, p < 0.05) of epiphytic and seawater

bacterial communities were significantly different at MS and JS2.

While, the Shannon indexes of epiphytic and surrounding seawater

bacterial communities exhibited significant differences at JS2

(Table 1, p < 0.05).

The beta diversity of epibacterial communities displayed

significant differences at six developmental time points

(Figure 4A). PERMANOVA showed that developmental time
Frontiers in Marine Science 06
explained 40.8% of epibacterial communities variation

(PERMANOVA: F value = 1.66, R2 = 0.41, P = 0.001, Table 2).

Meanwhile, there were significant differences in the beta diversity of

seawater bacterial communities at the different time points

(PERMANOVA: F value = 1.89, R2 = 0.44, P = 0.001, Table 2;

Figure 4B). Moreover, there was no significant difference between

the structure of the epiphytic and the surrounding seawater

bacterial communities. (PERMANOVA: F value = 1.2, R2 = 0.03,

P = 0.058, Table 2; Supplementary Figure 3). The structure of
TABLE 1 Alpha diversity of both epiphytic and surrounding seawater bacterial communities at six developmental time points.

Stages
Chao 1

P
Pielou

P
Shannon

P
EB SW EB SW EB SW

MS 707.94 ± 114.33 1580.71 ± 207.63 0.007 0.73 ± 0.04 0.44 ± 0.11 0.030 6.88 ± 0.44 4.63 ± 1.17 0.066

S1 1419.75 ± 192.02 1243.05 ± 285.61 0.431 0.58 ± 0.09 0.39 ± 0.19 0.229 6.03 ± 0.92 4.04 ± 2.04 0.230

S2 680.73 ± 325.60 907.29 ± 128.93 0.355 0.65 ± 0.13 0.53 ± 0.22 0.506 6.04 ± 1.52 5.25 ± 2.24 0.644

S3 978.31 ± 171.51 968.26 ± 208.62 0.952 0.58 ± 0.02 0.63 ± 0.15 0.592 5.75 ± 0.25 6.25 ± 1.30 0.580

JS1 1114.34 ± 370.77 626.58 ± 25.21 0.150 0.62 ± 0.03 0.63 ± 0.01 0.689 6.27 ± 0.45 5.87 ± 0.14 0.257

JS2 1435.82 ± 106.76 665.73 ± 64.94 0.001 0.56 ± 0.06 0.39 ± 0.07 0.036 5.88 ± 0.59 3.63 ± 0.73 0.016
frontie
Boldface represents significant differences, p < 0.05.
A B

DC

FIGURE 4

The beta diversity and indicator species of the epiphytic and the surrounding seawater bacterial communities at six developmental time points. Non-
metric multidimensional scaling (NMDS) plot on amplicon sequence variants (ASV) of (A) epiphytic and (B) surrounding seawater bacterial
communities based on the unweighted Unifrac, the circle represented EB group and the triangle represents SW group. The indicator species of
(C) epiphytic and (D) surrounding seawater bacterial communities at six developmental time points, the horizontal and the vertical axes indicating
the developmental time points and indicator genera, respectively. The bubble size representing the IndVal of the genus, and the bubble color
represents the six developmental time points. MS: mature sporophyte; S1: the 4-week-old sporeling; S2: 7-week-old sporeling; S3: 9-week-old
sporeling; JS1: 4-week-old juvenile sporophyte; JS2: 9-week-old juvenile sporophyte.
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epiphytic and surrounding seawater bacterial communities were

also not significantly different at the same developmental time point

by pairwise comparisons (Supplementary Table 1, p > 0.05).

In order to further explore the structure differences of epiphytic

or surrounding seawater bacterial communities at six

developmental time points, indicator species were analyzed based

on IndVal ≥ 0.7 and p value ≤ 0.05 at genus level. The indicator

species of MS-EB were Gracilimonas , Vibrio , C1-B045 .

