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The objective of this study was to investigate the effects of different rhythmic light

spectra and intensities on growth performance and physiological and biochemical

parameters of juvenile steelhead trout (Oncorhynchus mykiss). Seven treatments

were randomly assigned to 21 tanks using a single-flow system for 13 weeks (N =

3), namely blue–purple–red light (BPR), red–purple–blue light (RPB), blue light

(VB), and red light (VR). These light treatments alternated at 300, 900, and 1,200 lx,

as well as a constant 900 lx of blue light (CB), red light (CR), and white light (CW).

Results showed that the highest feed intake (FI), final body weight (FBW), and

specific growth rate (SGR) were observed in the BPR treatment, which were

significantly higher than those in the CW, CR, CB, and VB treatments. BPR

treatment resulted in higher levels of insulin-like growth factor 1 (IGF-1), free

triiodothyronine (FT3) and thyroxine (FT4), superoxide dismutase (SOD), and

catalase (CAT), and total antioxidant capacity (T-AOC) activities were found. Fish

exposed to BPR showed significantly enhanced lipase (LPS) and trypsin (Trp)

activity in the stomach and gut tissues which promoted digestion. Trout exposed

to a constant light spectra and intensity environment showed decreased activities

of antioxidant and gastrointestinal digestive enzymes. Our results indicate the

positive influence of BPR light conditions on the growth, stress response,

digestion, and metabolism of juvenile steelhead trout, which is likely related to

its similarity to the light rhythm in natural water environments, and can be used to

improve growth and physiological status in the aquaculture trout.
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1 Introduction

Light including light spectra, intensity, and photoperiod, is one of

the most important factors in aquaculture, as it affects endocrine organs,

especially the hypothalamus and hypophysis, through visual and central

nervous systems. It ultimately affects feeding, growth, development,

physiological status, and behavior (Handeland et al., 2013; Gao et al.,

2021; Zou et al., 2022). Fish have a specific preference for certain light

conditions because of evolutionary adaptation to the changing light

environment. Light spectra and intensity may have different effects on

growth performance among fish species and across development stages

with positive or negative influences (Wei et al., 2019; Honryo et al., 2020;

Wang et al., 2020; Mandario et al., 2021; Zou et al., 2022).

Light spectra and intensity play fundamental roles in the feeding

and growth of fish. Different species exhibit specific preferences for

certain light environments (Villamizar et al., 2009; Handeland et al.,

2013; Wei et al., 2019; Wang et al., 2020; Khanjani and Sharifinia, 2021;

Wu et al., 2021; Zou et al., 2022). Self-feeding of rainbow trout

(Oncorhynchus mykiss) can be affected by light intensity (Mizusawa

et al., 2007). Increased light intensity improves feeding efficiency in

juvenile Atlantic salmon (Salmo salar) (Fraser and Metcalfe, 1997).

Under high light intensity conditions, the specific growth rate (SGR)

and feed conversion ratio (FCR) of rainbow trout are higher than those

under low light intensities (Taylor et al., 2006). Low intensity red light is

beneficial for promoting growth of rainbow trout, whereas blue light

induces stress and other negative effects on growth (Karakatsouli et al.,

2007; Karakatsouli et al., 2008). Chen et al. (2022b) found that blue and

red light combinations instead of constant light spectra enhanced

growth of steelhead trout (Oncorhynchus mykiss). However, to date,

many studies have focused on the constant light spectra and intensity

conditions of trout growth. Meanwhile, the influence of daily rhythmic

light spectra and intensity changes has been limited.

The impacts of light spectra and intensity on fish growth involves

endocrine hormones, circulating biochemical processes, antioxidant

defenses, and digestion. The pineal gland interprets light signals and

rhythmically synthesizes melatonin (MT) to maintain the body’s

biological clock (Iigo et al., 2007). MT secretion is affected by light

spectra, and simultaneous blue and green light exposure has shown a

more pronounced inhibitory effect than red light in Atlantic salmon

(Handeland et al., 2013). Growth hormone (GH), insulin-like growth

factor 1 (IGF-1), and cortisol levels in olive flounder (Paralichthys

olivaceus) were higher under green light than those under white light

(Zou et al., 2022). Plasma free thyroxine (FT4) levels in Atlantic

salmon significantly increased under high-intensity light (1000 lx)

