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Can we actually monitor
the spatial distribution of
small pelagic fish based on
Sentinel-3 data? An example
from the North Aegean Sea
(Eastern Mediterranean Sea)

Spyros Spondylidis1*, Marianna Giannoulaki2,
Athanassios Machias2, Ioannis Batzakas1

and Konstantinos Topouzelis1

1Department of Marine Sciences, University of the Aegean, Mytilene, Greece, 2Institute of Marine
Biological Resources, Hellenic Center for Marine Research, Irakleion, Greece
Fish population spatial distribution data provide essential information for fleet

monitoring and fishery spatial planning. Modern high resolution ocean color

remote sensing sensors with daily temporal coverage can enable consistent

monitoring of highly productive areas, giving insight in seasonal and yearly

variations. Here is presented the methodology to monitor small pelagic fish

spatial distribution by means of 500m resolution satellite data in a geographically

and oceanographically complex area. Specifically, anchovy (Engraulis

encrasicolus) and sardine (Sardina pilchardus) acoustic biomass data are

modeled against environmental proxies obtained from the Sentinel-3 satellite

mission. Three modeling techniques (Logistic Regression, Generalized Additive

Models, Random Forest) were applied and validated against the in-situ

measurements. The accuracy of anchovy presence detection peaked at 76%

and for sardine at 78%. Additionally, the spatial distribution of the models’ output

highlighted known fishing grounds. For anchovy, biomass modeling highlighted

the importance of bathymetry, SST, and the distance from thermal fronts,

whereas for sardine, bathymetry, CHL and chlorophyll fronts. The models are

applied to a sample dataset to showcase a potential outcome of the proposed

methodology and its spatial characteristics. Finally, the results are discussed and

compared to other habitat studies and findings in the area.
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1 Introduction
Remote sensing data provide invaluable tools for monitoring

the marine and coastal environment. They help monitor the spread

of oil spills, locate waste on beaches, map marine vegetation,

quantify shoreline retreats, etc (Brekke and Solberg, 2005;

Traganos et al., 2018; Apostolopoulos and Nikolakopoulos, 2021;

Hu, 2021). They stand out from field data due to their spatial and

temporal coverage and free access, making in-depth investigations

time feasible. Recent studies and reports have shown that the

commercial species in the Greek Seas and the Mediterranean are

continuously overexploited bringing a steady decline in landings

and the respective ecological impacts (Tsikliras et al., 2020; FAO,

2022). By these trends, monitoring the spatial distribution of fish

populations holds particular importance for fisheries management

authorities, which could also enable the integration of fisheries in

marine spatial planning (Mazor et al., 2014; Baudron et al., 2020;

Bellido et al., 2020).

Spatiotemporal monitoring offish population distribution holds

value in both academic and administrative practices. Relating

climate data to fish spatial distribution changes can provide

insight to the effects of climate change on marine biodiversity per

region (Nye et al., 2009; Pinsky et al., 2020; Román-Palacios and

Wiens, 2020). In the case of small pelagic fish in the Mediterranean

Sea recent studies on future climate scenarios have reported mixed

results on the level of impact (Gkanasos et al., 2021; Tsagarakis

et al., 2022). Continuous monitoring the spatial distribution of the

species in relation to environmental changes could add a beneficial

dataset to this research field.

In their work Janßen et al., 2018 highlight that fish distribution

monitoring is a key factor in the integration of fisheries in marine

spatial planning. On the other hand, such info can be beneficiary to

the economic sector as well, provided that it is integrated

conscientiously. Such data can act as an advisory tool for the

fishing fleets to maximize the catch by simultaneously reducing

the costs due to targeted fishing without wasting expenses on fuel

and man hours (Nair and Pillai, 2012).

One of the most widespread methods of locating and predicting

fishing zones is multicriteria analysis modeling. In the Aegean,

satellite-derived chlorophyll-a concentration (CHL) and Sea

Surface Temperature (SST) have been useful in the identification

of productivity hotspots, indicating that satellite-based monitoring

can be used for the benefit of fisheries management Valavanis et al.,

2004. Additionally, through satellite data oceanic formations can be

extracted, which in many cases hold significant ecological

importance. Mansor et al., 2001 used a multi-criteria model to

predict potential fishing zones with SST and CHL input data. The

model uses the SST to identify oceanic fronts and upwelling areas

that signal the increased probability of creating a fishing zone.

Other studies on Essential Fish Habitat (EFH) mapping focus on

describing the geographical distribution of marine species with

fishery data (Total Catch, CPUE, acoustic surveys etc.) and

relevant oceanographic parameters, like temperature and trophic

level, and geological i.e., bathymetry and substrate type (Valavanis

et al., 2008).
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It has been showcased that satellite data can be used successfully

in fish population and habitat mapping. But most of the studies

focus on a time snapshot of the current conditions (Valavanis et al.,

2004; Giannoulaki et al., 2005; Bellido et al., 2008; Giannoulaki

et al., 2008; Bonanno et al., 2014; Colloca et al., 2015). The marine

environment though is both spatially and temporally variable due to

seasonal and oceanographic changes or due to more long-term

factors such as climate change. Furthermore, traditional

methodologies are implemented with course resolution remote

sensing data which, in most cases, are not sufficient for

administrative and decision-making purposes (Janßen et al.,

2018). Ocean color remote sensing has evolved in the past decade

to the point that high resolution data are available on a daily basis. It

is crucial now to explore these new technologies and how they can

be used to provide continuous reliable information on fisheries and

if they can be utilized to evolve current methodologies.