Thalassospira was indicator species at the S1-EB. Whereas,

Pseudomonas Rhodopirellula and Salegentibacter were the

indicator species at JS1-EB. There were no indicator species at S2-

EB, S3-EB and JS2-EB (Figure 4C). In addition, bubble plot showed

different indicator species at different developmental time point to

reflect the structure of temporal differences in surrounding seawater

bacterial communities (Figure 4D). Virgibaci l lus and

Sediminibacillus were indicator species at the MS-SW. Rubritalea

was indicator species at the S2-SW. Acinetobacter, Brevundimonas

and Pseudomonas were indicator species at the JS1-SW.
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The core genera of epiphytic and
surrounding seawater
bacterial communities

In this study, core genera were referred to those that were

present in all samples at the developmental time points, regardless

of their relative abundance. Overall, there were 48 core genera in the

epibacterial communities (Supplementary Figure 4A). Among these

core genera, the mean relative abundance greater than 1.0% were

referred to top core genera. The top core genera included Bacillus,

Alcanivorax , Halomonas , Psychrobacter , Blastopirellula ,

Erythrobacter, Rubritalea, Pseudomonas, SM1A02, Muricauda and

Gimesia (Table 3). From MS to S3, the relative abundance of

Bacillus in the epibacterial communities gradually increased

(ranging from 0.1% to 17.0%) (Supplementary Figure 5). There

were 29 core genera (Supplementary Figure 4B) and 7 top core

genera (Table 3) in the seawater bacterial communities. Among

these top core genera, the relative abundance of Bacillus (27.2%),
TABLE 2 Permutational multivariate analysis of variance (PERMANOVA) with adonis based on unweighted unifrac dissimilarities of epiphytic and
surrounding seawater bacterial communities by the six developmental time points.

Groups F value R2 P value Significant

Epibacterial communities: seawater bacterial communities 1.228 0.035 0.058

Epibacterial communities by time 1.656 0.408 0.001 **

Seawater bacterial communities by time 1.894 0.441 0.001 **
F value: Test value; R2: the degree of interpretation of sample difference by different samples; P value: less than 0.01 indicates the high reliability of this test, **p < 0.01.
TABLE 3 Top core genera with their mean relative abundances of epiphytic and surrounding seawater bacterial communities at six developmental
time points.

Genus Family
EB SW

MS S1 S2 S3 JS1 JS2 MS S1 S2 S3 JS1 JS2

Bacillus* Bacillaceae 0.09 1.09 14.58 16.95 0.32 0.09 27.22 4.12 1.19 5.15 1.10 3.59

Alcanivorax Alcanivoracaceae 20.08 5.48 0.19 0.19 2.23 0.60 0.29 0.33 0.03 0.38 0.02 0.44

Halomonas Halomonadaceae 0.36 0.74 0.04 11.11 12.14 0.56 0.23 0.27 0.21 0.18 0.04 0.06

Psychrobacter Moraxellaceae 0.05 0.03 5.55 16.72 0.55 1.62 0.34 0.08 0.46 0.47 0.02 0.11

Blastopirellula Pirellulaceae 1.57 3.58 0.27 0.50 9.30 0.13 0.06 0.11 0.14 0.75 0.00 0.03

Erythrobacter Sphingomonadaceae 0.87 3.15 2.89 4.09 1.33 0.34 0.42 0.08 0.26 0.19 0.02 0.13

Rubritalea* Rubritaleaceae 0.19 0.01 6.02 0.02 0.06 2.89 0.00 0.01 23.38 0.29 0.21 1.55

Pseudomonas* Pseudomonadaceae 0.13 0.27 1.02 0.22 4.66 0.03 0.29 0.43 1.19 1.77 10.44 0.00

SM1A02 Phycisphaeraceae 1.83 0.77 0.01 0.93 2.63 0.12 0.03 0.04 0.08 0.10 0.00 0.01

Muricauda Flavobacteriaceae 1.30 0.95 0.01 0.03 3.85 0.09 0.05 0.06 0.04 0.10 0.01 0.01

Gimesia Gimesiaceae 3.21 1.73 0.17 0.20 0.28 0.48 0.04 0.07 0.47 0.07 0.00 0.00

Virgibacillus Bacillaceae 0.02 0.28 0.19 0.09 0.00 0.00 31.90 0.78 0.00 0.01 0.35 0.38