compared to those under low-intensity light (1 lx). Meanwhile, low-

intensity light also led to abnormal development (Handeland et al.,

2013). Various oxidative stress responses under different light

spectrum and intensity have been highlighted in multiple fish

species (Gao et al., 2016; Khanjani and Sharifinia, 2021; Wu et al.,

2021; Chen et al., 2022b). Guller et al. (2020) found that blue light

could enhance the antioxidant capacity and immune performance of

rainbow trout. Digestive enzymes are crucial for nutrient absorption

and synthesis, and are also significantly influenced by light spectra

and intensity in steelhead trout (Chen et al., 2022a) and Nile tilapia

(Oreochromis niloticus) (Khanjani and Sharifinia, 2021).

Light can be absorbed by water, and long-wavelength light spectra

have a greater influence. As the height of the sun, namely the light
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incidence angle, changes regularly during the daytime, light spectra

and intensity at a certain water depth simultaneously change

rhythmically. Aquatic animals have evolved to adapt to these

predictable changes and form rhythmic patterns of physiological

and behavioral functions (Villamizar et al., 2011). In this study, we

evaluated the growth, endocrine hormone levels, plasma biochemical

parameters, antioxidant defense, and digestion of juvenile steelhead

trout in response to different daily rhythmic light spectra and

intensities. Our results provide more detailed insights into the

influence of multi-level light conditions on fish growth and present

novel evidence of optimal light conditions for trout aquaculture.
2 Materials and methods

2.1 Animal preparation

Steelhead trout eye eggs were purchased from Troutlodge Inc.

(Washington, USA). Before the experiment commenced, the juvenile

trout were acclimatized to fresh water for two weeks, when the fish

were fed to apparent satiation twice a day at 08:00 and 16:00 with a

commercial trout feed and maintained on a 24 h oxygen supply and

12 L:12D photoperiod.
2.2 Experimental design

Twenty-one fiberglass tanks (220 L volume, 0.60 m height ×

0.84 m diameter) coated with white paint on the inner surface and

blue paint on the outer surface were used during the experiment. Each

tank was covered with shade cloth to avoid ambient light

contamination. Customized LED lighting systems with the

following spectra and intensities were used for seven treatments:

red (l = 660–670 nm, 0–100 W), blue (l = 455–465 nm, 0–100 W),

purple (l = 400–435 nm, 0–100 W), and white (full spectrum, 0–100

W) (Wuxi Huazhaohong Optoelectronic Technology Co., Ltd., Wuxi,

China). Light spectra and intensity were determined using a lighting

analyzer (PLA-300; Everfine Inc., Hangzhou, China) and were

adjusted every two days. The light intensity for different

experimental requirements was determined by adjusting the power

of the LED lamps and their height from the water surface. Each

treatment had three replicates with 12 fish per tank.

The lighting conditions for the seven treatments were as follows:

constant white (900 Lux, CW), constant red (900 Lux, CR), constant

blue (900 Lux, CB), the same daily rhythmic change (600 + 900 +

1200 + 900 + 600 Lux) of red (VR) and blue (VB), daily rhythmic

changes of red, purple, and blue (600 Lux red + 900 Lux purple + 1200

Lux blue + 900 Lux purple + 600 Lux red, RPB), and daily rhythmic

changes in blue, purple, and red (600 Lux blue + 900 Lux purple +

1200 Lux red + 900 Lux purple + 600 Lux blue, BPR) (Figure 1). The

tested light intensity in the present study are in order to confer to the

reported light intensity from rainbow trout and Atlantic salmon

(Mizusawa et al., 2007; Handeland et al., 2013), and our previous

study on steelhead trout (unpublished data). The photoperiod for all

treatments was set at 15 L: 9 D between 4:30 and 19:30. The light

duration for rhythmic change groups was divided into five periods,

each of which lasted three hours.
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At the beginning and end of the experiment, the trout were

starved for 24 h to ensure complete emptying of the digestive tract.