Higher resolution remote sensing data also contribute in finer

oceanic circulation mapping, whose importance in fish spatial

distribution modeling has been widely stated in both regional

studies (Somarakis and Nikolioudakis, 2007; Tsoukali et al., 2019)

and international ones (Godø et al., 2012; Arur et al., 2014; Kürten

et al., 2019). Until now, fish spatial distribution studies and

methodologies that use remote sensing data utilize lower

resolution datasets (> 1km) from the Moderate Resolution

Imaging Spectroradiometer (MODIS) and Sea-viewing Wide

Field-of-view Sensor (SeaWiFS) (Zhang et al., 2017; Fauziyah

et al., 2022). Higher resolution data, such as Sentinel-3, could

provide more information on oceanic circulation and distinguish

formations of a lower scale. The benefits of using finer resolution

datasets on sub-mesoscale front detection have already been

showcased with implementations on the MEdium Resolution

Imaging Spectrometer (MERIS) (Miller et al., 2015), with a

temporal coverage of 3 days. On the other hand, Sentinel-3’s

Ocean and Land Color Instrument (OLCI) passes over an area

between 1-1 .5 days and would be more suitable for

continuous monitoring.

This paper scopes to explore small pelagic fish distribution

monitoring with the combined use of marine environmental

proxies retrieved from high resolution satellite data and in-situ

biomass data of anchovy (Engraulis encrasicolus) and sardine

(Sardina pilchardus) from a 2-year acoustic survey. Sentinel-3

OLCI (300m resolution) and SLSTR (500m resolution) data are

used along with extracted sub-mesoscale oceanic fronts and

bathymetric information to model the spatial distribution of

anchovy and sardine with the use of in-situ acoustic biomass

data. The species’ presence is modeled with 3 classification

models and the validation results are presented. Additionally, fish

biomass was simulated directly through satellite data by a regression

model. A full list of the abbreviations used in this paper is given in

Supplementary Data Sheet 1.
2 Materials and methods

The developed methodology focuses on a 5-step process based

on the flow chart in Figure 1. The first two steps are a) Data and b)
frontiersin.org
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Pre-processing, which target on data acquisition and data

preparation for further analysis, including the oceanic front

detection process that engulfs the satellite data analysis for (Sub)

Mesoscale Front identification. The final two steps are c) Biomass

Modeling, referring to modeling phase to retrieve fish spatial

distribution and d) Validation of the methodology.
2.1 Study area

The study area is the North Aegean Sea (Eastern

Mediterranean), divided into the Thracian Sea (TS) and the Gulf

of Thermaikos (GT) because of differences in topography and

oceanographic characteristics (Figure 2). The North Aegean is

connected to the Sea of Marmaras and the Black Sea through the

Dardanelles and Bosphorus Straits. South of the Halkidiki

peninsula, in a NE-SW direction, there is the North Aegean

Trench with a maximum depth of 1600 m north of Lemnos

Island (Lykousis et al., 2002). Five rivers flow in the Northern

Aegean, Axios and Aliakmonas in the GT, Strymon in the

Strymonikos Gulf, and Nestos and Evros in the Central and

Eastern TS respectively.
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The North Aegean waters hold lower salinity levels compared to

the South Aegean because of a) the inflow of Black Sea Water

(BSW) masses through the Dardanelles strait at the eastern part of

the TS (Somarakis et al., 2002) and b) the river outflows in the case

of GT (Androulidakis et al., 2021). The BSW surface layer can

provide salinity values as low as 36‰, whereas in the rest of the

Aegean, salinity in the range of 39-40‰ is observed (Karageorgis

et al., 2012). The Aegean is generally characterized as an

oligotrophic sea, but the North Aegean typically has higher

nutrient concentration than the South Aegean, concerning

phosphates and silicates (Varkitzi et al., 2020). The nutrient

decrease based on latitude is also translated to primary

production values from 0.51 mg °C m-2 h-1 in the North Aegean

to 0.22 mg °C m-2 h-1 in the South (Psarra et al., 2022). In coastal

areas where river outflows are present, such as the GT, productivity

is sustained by the nutrients in the sea through deltas. Studies have

shown that variability in productivity in such areas coincides with

variability in nutrient flux through rivers (Tsiaras et al., 2014).

The latitudinal decrease in primary productivity from North to

South is also reflected in fisheries production. The great depths and

trenches that are in between the continental shelves of the North

Aegean and the Southern areas also act as barriers for the migration
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FIGURE 1

The 4-step methodology flow chart, describing intermediate procedures for a) Data, b) Pre-processing, c) Biomass Modeling and d) Validation.
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of small pelagic fish populations and as such they are confined to

higher latitudes (Giannoulaki et al., 2005; Gkanasos et al., 2021).

This is also reflected in Greek fisheries fleet distribution, where

purse seine fishing is mainly conducted in the North Aegean in case

of both number and size of vessels (Machias et al., 2008).

Furthermore, the State of Mediterranean and Black Sea Fisheries

2022 report from FAO, 2022 includes three Greek ports in the top

ten list of relative contributions to total landings in the Eastern

Mediterranean sub-region, all of which are located in the

North Aegean.

According to the same report though, the total captures of

anchovy and sardine remain relatively steady in the last decade for

Greek fisheries, whereas for the Mediterranean the sardine landings

are declining. Tsikliras et al., 2015 highlighted the increased

overexploitation status of the Eastern Mediterranean and future

scenarios hint that the climate change will add additional pressures

to small pelagic species (Gkanasos et al., 2021).
2.2 Data

The environmental proxies used as the independent variables

for modelling the spatial distribution of anchovy and sardine were

selected based on their ecological profile in the study area. In this

section more specific information is provided regarding the

ecological profile of anchovy and sardine in the area of interest.

Furthermore, the in-situ data will be described along with satellite

dataset chosen to extract from the environmental proxies.

The most crucial process that can be recorded and monitored

by satellite data is the creation of the base of the food chain,

expressed by chlorophyll concentration and primary productivity.

Both target species are small pelagic feeders mainly targeting small

particle prey (zooplankton), including copepods, nauplii,

gastropods and decapod larvae (Nikolioudakis et al., 2014). There

are available models that predict the spatial distribution of
Frontiers in Marine Science 04
zooplankton concentration, but their spatial distribution does not

suite the purpose of this methodology. Instead, this study lays on

the fact that zooplankton preys on phytoplankton and thus the CHL

concentration was chosen as a proxy for describing potential food

fields (Siokou et al., 2014).