Sediminibacillus Bacillaceae 0.07 0.33 0.06 0.44 0.07 0.01 15.81 0.37 0.29 0.01 0.14 0.12

Acinetobacter Moraxellaceae 0.35 0.04 1.01 0.15 0.13 2.65 0.12 0.03 2.54 1.28 10.41 0.08

Bradyrhizobium Xanthobacteraceae 0.22 0.01 0.12 0.32 0.12 0.00 0.01 0.01 4.63 2.96 0.01 0.02
frontie
The mean relative abundance of Rubritalea at MS-SW was 0.004. However, the mean relative abundance values were retained to two decimal places, so the mean relative abundance of Rubritalea
was 0.00 at MS-SW in the table. The genera marked with “*” were the top core genera between epiphytic and surrounding seawater bacterial communities.
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Virgibacillus (31.9%) and Sediminibacillus (15.8%) were higher at

MS-SW. While, the relative abundance of Bradyrhizobium (4.6%)

and Rubritalea (23.4%) was higher at both S2-SW (Supplementary

Figure 5). Acinetobacter (10.4%) and Pseudomonas (10.4%) was

higher at both JS1-SW. Bacillus, Rubritalea and Pseudomonas were

top core genera between epiphytic and surrounding seawater

bacterial communities. From MS to S2, the relative abundance of

Bacillus in the surrounding seawater bacterial communities

gradually decreased, which was the opposite of the epibacterial

communities (Supplementary Figure 5). The top core genera

Rubritalea between epiphytic and surrounding seawater bacterial

communities had the highest relative abundance at S2, and the

highest relative abundance of Pseudomonas at JS1. The relative

abundance of Rubritalea and Pseudomonas were higher in the

surrounding seawater bacterial communities at S2 and

JS1 (Table 3).
Discussion

Compared to the wild seaweeds, epimicrobial communities of

farmed seaweeds are still in infancy. This study investigated the

temporal shifts of epiphytic and surrounding seawater bacterial

communities at six developmental time points of commercially

northern farmed S. japonica by 16S rRNA amplicon sequencing.

These results are consistent with our hypothesis. First, the

composition of epibacterial communities shifted with the

development of S. japonica. Moreover, the Chao1 indexes and

beta diversity of epibacterial communities were significantly

different with the development of S. japonica (p < 0.05).

Meanwhile, we identified the important bacteria that contribute

to the normal development of farmed S. japonica by analyzing the

dominant and core genera of epibacterial communities.

Furthermore, in contrast to the surrounding seawater bacterial

communities, the composition and structure of the epibacterial

communities were influenced by both host development and the

surrounding seawater bacterial communities. To our knowledge,

this is the first characterization of temporal shifts and the

differences between epiphytic and surrounding seawater bacterial

communities in the commercially northern farmed S. japonica.
Dominant and core genera of the
epibacterial communities

It was widely accepted that dominant taxa in microbial

communities of seaweeds were species- specific at genus level

(Bengtsson and Øvreås, 2010; Mancuso et al., 2016; Lemay et al.,

2018b, Lemay et al., 2021a; Guo et al., 2022). In this study, the

dominant genera with the highest relative abundance were

Alcanivorax (MS-EB and S1-EB), Bacillus (S2-EB and S3-EB),

Halomonas (JS1-EB) and Cobetia (JS2-EB) (Figure 2B). Previous

studies had shown that Flavobacterium, Yoonia- Loktanella and

Planctomyces were the most dominant genera for brown alga

Sargassum horneri (Mei et al., 2019), Sargassum thunbergii (Guo

et al., 2022) and the farmed Caulerpa lentillifera (Pang et al., 2022),
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respectively. This difference indicated that dominant genera were

seaweeds specific (Roth-Schulze et al., 2016; Korlević et al., 2021).