Prior to commencing the experiment, the fish were anesthetized in a

30 mg/L tricaine methanesulfonate (MS-222; Sigma-Aldrich, USA)

solution, after which they were gently dried and weighed. During the

experiment, all the fish (initial weight, 30.01 ± 2.95 g) were fed twice

daily (at 08:00 and 16:00) with commercial trout feed. Uneaten

surplus feed was collected after feeding for 30 min. The feed intake

was calculated by measuring the feed moisture content and correcting

the actual daily intake. Water exchange capacity during the

experiment was maintained at 70 L/h using a flowing water system.

Water temperature, dissolved oxygen level, and pH were measured

three times per day using a YSI professional water quality tester (YSI

Inc., Ohio, USA). Water samples were collected every three days to

determine phosphate, total ammonia nitrogen, nitrite, and nitrate

nitrogen using an automatic chemical analyzer (Cleverchem 380

cadmium, DeChem-Tech, Germany). During the 13-week

experimental period, constant water temperature, dissolved oxygen,

and pH were obtained at 16 ± 0.2°C, > 6.5 mg/L, and 7.2 ± 0.2,

respectively. Phosphate, total ammonia nitrogen, nitrite, and nitrate

nitrogen were maintained at 0.065 ± 0.003 mg/L, 0.127 ± 0.003 mg/L,

0.09 ± 0.05 mg/L, and 3.43 ± 1.9 mg/L, respectively.

At the end of the experiment, 15 fish from each treatment with five

fish per treatment, were randomly selected and immediately anesthetized

using 100 mg/L MS-222 and were then placed in an ice tray. Liver,

midgut, and stomach tissues were collected using sterilized scissors and

forceps, placed in polyethylene tubes (5 mL; Beijing Labgic Technology

Co., Ltd., Beijing, China), and immediately snap-frozen in liquid nitrogen.

Blood samples were collected from the tail vein using a 2.5-mL syringe

and stored in 1.5-mL polyethylene tubes, centrifuged at 875 rpm and 4°C

for 10 min. The serum was separated from the red blood cells, transferred

into polyethylene tubes, and immediately placed in liquid nitrogen. All the

samples were stored at −80 °C until further analysis.
2.3 Growth parameters

To calculate and compare feeding and growth, fish biometry,

including total number and weight, was measured at the beginning
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and end of the culture period. The number of fish at the beginning

of the experiment and the number of fish remaining at the end of

the experiment were recorded respectively to calculate the survival

rate. Feeding, growth parameters, and nutrition indices included

initial body weight (IBW), final body weight (FBW), specific

growth rate (SGR), feed intake (FI), feed conversion ratio (FCR),

and survival rate (SR). The SGR, FCR, and SR are calculated as

follows:

Specific growth rate  SGRð Þ  % =dayð Þ 
= ½100 �   ln FBW  –  ln IBWð Þ�=t  daysð Þ

Feed conversion ratio  FCRð Þ  = FI= FBW   –  IBWð Þ

Survival rate  SRð Þ  % =dayð Þ  =  100� Ft=F0

Where t is the number of experimental days, Ft is the number of

fish at the end of the experiment, and F0 is the number of fish at the

beginning of the experiment.
2.4 Serum hormones and biochemical
analyses

Melatonin (MT), growth hormone (GH), insulin-like growth

factor 1 (IGF-1), free triiodothyronine (FT3), and free thyroxine

(FT4) levels in serum were determined using enzyme-linked

immunosorbent assay kits (Nanjing Jiancheng Bioengineering

Institute, Nanjing, China). Serum triglyceride (TG), total cholesterol

(TC), and glucose (GLU) levels were measured using a Cobas C-311

automatic biochemical analyzer (Roche, Basel, Switzerland).