Another environmental parameter that can be quantified

through satellite systems and plays a vital role in the behavior of

pelagic fish is SST. SST monitoring can identify areas where

upwelling occurs (Pisoni et al., 2014; Huang et al., 2021) and it is

an important factor both for the spatial distribution of the species

and for the preference of breeding areas (Takasuka et al., 2008). SST

through remote sensing can be helpful in oceanic circulation

mapping, a detrimental factor in pelagic fish spatial distribution

monitoring. For example, the TS contains various productive

fishing grounds due to its wide continental self and favorable

oceanographic conditions, influenced by the BSW. A particular

oceanographic formation with great ecological impact is the gyre of

Samothraki, which can be observed at different locations seasonally

(Zervakis and Georgopoulos, 2002). The Samothraki gyre acts as an

entraining mechanism for mesozooplankton and larvae with high

ecological value (Somarakis and Nikolioudakis, 2007). Due to high

concentrations of food, anchovy tends to accumulate at the gyre’s

periphery, while sardine on the other hand usually is not associated

with the gyre and is found closer to shore (Tsoukali et al., 2019).

Furthermore, Reese et al., 2011 showed that the distribution of

anchovy and sardine populations around thermal fronts differs

significantly from the random distribution and that species tend

to be attracted to them.

Another notable Essential Oceanographic Variable (EOV) for

spall pelagic fish spatial distribution modeling is salinity. Salinity is

a detrimental factor for both target species, as low salinity areas such

as the frontal areas created by river plumes, are highly associated

with increased spawning activity (Morello and Arneri, 2009). But

sea surface salinity is only provided through satellite derived models

at a course resolution of 4km and is not suitable for the purpose of
FIGURE 2

Map of the study area in the North Aegean Sea. The two examined sub-regions are the Gulf of Thermaikos in the West and the Thracian Sea in the East.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1117704
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Spondylidis et al. 10.3389/fmars.2023.1117704
this study. Further implementations could try to incorporate

downscal ing techniques to include such information

(Chatziantoniou et al., 2022).

It should be noted that this methodology treats the study area as

a 2-dimensional space and does not reflect the full complexity of the

marine ecosystem. For example, Sentinel-3’s OLCI and ocean color

sensors in general calculate the CHL concentration at the

penetration depth, which usually corresponds to the first few

meters below the sea surface (Moutzouris-Sidiris and Topouzelis,

2021). Examples of 3D small pelagic fish spatial distribution

modeling in the North Aegean are present in the bibliography,

but their implementation require additional data in the form of

survey transect measurements, oceanic circulation modeling and/or

3D satellite models (Tsoukali et al., 2019; Gkanasos et al., 2021). In

the case of the first two, continuous monitoring will not be possible

due to the high cost and analysis time and the latter option lacks the

spatial resolution of the proposed methodology.

The in-situ data that were used to train the models were derived

from a two-year acoustic survey aiming to assess the biomass of

anchovy and sardine population in North Aegean Sea. The survey

was conducted by the Hellenic Centre of Marine Research (HCMR)

through the MEDIAS project within the EU DCF framework and

each acoustic measurement corresponds to one square nautical mile

(Giannoulaki et al., 2021; Leonori et al., 2021). The data refer to

biomass measurements in tonnes for the summer months of 2016

(31/05/2016 to 27/06/2016) and 2019 (15/06/2019 to 21/07/2019).

Each measurement was classified based on ‘Presence’ and ‘Absence’,

whether it presented biomass greater than 0 tonnes. In total, in-situ

measurements add to 937 observations for the TS and 405 for the

GT. From the total amount of observations, anchovy biomass

greater than zero was found in 292 cases (31.2%) in the TS and

132 (32.6%) in the GT dataset. On the other hand, Sardine is more

imbalanced with only 62 (6.6%) observations with presence and 30

(7.4%), for TS and GT respectively.

Environmental proxies for modeling the spatial distribution

anchovy and sardine were retrieved from the Sentinel-3 satellite

mission. The spatial resolution of Sentinel-3 data ranges from 300m

to 500m with a temporal coverage of 1-2 days. The proxy dataset

includes chlorophyll-a concentration (CHL mg/m3), Sea Surface

Temperature (SST °C), the gradients of both CHL and SST as

proxies of oceanic fronts (CHL_GRAD mg/m3/500m and

SST_GRAD °C/500m), and the distances from both ocean color

and thermal fronts (OC_FR_DIST and THERMAL_FR_DIST).

SST data are acquired from the Sea and Land Sensor

Temperature Radiometer (SLSTR) sensor with a spatial resolution

of 500m over sea. CHL is retrieved from the Sentinel-3 onboard

sensor Ocean and Land Color Instrument (OLCI) with the use of

the C2RCC neural network (Brockmann et al., 2016). The OLCI

sensor is designed to yield data with similar spectral characteristics

to the MERIS sensor. Its primary purpose is to provide information

related to ocean color and biological processes. It holds a total of 21

spectral bands and provides ocean-color biophysical parameters at a

resolution of 300m. Due to the difference in spatial resolution with

the SST dataset, both variables were collated in a common

500m grid.
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Aside from the data retrieved from satellite sources, a

bathymetry dataset, obtained from the European Marine

Observation and Data Network (EMODnet) bathymetry portal,

was also used for the model training. This final bathymetry

dataset has a spatial resolution of 115m and is a combined

product of both acoustic surveys with filled gaps from satellite

altimeter measurements.
2.3 Pre-processing

In this paper, the methodology for ocean front extraction

follows a modified gradient-based approach (Spondylidis et al.,

2020). The gradient is calculated for CHL and SST with the scope to

identify and map ocean color and thermal surface fronts,

respectively. The gradients on the x and y axes of the images are

extracted using the Sobel operator with a kernel size of 3×3 (Eq. 1 &

2). Finally, the gradient is calculated through the overall magnitude

with the directional ones (Eq. 3).