What’s interesting, in this study, the dominant genera Alcanivorax,

Bacillus and Halomonas were also the core genera. Alcanivorax is a

degrading bacterium for marine hydrocarbon pollutants (Olivera

et al., 2009), which may render its seaweed hosts to decontaminate

the hydrocarbon pollutants and contribute to the healthy

development. Bacillus, especially Bacillus subtilis, has strong

antibacterial activity against the pathogens Aeromonas hydrophila,

Vibrio vulnificus and Vibrio parahaemolyticus of the brown alga

Sargassum myriocystum (Chakraborty et al., 2017). Moreover,

Halomonas has been found at the wide range of pH and

temperatures as well as at almost any range of salinity, which

enables Halomonas to colonize the variety of habitats (Kim et al.,

2013). Halomonas is also beneficial to the morphogenesis and

development of seaweeds, which excretes a specific regulator like

cytokinins that enhanced cell division (Spoerner et al., 2012). For

example, Halomonas sp. Z3 has been reported to promote the

development and increase the number of individuals of the brown

alga Ectocarpus sp. (Tapia et al., 2016). Based on the relative

abundance advantage and beneficial effects, we speculate that

Alcanivorax, Bacillus and Halomonas may play beneficial roles

during the development of northern farmed S. japonica. However,

their effects on the seaweed development still remain to be further

verified by isolating the pure bacterial strains.
Temporal shifts in diversity of the
epibacterial communities

The temporal shifts of diversity with the development of

seaweeds was one of the evidences of microbial communities shifts

(Weigel and Pfister, 2019). Previous studies indicate that the alpha

diversity gradually increased with the development of Laminaria

saccharina (Staufenberger et al., 2008), Cystoseira compressa

(Mancuso et al., 2016) and the Sargassum muticum (Serebryakova

et al., 2018). Consistent with these previous researches, we found the

Chao 1 indexes of epibacterial communities increased and was

significantly different with the development of northern farmed S.

japonica (p < 0.05). Meanwhile, beta diversity revealed significant

differences in the epibacterial communities among different

developmental stages (Figure 4A, p < 0.01). The epiphytic bacterial

communities exhibited a significant increase in species diversity as

well as significant differences in community structure, but the Pielou’s

evenness was stable during the development of northern farmed S.

japonica (Figure 3B). This suggested that the epibacterial

communities continued to recruit new bacteria to assemble the

communities with the development of S. japonica, rather than

based on the increase in the abundance of already colonized

bacteria. In addition, it is reported that different metabolites (e.g.,

enzymes and phenolics) can be secreted by the seaweeds at different

development time points (Collén and Davison, 2001; Malik et al.,

2020; Han et al., 2021; Lemay et al., 2021a), which can attract the

attachment of certain bacteria (Zheng et al., 2005) and thus have the

unique microbial composition and structure at different

developmental time points.
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Epibacterial communities of S. japonica
influenced by the surrounding seawater
bacterial communities

Studies have shown that epibacterial communities of seaweeds

were specific and were influenced by the surrounding seawater

bacterial communities (Fahimipour et al., 2017; Lemay et al., 2018a;

Cleary and Huang, 2020; Juhmani et al., 2020). It was found that the

dominant bacteria of Macrocystis pyrifera (Michelou et al., 2013),

Thalassia testudinum and Syringodium filliforme (Ugarelli et al.,

2018) were shared between the epiphytic and surrounding seawater

communities at the phylum level. Consistent with these previous

investigations, we observed that Proteobacteria was the dominant

phyla in both epiphytic and surrounding seawater bacterial

communities. Moreover, the top core genera in the epibacterial

communities were all present in the surrounding seawater bacterial

communities, which is similar to the results in Nereocystis luetkeana

and M. pyrifera (Weigel and Pfister, 2019). The top core genera

Rubritalea and Pseudomonas between epiphytic and surrounding

seawater bacterial communities had the highest relative abundance

at the same developmental time point, and their relative abundance

were higher in the surrounding seawater bacterial communities.