Activities of alanine transferase (ALT), alkaline phosphatase (ALP),

and lactate dehydrogenase (LDH) were analyzed using kits (Roche,

Inc., Basel, Switzerland).
2.5 Antioxidant capacity analyses

Superoxide dismutase (SOD), catalase (CAT), total antioxidant

capacity (T-AOC) activity, and malondialdehyde (MDA) levels were

analyzed using kits (Nanjing Jiancheng Bioengineering Institute,

Nanjing, China).
2.6 Digestive enzyme activity analyses

Amylase (AMS), lipase (LPS), pepsin (Pep) and trypsin (Trp)

were analyzed using assay kits (Nanjing Jiancheng Bioengineering

Institute, Nanjing, China)
2.7 Statistical analysis

All parameters are expressed as mean ± standard deviation. SAS

version 9.4 (SAS Institute Inc., Cary, North Carolina, USA) was used

for the statistical analysis. Differences among treatments were

analyzed using one-way analysis of variance (ANOVA), followed by
FIGURE 1

The lighting conditions for the seven treatments.
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Tukey’s multiple comparison tests. The significance level was set at P

= 0.05.
3 Results

3.1 Growth parameters

The growth parameters for juvenile steelhead trout are presented

in Table 1. Different daily rhythmic light spectra and intensity

changes significantly affected trout growth (P< 0.05). The FBW and

SGR in the BPR group were the highest and were significantly higher

than those in the CW, CB, CR, and VB groups (P< 0.05). The highest

FI levels were observed in the BPR and RPB groups. The FI in the

CW, CR, CB and VB groups were significantly lower than those in the

BPR and RPB groups (P< 0.05). There were no significant differences

in FCR and SR among the groups (P > 0.05).
3.2 Serum hormones levels

The serum hormone levels in juvenile steelhead trout are

presented in Figure 2. There was no significant difference in GH

levels between groups (P > 0.05). However, IGF-1 levels were

significantly higher in the BPR group than those in the other

groups (P< 0.05). No significant difference was observed in MT

levels among the groups (P > 0.05). FT3 levels were significantly

higher in the BPR group than those in the other groups, and FT4

levels were significantly higher in the BPR group than those in the

CW, VR, VB, and RPB groups (P< 0.05).
3.3 Serum biochemical parameters

Serum levels of TG, TC, and GLU and activities of ALT, ALP, and

LDH are presented in Table 2. There were no statistically significant

differences in serum TG, TC, and GLU levels (P > 0.05). ALT activity

was significantly higher in the CW group than those in the CB, VR,

RPB and BPR groups (P< 0.05). ALT activity was significantly lower

in the VR and BPR groups than those in the CW, CR and VB groups

(P< 0.05). ALP activity was significantly higher in the CW group than
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those in the CR, CB, VR, and VB groups (P< 0.05). Statistically higher

LDH activity was observed in the CW group than those in the other

groups (P< 0.05). The lowest LDH activity were observed in the BPR

and RPB groups.
3.4 Antioxidant capacity

Antioxidant capacity was significantly affected by the daily

rhythmic light spectra and intensity changes (Figure 3). CAT and

T-AOC activities in the RPB and BPR groups were significantly

higher than those in the other groups (P< 0.05). SOD activity in the

BPR group was significantly higher than those in the CW, CR, CB,

VR, and VB groups (P< 0.05), but not significantly higher than those

in the RPB group (P > 0.05). The lowest SOD activity was observed in

the CW and VR groups. T-AOC activity in the CW, CR and VR

groups was significantly lower than those in the CB, VB, BPR and

RPB groups (P< 0.05). MDA levels in the CR and VR groups were

significantly higher than those in the CB, VB, RPB, and BPR groups

(P< 0.05).
3.5 Digestive enzyme activity

Activities of AMS, LPS, Pep, and Trp in the midgut and stomach

are shown in Figure 4. Midgut and gastric LPS activities were

significantly higher in the BPR group than those in the other

groups (P< 0.05). Statistically higher midgut Trp activity was

observed in the BPR group than those in the other groups (P<

0.05). Trp activity in the CW and VB groups was significantly

lower than those in the other groups (P< 0.05). No statistical

differences were detected in AMS and gastric Pep among the

groups (P > 0.05).
4 Discussion

In the natural aquatic environment, because of the strong

absorption capacity of water for long-wavelength light and the

regular height changes of the sun (light incidence angle) during the

day, the light intensity and spectra change rhythmically at a certain
TABLE 1 The growth parameters of steelhead trout reared under different light conditions.