Gxn =  

1 0 −1

2 0 −2

1 0 −1

2
664

3
775*   Imn (Equation 1)

Gyn =

1 2 1

0 0 0

−1 −2 −1

2
664

3
775*   Imn (Equation 2)

Gn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
xn + Gn

yn

q
(Equation 3)

Where Gx and Gy are the directional gradients of x-axis

(horizontal) and y-axis (vertical) of the image respectively, Gn the

gradient magnitude for date n and Imn the spatial dataset (either

CHL or SST).

The results of Equation 3 after being applied to the CHL and

SST datasets refer to the CHL_GRAD and SST_GRAD, respectively

used to train the models. Even though these datasets do not directly

represent oceanic fronts, they act as non-discrete proxies for various

circulation phenomena. High-gradient areas could indicate areas

where two different water masses meet and create an eddy or a

front. After the gradient estimation for each parameter, strong

magnitudes are separated from weak. This process is achieved with

the use of a two-step adaptive threshold which is applied to remove

both weak gradients and extremely strong ones that are caused by

data noise. The retained areas are then thinned iteratively to

produce one-pixel wide continuous lines.

Even though mesoscale oceanic fronts are correlated to pelagic

fish populations, fish are often associated with the buffer zone

around the front (Belkin, 2021). To incorporate this information in

the models, new data are created that depict the distance in meters

to the closest front. Again, this procedure is replicated twice, once

for the thermal fronts (THERMAL_FR_DIST) and another for the

ocean color fronts (OC_FR_DIST).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1117704
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Spondylidis et al. 10.3389/fmars.2023.1117704
Data processing and modeling were performed in the R

language with the mgcv (Logistic Regression and GAM models)

and randomForest (Random Forest model) packages. Before the

modeling phase, the dataset was divided into training and validation

subsets at percentages of 70% and 30% respectively. The data

separation was conducted to ensure unbiased accuracy metrics, as

the validation dataset would not be used through the

modeling phase.
2.4 Spatial distribution modeling

As a first step of the spatial distribution modeling, a brief

explanatory descriptive analysis was conducted to showcase the

relation of the echosurvey data to the environmental. The Pearson

correlation was calculated and plotted to reveal potential bivariate

collinearity between the independent variables. Then boxplots were

drawn for the Presence/Absence occurrences against the

distribution of each variable. The boxplots can reveal how well

each independent variable could potentially be used to describe and

separate the dataset.

The satellite environmental proxies and the bathymetric data

were used to model the anchovy and sardine presence by fitting the

in-situ acoustic biomass measurements. Three models were tested,

a) Logistic Regression (Logit), which is a form of multivariate linear

regression used when the dependent variable is discrete and has two

values denoting ‘success’ and ‘failure’ or, in the case of this paper,

‘Presence’ and ‘Absence’. b) GAMs, which compute indefinite

functions for the independent variables associated with the

dependent variable through a link function. Because the

independent variable is binary, the logit equation was chosen as

the link function. And c) Random Forest, a machine learning

Ensemble Classifier, whose individual classifiers consist of

decision trees.

After the data preparation, the three classification models were

applied for each area and each species. To maximize the models’

performance, a new detection threshold was assessed for each

iteration, different from the default of 0.5 response. The threshold

was calculated through an iterative process of model specificity

and sensitivity maximization with the Youden ’s index

(Youden, 1950).

Various GAM models were designed and tested with different

combinations of smooth functions. Because they were trained with

binomial data, the logit link function was supplied in all iterations.

The best-performing models were the ones that used a mixture of

smooth functions—specifically, the spline smooth function for all

the variables. Additionally, the interactions of SST and CHL with

bathymetry were included with the tensor smooth function. Tensor

smooth was the more appropriate smooth function as the variables

have different measuring units at different scales (Wood, 2006). The

smoothness parameters were calculated through the REML

algorithm. The Random Forest values of ntree and mtry were set

at 400 trees and 4 variables, respectively.
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Model validation and assessment was performed based on

several metrics, to outline the best performing model per species

and area. Overall model accuracy was calculated through confusion

matrices. Each matrix was created with direct comparison of the

model results to the independent 30% validation dataset. The

Receiver Operating Characteristic (ROC) curve and the Area

Under Curve (AUC) were used to rank the models based on their

ability to correctly classify each observation, compared to a random

selection (Bradley, 1997). Furthermore, Taylor graphs were

constructed to rank models based on the standard deviation,

correlation, and the Root Mean Square Error (RMSE), compared

to the validation dataset (Taylor, 2001). The best performing model

for each case was decided based on “voting” by these 5 metrics.

Classification of Presence/Absence though cannot reveal the

magnitude of potential abundance of the species in an area and in

that regard another regression model is tested based on the

RandomForest algorithm. The regression aims to see if

quantification of the species’ “Presence” would be possible. This

information would allow the distinction of the potential abundance

between regions. For example, two areas could have the necessary

environmental characteristics to host fish populations, but one could

be more favorable and attract bigger numbers. Through biomass

regression, this detail could be added to the results. In general, the

classification aims to set the boundaries of potential fish distribution

with easy-to-interpret maps and results, whereas the regression

modeling can add more information but with probable noise.

The Random Forest regression models were validated with

Leave One Out cross-validation method. Cross-validation was

selected as the accuracy assessment method due to the small

dataset. The statistical error indices used were the RMSE, the

Mean Absolute Error (MAE), and the Mean Bias Error (MBE).