Meanwhile, the structure of the epiphytic and surrounding seawater

bacterial communities did not differ significantly. These results

suggested that the surrounding seawater bacterial communities

influenced the epibacterial communities. It could be explained by

the fact that the surface of S. japonica was constantly in contact with

the diversified free-living bacteria in the surrounding seawater and

most of the epibacteria are recruited from the surrounding seawater

(Mancuso et al., 2016; Weigel and Pfister, 2019). It is worth noting

that microbial communities of seaweeds have been shown to be

influenced by a variety of factors, including host species, geography

and environment, and so on (Hollants et al., 2013; Morrissey et al.,

2019). Therefore, the factors influencing the shifts of epibacterial

communities of the farmed S. japonica will need to be explored

more fully and deeply in the future.

It has been found that the epibacterial communities associated

with seaweeds are also influenced by the seaweeds themselves

(Weigel and Pfister, 2019; James et al., 2020; Lemay et al., 2021b).

In this study, the alpha diversity of the epibacterial communities,

including Chao1, Pielou’s evenness and the Shannon indexes, were

significantly higher than those of surrounding seawater bacterial

communities at JS2 (p < 0.05). The reason for the higher alpha

diversity at JS2 maybe due to the faster growth of S. japoninca.

Zimmerman and Kremer (1986) and Zhang et al. (2020a) reported

that the concentrations of mannitol and laminarin on S. japonica

reduced when it grew fast. Therefore, we speculate that the

decreased concentrations of mannitol and laminarin on S.

japonica at JS2 may attract or inhibit bacterial attachment and

then led to a higher alpha diversity of the epibacterial communities.

This indicated that the epibacterial communities associated with S.

japonica were also influenced by the seaweeds themselves. Our

results were consistent with previous findings obtained from

Ecklonia radiata (Marzinelli et al., 2015), Cystoseira compressa

(Mancuso et al., 2016) and Caulerpa taxifolia (Morrissey et al.,

2019). This suggested that the epibacterial communities were more
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affected by the host itself than the surrounding seawater bacterial

communities at the faster growth stage of S. japonica.

Conclusions

Using 16S rRNA gene amplicon sequencing, we investigated the

shifts of epiphytic and surrounding seawater bacterial communities

of northern farmed S. japonica from mature to juvenile sporophyte

stages. Our results indicated that the dominant genera of

epibacterial communities shifted with the development of S.

japonica. Moreover, the Chao1 indexes and beta diversity of

epibacterial communities were significantly different among the

six developmental time points. Combining analysis of the dominant

and core genera, Alcanivorax, Bacillus and Halomonas may

contribute to the development of northern farmed S. japonica.

Finally, the epibacterial communities were influenced by both S.

japonica itself and the surrounding seawater bacterial communities.

These findings provide novel insights into the bacterial

communities associated with northern farmed S. japonica.
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Bourgougnon, N. (2020). Defence on surface: macroalgae and their surface-associated
microbiome. Adv. Bot. Res. 95, 327–368. doi: 10.1016/bs.abr.2019.11.009

Mancuso, F. P., D'hondt, S., Willems, A., Airoldi, L., and De Clerck, O. (2016).
Diversity and temporal dynamics of the epiphytic bacterial communities associated
with the canopy-forming seaweed Cystoseira compressa (Esper) gerloff and
nizamuddin. Front. Microbiol. 7. doi: 10.3389/fmicb.2016.00476

Marzinelli, E. M., Campbell, A. H., Zozaya Valdes, E., Vergés, A., Nielsen, S.,
Wernberg, T., et al. (2015). Continental-scale variation in seaweed host-associated
bacterial communities is a function of host condition, not geography. Environ.
Microbiol. 17, 4078–4088. doi: 10.1111/1462-2920.12972

Mei, X., Wu, C., Zhao, J., Yan, T., and Jiang, P. (2019). Community structure of
bacteria associated with drifting Sargassum horneri, the causative species of golden tide
in the yellow Sea. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.01192

Michelou, V. K., Caporaso, J. G., Knight, R., Palumbi, S. R., and Harder, T. (2013).
The ecology of microbial communities associated withMacrocystis pyrifera. PloS One 8,
e67480. doi: 10.1371/journal.pone.0067480
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