Parameters CW CR CB VR VB RPB BPR P value

Initial body weight (g) 30.05 ± 2.59 30.02 ± 2.04 30.01 ± 2.47 30.01 ± 2.68 30.02 ± 2.58 29.95 ± 2.66 30.01 ± 2.60 0.6220

Final body weight (g) 118.59 ±
14.25b

125.35 ±
18.04b

125.56 ±
17.82b

134.77 ±
18.02ab

125.80 ±
17.31b

134.87 ±
19.96ab

150.31 ±
19.80a

0.0014

Specific growth rate(%
day−1)

1.54 ± 0.01b 1.56 ± 0.01b 1.56 ± 0.03b 1.58 ± 0.01ab 1.56 ± 0.01b 1.58 ± 0.01ab 1.62 ± 0.01a 0.0044

Feed intake (g) 109.93 ± 1.79d 118.18 ± 2.45cd 115.94 ± 9.44cd 128.14 ± 5.52bc 118.60 ± 1.86cd 136.02 ± 5.86ab 142.49 ± 5.31a 0.0002

Feed conversion ratio 1.24 ± 0.01 1.24 ± 0.07 1.22 ± 0.11 1.22 ± 0.01 1.24 ± 0.07 1.30 ± 0.04 1.18 ± 0.02 0.6883

Survival rate (%) 100.00 ± 0.00 97.22 ± 3.93 97.22 ± 3.93 97.22 ± 3.93 97.22 ± 3.93 97.22 ± 3.93 100.00 ± 0.00 0.9081
fron
Values (mean ± standard deviation) are the means of three replicates. Values on the same line with different superscript letters are significantly different (P< 0.05) based on one-way analysis of variance
(ANOVA) with Tukey’s test.
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water depth (Sanchez-Vazquez et al., 2019; Ruchin, 2021). Teleost fish

can experience reduced stress and maintain homeostasis because of

evolutionary adaptation to their specific living light environment.

This is conducive to growth, development, and reproduction (Kusmic

and Gualtieri, 2000; Cheng and Flamarique, 2007; Villamizar et al.,

2011; Grossman, 2014; Eilertsen et al., 2018). Different light

conditions can affect fish feeding (Kraaij et al., 1998; Cobcroft et al.,

2001; Kestemont and Baras, 2001; Marchand et al., 2002;

Puvanendran and Brown, 2002). Feed intake by rainbow trout is

positively correlated with light intensity within a tolerable range

(Mizusawa et al., 2007). Karakatsouli et al. (2008) and Karakatsouli

et al. (2007) showed that growth performance of rainbow trout

exposed to a low intensity of red light was enhanced compared to

blue light, and blue light induced an increased stress response.

In the present study, rhythmic rather than constant light intensity

and spectra in the BPR group were more conducive to growth,

feeding, and metabolism of juvenile steelhead trout (Table 1). Our

results are consistent with those of Chen et al. (2022b). Chen et al.

(2022b) reported that blue and red light combinations improved

feeding conversion efficiency and enhanced growth of steelhead trout.
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Our data showed that the light variation pattern of the BPR group was

closer to that of natural water than the constant light spectra and

constant/rhythmic light intensity. Low light intensity in the morning

and evening was akin to a small light incidence angle, long irradiation

distance, and high proportion of short-wavelength light. Meanwhile,

high light intensity and a large proportion of long-wavelength light

were in line with the natural light conditions at noon. LED lights have

been widely used in aquaculture as a controllable artificial light source

(Song et al., 2018). Our results suggest that an LED lighting system

closely simulating the light conditions of the natural habitat of

steelhead trout, such as the daily rhythmic change in BPR lighting,

can improve fish growth.

The pineal gland and retina of teleost fish are photoreceptors and

the photosensitive rod photoreceptor and cone cells help them to

identify specific wavelengths (Kraaij et al., 1998). Mediated by the

hypothalamus-pituitary-growth hormone (HPGH) pathway, GH and

IGF-1 have a significant influence on the growth of fish directly or

indirectly (Bjornsson, 1997; Mommsen, 2001; Perez-Sanchez et al.,

2002; Zou et al., 2022). However, fish metabolism and the external

environment affect the levels of GH and IGF-1 (Bertucci et al., 2019;
TABLE 2 The serum biochemical parameters of steelhead trout reared under different light conditions.