MAE and MBE have the same units as the dependent variable, and

they are a good indication of the model’s bias. The significance of

the variables in the Random Forest model was evaluated using the

accuracy reduction indices and the Gini Impurity. The Gini

Impurity Index is an indicator that measures the importance of

variables through their role in decision-making. Because both high

values of accuracy reduction and Gini impurity indicate high

variable importance, the variables that fall farther from the center

of the plot axis are the more significant. The term accuracy

reduction refers to whether the model’s accuracy will be reduced

if the variable in question is subtracted. The value corresponds to

the magnitude of the decrease on the scale of 1. Random Forest

models in every new decision or branch (split) they create in any

tree, try to maximize the reduction of the ‘Impurity’ added. Thus, a

decision that significantly reduces Impurity is considered

important, and the variable based on which this decision was

made is also regarded as important (Nembrini et al., 2018).

After the selection of the best performingmodels, themethodology

was applied on Sentinel-3 daily data for a scene in 22/07/2019. The

maps are used to showcase the capabilities of the proposed

methodology and compare it to existing efforts and findings. The

resulting maps were produced at a spatial resolution of 500m.
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3 Results

3.1 Descriptive analysis

In this section, the statistical interactions of the variables are

explored in order to provide insight at the later modeling phase.

Figure 3A showcases the correlation, between the anchovy and

sardine biomass data from the TS and the remote sensing products.

Anchovy biomass in the TS dataset does not present any strong

correlation with any variable. Perhaps the strongest correlation lies

with the bathymetry, which is positive at a scale of 0.4. Even though

weak, the directions of the correlation between biomass and SST

and CHL are negative and positive, respectively. Weak correlation

magnitude between the dependent and independent variables can

hint that if the models can accurately represent the biomass

distribution, the reason lies in the interactions between the

variables and not in individual ones. Sardine correlations are even

weaker and do not exceed 0.2 magnitudes with any

independent variable.

Data correlation for the GT dataset (Figure 3B) presents some

essential differences that could hint at different interactions of the

target species to their environment. The most obvious is the higher

correlation of anchovy and sardine to chlorophyll-a levels.

Furthermore, a negative correlation to the THERMAL_FR_DIST

is showcased, which is the opposite of the respective in the TS

dataset. Comparing the two species, they present similar

characteristics except for anchovy, which shows a higher

correlation to CHL_GRAD.

Strong correlations between the independent variables could

indicate redundancy, and highly correlated pairs could be excluded.

Such a pair is the CHL with its gradient where the correlation > 0.8.

Because each represents a different aspect of the same parameter,

one should be excluded from the modeling phase. Looking at the
Frontiers in Marine Science 07
correlation of CHL with OC_FR_DIST, there is a negative

correlation between the two but not a strong one. Considering

that the peak gradient usually is present at lower distances to fronts,

it could indicate that a potential selection of parameters would be

CHL and OC_FR_DIST with the elimination of CHL_GRAD, as the

distances could cover a portion of the information excluded without

introducing strong collinearity within the models.

After the classification of the biomass to the Presence and

Absence of the species, boxplots were drawn to identify proxies

with potential valuable data separation capabilities (Figure 4). The

CHL concentration was drawn on a logarithmically transformed to

be more visible. For the TS, SST does not provide a clear distinction

between the datasets, even though the fish presence tends to fall in

areas with cooler waters for anchovy and sardine. On the other

hand, CHL separates the Presence and Absence classes better, where

higher concentrations of chlorophyll favor the presence of fish. The

gradients of both SST and CHL present similar data separation

characteristics to those of the original parameters. Focusing on the

boxplot of the SST_GRAD, it is interesting that higher values of

gradient magnitude do not favor the presence of the fish

populations but moving on to the distance variables, it is

showcased that the fish can more frequently be located at a

distance around the 10km mark from the closest thermal front.

On the contrary, fish tend to be closer to the ocean color fronts.

Finally, the bathymetry seems to be a limiting factor for the fish

distribution as the anchovy and sardine biomass is concentrated

almost exclusively above the 200m isobath.

Similarly, to observations made in the correlation analysis, there

are differences between the GT dataset and the TS one. Also in this

case, SST does not present a clear separation between the datasets.

Anchovy biomass tends to concentrate in cooler waters, and sardine

at more intermediate. CHL separates the data better, with sardine

being in areas with higher concentrations. All other variables
A B

FIGURE 3

Correlation plot between anchovy and sardine biomass and the independent variables for (A) the TS dataset and (B) the GT dataset.
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present similar patterns with the data of TS, apart from the distance

to fronts for sardine. Sardine seems to be at closer distances to both

types of fronts, and in the case of the ocean color ones, it is found in

a proximity of 1km.
3.2 Classification models

Logistic regression was trained using all the variables except the

CHL_GRAD. This variable presents relatively high collinearity with

CHL concentration in both study areas and could artificially inflate

the importance or weight. The logistic regression models for the TS

presented moderate accuracy values, based on the confusion matrices
Frontiers in Marine Science 08
(Supplementary Table 1), at the level of 73% and 68% for anchovy

and sardine, respectively (Table 1). For the GT the models performed

a little better for both species at 75% accuracy.

GAMs performed marginally better than the logistic

regression in all instances. For anchovy in both TS and GT the

improvement in accuracy was only by 1%. The biggest differences

were for sardine in TS with 74% accuracy and for GT with 78%

accuracy, which correspond to +6% and +3% respectively. To

avoid potential collinearity issues, the variable CHL_GRAD was

excluded from the GAMs for the same reasons explained in the

logistic regression model section. The selected models are given in

Supplementary Table 2 along with the partial effect plots in

Supplementary Figures 1–4.
TABLE 1 Accuracy and AUC scores for each model of anchovy and sardine.

Thracian Sea (TS) Gulf of Thermaikos (GT)

Model Metric Anchovy Sardine Anchovy Sardine

Logit
Accuracy 0.73 0.68 0.75 0.75

AUC 0.84 0.86 0.78 0.83

GAM
Accuracy 0.74 0.74 0.76 0.78

AUC 0.88 0.89 0.79 0.85

RF
Accuracy 0.76 0.67 0.75 0.78

AUC 0.89 0.84 0.83 0.84
f

The highest metric scores for each iteration are highlighted with bold font.
FIGURE 4

Boxplots between the classified in-situ measurements and all the independent variables for each species and each area. Orange is for ‘Absence’, and
Green is for ‘Presence’.
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Random Forests on average performed similarly to the GAMs.

They performed the best for anchovy in TS with 76%, and for

sardine in GT with 78%. For sardine in TS Random Forests had an

accuracy of 67% which was worse than both GAMs and the Logit

models. Accuracy for anchovy in GT was similar to the other

models at 75% which is only worse than the GAM iteration by 1%.

Based on the AUC metric, the Random Forest models

performed better in the anchovy models, whereas GAMs

performed the best in the sardine models (the ROC plots are also

provided in Supplementary Figure 6). Contradictions are present

though for the model of anchovy in GT, where the accuracy is
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higher for GAMs and the AUC is higher for Random Forest. Huang

and Ling, 2005 have showcased that such contradictions in the

accuracy and AUCmetrics are possible. In their empirical trials they

proved that AUC is a more consistent and discriminating model

performance metric than accuracy.

To conclude on the best performing models an additional

evaluation step was conducted through Taylor diagrams

(Figure 5). Taylor diagrams compare each model based on three

criteria, a) standard deviation of the predictions compared to the

observed-validation data, b) correlation of the predictions and the

observed-validation data, and c) the RMSE. Models whose
A B

DC

FIGURE 5

Taylor diagrams for Logistic regression, GAMs and Random Forest models comparison. (A) Anchovy in Thracian Sea, (B) Sardine in Thracian Sea, (C)
Anchovy in Gulf of Thermaikos and (D) Sardine in Gulf of Thermaikos.
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predictions have the most similar standard deviation to the

observed dataset, the highest correlation and the lowest RMSE are

ranked higher than the others.

Through the Taylor diagrams for the anchovy models in TS,

Random Forest is the best performing. Even though all the models’

metrics are close, Random Forest has the lowest RMSE score and

highest correlation to the validation data. For sardine in TS the

interpretation is more difficult, as no model distinguishes itself.

Specifically, Logit has the most similar standard deviation to

validation dataset, Random Forest has the lowest RMSE and

GAM has the highest correlation. On the other hand, the

Random Forest for anchovy in GT is better in both the RMSE

and correlation metrics. Finally for sardine in GT, the Logit model

scored the highest through the Taylor diagrams, as it presented both

the lowest RMSE and the highest correlation.

The final decision of which model was the best for each occasion

was taken by considering all 5 metrices through voting. Random

Forest was the best model for anchovy in TS (4 out of 5) and

anchovy in GT (3 out of 5). For sardine in TS and GT the GAMs

where selected as the best performing as they had the best score in 3

out of 5 metrics in both cases.
3.3 Random Forest regression

Accuracy assessment of the regression models is performed

with a 99 iteration Leave-One-Out cross-validation (Table 2).

Similarly, to the classification models, the anchovy biomass model

for the TS presents the best scores with the mean variance explained

by the model at a scale of 86. Small values of the MBE and MAE

across all models indicate low overall bias, considering that they

differ in two orders of magnitude with the maximum in-situ

biomass. The best RMSE score is also present in the anchovy

model of the TS at a scale of 2.67 and a variation of 21. RMSE

variation for the other three models is higher, indicating that the

accuracy assessment could be hindered due to the dataset

imbalance. Additionally, scatter plots of predicted against

observed values are provided in Supplementary Figure 5 for each

regression model.

Concerning the importance of each independent variable for

the anchovy models, SST and bathymetry were identified as two of

the most significant ones in both the TS and the GT (Figure 6).

Especially, in the case of the TS model, by excluding the SST or the

bathymetry would increase the MSE by at least 55 tonnes, whereas

the other variables would only increase by a maximum of 32 tonnes

(Figure 6A). In the GT, though, the most important variables, even
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more than SST and bathymetry, are CHL and CHL_GRAD

(Figure 6C). These four have the highest node purity score, as

well as their exclusion, would increase the MSE by more than 120

tonnes. This difference could be attributed to the fact that CHL has a

stronger correlation with fish biomass in the GT than the TS, as

observed through the correlation plots.

The sardine biomass regression model showcases again

bathymetry as one of the most important variables, as in both

areas it presents some of the highest scores node purity increase

(Figures 6B, D). The other important variables differ depending on

the region. For example, for TS both THERMAL_FR_DIST and

OC_FR_DIST have the highest potential impact on MSE increase if

they were to be excluded from the analysis. On the other hand,

similarly to what was observed for the anchovy models, CHL is the

most important variable in the GT model. Bathymetry generally

showcases high node purity in all models as it is an apparent spatial

separation factor for fish abundance, where no fish are observed at

areas with depths >200m.
4 Discussion

In the present study, the accuracy of the results, in terms of %

success in the identification of potential Presence/Absence

occurrences, for anchovy ranged between 73% to 76%, and for

sardine 67% to 78%, proving that higher resolution data can be used

for small pelagic fish distribution mapping in smaller and more

complex geographical regions. These results find the described

methodology in accordance with recent studies and modeling

techniques. Nurdin et al., 2017 constructed GAMs with

independent variables SST and CHL at 4 km resolution to

identify mackerel fishing zones on the coast of Indonesia. By

comparing their results with real Catch Per Unit Effort (CPUE)

fishing data, they estimated that the accuracy of their predictions

exceeds 83%. Machine learning techniques and specific artificial

neural networks have been used for similar purposes. In the study

by Wang et al., 2015 researchers constructed a neural network that

takes as input SST, Sea Surface Height (SSh), and chlorophyll-a, and
which predicts the existence of potential fishing zones with 80%

success (a similar application was developed by Nuno et al., 2005).