Parameters CW CR CB VR VB RPB BPR P value

TG (mmol/L) 2.20 ± 0.39 1.91 ± 0.16 2.03 ± 0.31 1.97 ± 0.32 1.99 ± 0.36 2.09 ± 0.28 2.21 ± 0.37 0.0991

TC (mmol/L) 5.23 ± 0.59 5.03 ± 0.58 5.05 ± 0.55 4.90 ± 0.82 5.11 ± 0.69 5.29 ± 0.87 5.70 ± 0.79 0.0876

GLU (mmol/L) 0.86 ± 0.20 0.80 ± 0.18 0.77 ± 0.18 0.97 ± 0.17 0.86 ± 0.22 0.92 ± 0.22 0.86 ± 0.21 0.1429

ALT (U/L) 10.09 ± 1.22a 9.55 ± 1.67ab 8.54 ± 1.39bc 7.87 ± 1.38c 9.81 ± 1.39ab 8.76 ± 0.86bc 7.83 ± 1.23c <0.0001

ALP (U/L) 89.20 ± 15.86a 70.40 ± 14.63b 67.00 ± 11.55b 73.13 ± 10.50b 74.47 ± 14.52b 79.53 ± 12.49ab 79.27 ± 11.09ab 0.0006

LDH (U/L) 725.00 ± 72.25a 468.87 ± 54.74cd 513.60 ± 64.02c 473.13 ± 58.61cd 569.40 ± 77.02b 423.20 ± 66.18d 438.07 ± 56.86d <0.0001
fron
Values (mean ± standard deviation) are the means of three replicates. Values on the same line with different superscript letters are significantly different (P< 0.05) based on one-way analysis of variance
(ANOVA) with Tukey’s test.
B C

D E

A

FIGURE 2

Serum hormones levels of GH (A), IGF-1 (B), MT (C), FT3 (D) and FT4 (E) in juvenile steelhead trout reared under different light conditions. Different
capital letters denote significant differences among the steelhead trout treatments. Results are expressed as mean ± standard deviation (n=15).
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Triantaphyllopoulos et al., 2020). Some studies have shown that IGF-

1 content is positively correlated with fish growth (Wang et al., 2020;

Perello-Amoros et al., 2021; Chen et al., 2022b). Our findings show

that daily rhythmic light spectra and intensity changes in the BPR

group significantly increased IGF-1 concentrations through indirect

stimulation of the visual system, which promoted the growth of
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steelhead trout (Figure 2). Our data showed that the serum GH

content of steelhead trout was much lower than that of IGF, with no

significant difference among the groups, which had no significant

effect on the growth. A signal molecule that acts as a receptor of the

external light environment, MT is predominantly involved in the

circadian rhythm and gonad development of fish. It can also regulate
B

C D

E F

A

FIGURE 4

Digestive enzymes activities of the midgut and stomach in juvenile steelhead trout reared under different light color conditions. (A) AMS activity in the stomach;
(B) AMS activity in the midgut; (C) LPS activity in the stomach; (D) LPS activity in the midgut; (E) Pep activity in the stomach; (F) Trp activity in the midgut.
Different capital letters denote significant differences among the steelhead trout treatments. Results are expressed as mean ± standard deviation (n=15).
B

C D

A

FIGURE 3

Antioxidant enzymes activities of the liver in juvenile steelhead trout reared under different light color conditions. (A) CAT activity; (B) SOD activity;
(C) T-AOC activity; (D) MDA level. Different capital letters denote significant differences among the steelhead trout treatments. Results are expressed as
mean ± standard deviation (n=15).
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synthesis of related hormones (Bromage et al., 2001; Falcon et al.,

2007; Zou et al., 2022). Thyroid hormones (THs) play an important

role in regulating growth, development, reproduction, migration,

metabolism, and osmotic pressure of fish. They mainly exist in the

form of FT3 and FT4 in blood (Johnson and Lema, 2011; Peter, 2011;

Mullur et al., 2014; Abdalla and Bianco, 2014). In this study, there was

no significant difference in MT levels among groups. However, serum

FT3 and FT4 levels in steelhead trout were significantly higher in the

BPR group than in the other groups. Our results indicate that

rhythmic BPR lighting exerted a positive effect on growth-related

hormones in steelhead trout.