Aside from bathymetry, CHL was one of the most important

environmental proxies to sardine biomass modeling in both study

areas. In TS the distance to ocean color fronts and in GT the CHL

concentration by itself. The CHL dependency could be indicative to

sardine’s preferred seasonal feeding mechanism. Sardines are

omnivorous feeders, and they can switch between particle-
TABLE 2 Accuracy indices of RMSE, MBE, and MAE through Leave-One-Out cross-validation.

Species Area RMSE RMSE Var. MBE MBE Var. MAE MAE Var. Var. Exp.

Anch. TS 2.67 21 0.26 0.67 1.17 0.58 86

Sard. TS 3.28 82.7 0.32 2.19 1.04 1.95 65.9

Anch. GT 6.92 70.9 0.92 5.73 2.76 4.65 72.7

Sard. GT 4.71 37 0.37 2.91 1.47 2.15 59.3
fro
Each row refers to a different model based on the species and the study area.
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feeding, for mesozooplankton, and fi l ter-feeding, for

phytoplankton, depending on the availability and abundance of

prey per season (Bode et al., 2004; Cunha et al., 2005). In winter,

when larger zooplankton species (copepods) are abundant they use

the particle-feeding technique to catch their prey (Somarakis et al.,

2006). On the other hand, in the summer it has been observed that

sardines switch to filter-feeding to prey on picoplankton and

smaller size zooplankton, because it is more energy efficient

(Nikolioudakis et al., 2012). In contrast to sardines, anchovies are

feeding purely on microzooplankton and mesozooplankton for

their energy intake (Catalán et al., 2010).

Anchovy in TS was highly dependent on bathymetry, SST and

the distance to thermal fronts. There is correlation between

phytoplankton and zooplankton abundance but with a temporal

lag of 1-1.5 months (Frangoulis et al., 2017), so no direct link to

CHL concentration is expected. Instead, potential adult anchovy

habitats have been correlated to bottom depth and sea level

anomaly (Giannoulaki et al., 2013) because they are linked to

zooplankton aggregations. Furthermore, the significance of depth

and temperature could be related to spawning, which for anchovy

typically occurs between late spring to early summer in the

Mediterranean and the Aegean (Tsoukali et al., 2019; Basilone

et al., 2020).
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In the work of Schismenou et al., 2008, anchovy and sardine egg

samples were analyzed for the summer periods of 2003-2006, and

the interaction of CHL with bathymetry were the key

environmental proxies for spawning habitat characterization for

both species, which does match the variable significance results for

the GT but not the TS in the present study. In GT both species

presented high affinity towards CHL concentration that indicates

preference to highly productive areas. On the other hand, the GT is

characterized by major river outflows which supply the gulf with

waters containing high concentrations of suspended matter. In

turbid waters, the C2RCC algorithm can overestimate CHL

concentration resulting to misinterpretations (Vanhellemont and

Ruddick, 2021). It could be hypothesized though, that if high CHL

concentrations are attributed to turbulent river outflows, then that

could link anchovy and sardine presence, in the GT, to low salinity

areas, which is a known favorable environmental parameter for

both species (Bonanno et al., 2016; Fernández-Corredor et al.,

2021). Unfortunately, there are no available satellite products at

the mandatory spatial resolution to test this hypothesis.

To showcase the application of the results on a spatial dataset,

the best performing classification models, and the regression

random forest models are applied to Sentinel-3 data for the date

of 22/07/2019 (Figure 7). In this dataset, SST ranges from 24.35 –
A B

DC

FIGURE 6

Multi-way variable importance plot for the Random Forest Regression Models for each species and each area. (A) Anchovy in TS, (B) Sardine in TS,
(C) Anchovy in GT and (D) Sardine in GT. The p-value refers to the significance of each variable if it is used for splitting more often than would be
the case if the selection was random.
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30.22 °C (Figure 7A), and CHL concentration is across the area low

at 0.15 mg/m3 (Figure 7B), with a peak at the Eastern side where the

Evros estuary is located. On the model results, the isobaths of -200,

-400, -700, and -1200m are drawn. The classification models of

anchovy and sardine (Figures 7E, F respectively) showed fish

aggregations at different locations per species in the study area.

The anchovy model shows more occurrences of “Presence”

locations in the NW region of Samothraki, the Gulf of

Strymonikos and around Thasos island, whereas sardine is

present more frequently at coastal areas.

Applying the Random Forest regression model on the dataset

for anchovy presents intermediate biomass predictions across the

study area around the 10 tonnes mark (Figure 7G). Some peaks are

present NW of Samothraki Island and the Gulf of Kavala and

Strymonikos. Anchovy high biomass predictions are observed at the
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same longitude as sardine but more offshore. These patterns were

observed by Barra et al., 2015 based on samplings from 2004-2006

and 2008, which was attributed to interspecific competition

alleviation. Similar conclusions were also discussed in the present

study based on the difference of significance of each environmental

proxy for the species’ spatial distribution modeling.

Sardine high biomass concentrations are observed NW, and N of

Samothraki, with depths at a maximum of 80m (Figure 7H). The

spatial distribution presented in this work matches the species’ profile

as sardines showcase a general affinity to coastal areas, both in the

winter, when they spawn at a maximum depth of 65m, and the

summer months (Tugores et al., 2011). Giannoulaki et al., 2011 also

observed that the seasonal migration of sardines is limited to coastal

areas, and it does not exceed the 100m isobath. The depth restriction

to sardine’s spatial distribution (Giannoulaki et al., 2005; Bellido et al.,
A B
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FIGURE 7

Maps for 22/07/2019 showcasing the results of both Random Forest classification and regression for the Thracian Sea. From left to right and top to
bottom, (A) SST, (B) CHL concentration, (C) SST Gradient, (D) CHL concentration Gradient, (E) Anchovy presence classification results, (F) Sardine
presence classification results, (G) Anchovy biomass regression results and (H) Sardine biomass regression results. Overlayed to the model result
maps, the isobaths of -200m, -400m, -700m and -1200m are drawn.
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2008; Giannoulaki et al., 2013) could explain why the bathymetry was

the most significant variable in the Random Forest biomass model.

Evidently, the classification and the regression results

provided significant differences. Especially for sardine the

“Presence” areas do not match the high biomass concentration

areas except for Strymonikos Gulf. This problem arises from the

training dataset which is greatly imbalanced and hints that one

model (classification or regression) may be underperforming.

The dominance of “Absence” observations in the original dataset

could cause the underprediction of “Presence” occurrences.

Through the confusion matrices for GAM sardine model

(Supplementary Material) only 14/26 “Presence” observations

were correctly classified, meaning that the model has learned

better to identify areas with no fish occurrences than areas with

occurrences. To mitigate such an effect, the dataset could be

balanced in such a way that “Presence” and “Absence”

observations would be represented equally at 1:1 ratio.

However, this would result in a small training dataset with just

124 observations for sardine in TS and 60 in GT, even before

splitting to training and validation. The use of such a small

dataset could result in biased overfitted results (Vabalas et al.,

2019) and it was avoided. The distinction between the two

methodologies could be investigated further with the use of

additional larger and better represented datasets.

In the context of fisheries management, the spatial and temporal

resolution of the results could cover various monitoring needs and

shortcomings of the current state. Bellido et al., 2020 suggests that an

effective fishery management framework should more regionalized,

supported by the appropriate monitoring infrastructure. Higher

resolution ocean color satellite observations are capable to support

such a framework with continuous monitoring fish stock spatial

distribution. At 500m resolution spatial differences in neighboring

areas will be distinguishable and the authorities will be able to

coordinate the fleet for maximum yield and minimum expenses

and with the addition of being compliant with finer resolution fishing

activity mapping (Janßen et al., 2018). Furthermore, the daily

coverage in combination with Vessel Monitoring Systems (VMS)

will allow continuous monitoring of the fleet and draw statistics on

fishing effort in relation to potential fish abundance.

5 Conclusion

The present work explores the use of high spatial resolution

data to map the spatial distribution of anchovy and sardine

populations in smaller-scale areas. 12 classification models were

tested, along with 4 regression models. Comparison with in-situ

biomass acoustic measurements provides a strong case that similar

methodologies can be used for general application in more regions.

The classification techniques used in the study involved three types

of models, logistic regression, GAMs, and Random Forest. High

detection rates from all models were achieved. Furthermore, the

biomass Random Forest regression produced minor bias errors with

an acceptable fit to the dataset.
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In the biomass regression models, each species presented

different variable importance for each study area. Anchovy in the

TS for example was more dependent on bathymetry, SST

distribution, and distance to thermal fronts, compared to the GT

results where CHL, SST, and bathymetry had a higher impact. The

variable importance could indicate that fish aggregation in each

region could depend on its specific environmental characteristics

(i.e. the presence of river outflows). In any case, the main conclusion

based on the divergent results is that regional models could be the

best tactic in fish spatial distribution monitoring with the use of

higher, than traditional, spatial resolution data.

The application of the models on spatial datasets revealed that

many known areas with high aggregation of small pelagic fish

populations were successfully detected. These areas are Samothraki

Island and the Gulf of Kavala. No areas were detected below the 200m

isobaths, which agrees with other scientific findings in the

Mediterranean Sea mentioned in the discussion section. These

observations, along with the models’ validation, hint that the

methodology can be used to describe the preferred spatial

distribution of the target species in fine resolution with high accuracy.

Incorporating higher spatial resolution data along with front

detection allowed the inclusion of oceanographic features detrimental

to small pelagic fish spatial distribution. This was proven from the

results as the CHL gradient and the distance from thermal fronts

were, in many cases, two of the most impactful variables in the

regression models. Higher-resolution satellite data can detect smaller

mesoscale features necessary for applications in small areas with

complex geographies, like the Aegean Sea. The circulation in those

areas produces highly biologically impactful fronts and gyres that

generally could not be mapped with lower spatial resolution data.

The main limitation of the proposed methodology lies in its

dimensionality. Satellite observations mainly capture the surface

oceanographic conditions, thus limiting the available ecologically

important information. The use of 3D models could provide insight

at various depths with the additional benefit of other significant

oceanographic parameters for marine spatial distribution modeling,

like salinity levels and zooplankton concentration. Compared to

satellite data, it is a tradeoff between data quantity and resolution.
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SUPPLEMENTARY TABLE 1

Confusion Matrices for each classification model. The first sheet corresponds

to the logistic regression results, the second to the GAMs results, and the third

to the Random Forest results.

SUPPLEMENTARY TABLE 2

The selected GAM models’ formulas along with their respective deviance

explained percentage.
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Abbreviation table of all the acronyms used in the paper.

SUPPLEMENTARY FIGURE 1

The partial effects of the independent variables for the anchovy in TS GAMs.

The shaded orange areas represent the 95% confidence interval.

SUPPLEMENTARY FIGURE 2

The partial effects of the independent variables for the sardine in TS GAMs.
The shaded orange areas represent the 95% confidence interval.

SUPPLEMENTARY FIGURE 3

The partial effects of the independent variables for the anchovy in GT GAMs.

The shaded orange areas represent the 95% confidence interval.

SUPPLEMENTARY FIGURE 4

The partial effects of the independent variables for the sardine in GT GAMs.

The shaded orange areas represent the 95% confidence interval.

SUPPLEMENTARY FIGURE 5

Scatterplots of the predicted vs observed biomass values in tonnes retrieved
from the Random Forest regression models. (A) Anchovy in TS, (B) Sardine in

TS, (C) Anchovy in GT, (D) Sardine in GT. The black line represents the 1:1 line.

SUPPLEMENTARY FIGURE 6

The ROC plots for the classification models. They are divided by species and
by region.
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