A uncomfortable light environment stimulates the visual system of

fish and results in a stress response. This can subsequently disrupt the

immune system and resulting in adverse outcomes (Song and Choi,

2019). Several biochemical parameters, including ALT, ALP, and LDH,

reflect oxidative stress levels. In this study, liver and myocardium

functions of juvenile steelhead trout were likely disrupted under

constant 900 lx white light. This resulted in high levels of circulating

ALT, ALP, and LDH, and consequently low growth rates. Our results

indicate that conventional light sources that use constant white light in

aquaculture are potentially harmful to trout.

The antioxidant defense system of fish can be disrupted by

external environmental changes and produces reactive oxygen

species (ROS).This can negatively impact fish health (Nyska and

Kohen, 2002; Nishida, 2011). The appropriate light intensity and

spectra can enhance the antioxidant enzymes activities of fish,

including SOD, CAT, and T-AOC, comprising the antioxidant

defense system and playing a crucial role in decreasing intracellular

ROS, and reducing cell damage (Shin et al., 2011; Gao et al., 2016;

Guller et al., 2020; Akhtar et al., 2022; Chen et al., 2022b). MDA can

cause cell membrane damage and function loss, resulting in negative

effects on other physiological functions. Therefore, it is used as an

important index reflecting the oxidative damage level (Martinez-

Alvarez et al., 2002). Long-wavelength red light emitted from LED

lights can cause oxidative stress in fish. Meanwhile, short-wavelength

light can effectively reduce oxidative stress and improve immunity.

Our findings have shown that there has been an apparent decrease in

the antioxidant capacity of juvenile steelhead trout exposed to red

light. The MDA level in the constant and daily rhythmic change of red

light groups was significantly higher than that in other groups, except

for constant white light. Our results are in line with those of Guller

et al. (2020), who reported that the activities of liver antioxidant

enzymes in rainbow trout were higher when exposed to blue light

than when exposed to red light. In this study, the CAT, SOD, and T-

AOC activities of juvenile steelhead trout in the BPR and RPB groups

exposed to daily rhythmic light spectra and intensity changes were

significantly higher than those in the other groups. In a recent study

on blue–red light combinations of juvenile steelhead trout, this

combination improved antioxidant capacity by increasing activities

of liver antioxidant enzymes, while constant red light increased MDA

levels This led to intense stress and decreased immunity (Chen et al.,

2022b). This phenomenon indicates that changes in light conditions

induce a response in the antioxidant defense system via the visual

system. This can contribute to preventing physiological damage to the

changing environment.
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Digestive enzyme activity is an important index for measuring

fish digestion and metabolism ability (Perez-Sirkin et al., 2020; Yu

et al., 2020a). This can be affected by feeding habits (Castro-Ruiz

et al., 2019; Yu et al., 2020b) and light environment (Khanjani and

Sharifinia, 2021; Chen et al., 2022a). In this study, activities of LPS

and Trp in the stomach and midgut of juvenile steelhead trout were

higher than those of AMS. This is consistent with the characteristics

of steelhead trout as carnivorous fish. Our data showed no

significant difference in FI between the BPR and RPB groups.

However, LPS and Trp activities in the BPR group were

significantly higher than those in the RPB group. FCR was also

higher in the BPR group, suggesting improved digestion ability.

Results of this study indicate that the positive influence of the BPR

light environment improves feeding, IGF-1 level, antioxidant

capacity, digestion and metabolism abilities of juvenile

steelhead trout, which promote its growth. This may be explained

by evolutionary adaptation of fish to their natural living

light environment.
5 Conclusion

In this study, compared with other constant or rhythmic light

treatments, the BPR light environment, which is akin to the light

rhythm in natural waters, was beneficial to the feeding, growth, stress

resistance, digestion, and metabolism of juvenile steelhead trout.

These findings are worth considering in aquaculture lighting

applications as an effective means of improving fish growth.
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