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Infection with Decapod iridescent virus 1 (iDIV1), an important emerging disease of

shrimps and crabs, has been included in the Quarterly Aquatic Animal Disease

Report (QAAD) by the Network of Aquaculture Centres in Asia-Pacific (NACA) and

listed by the World Organization for Animal Health (WOAH). China has classified

iDIV1 as a Class II animal pandemic disease. In the present study, to determine the

susceptibility of Penaeus japonicus to Decapod iridescent virus 1 (DIV1), healthy

kuruma shrimp were artificially infected with DIV1 (isolate SHIV 20141215) by per os

(the pathway that mimics natural transmission) and intramuscular injection

(invasive pathway). The infected P. japonicus showed clinical signs such as

anorexia, retardation, evident reddish body, swollen and whitish lymphoid

organs, and mortalities of almost 100%. Real-time PCR showed that all the

challenged individuals by per os or intramuscular routes were DIV1-positive with

an average virus load between 10(9.09 ± 0.58) and 10(8.94 ± 0.45) copies/mg-DNA,
respectively. Histological examination revealed karyopyknosis, and eosinophilic

inclusions and minute basophilic stains were combined in lymphoid organs,

hematopoietic tissue and gills of diseased individuals. In addition, lymphoid

organs showed disorganization of the tubule matrix. In situ DIG-labeling loop-

mediated isothermal amplification (ISDL) also demonstrated the presence of DIV1

signals existed in lymphoid organs, hemopoietic tissue, gills, epithelial tissue,

hepatopancreas and muscle. Ultrathin sections examined using transmission

electron microscopy (TEM) revealed the presence of DIV1 virions, the virogenic

stroma, and the nucleocapsid production process in infected cells. In addition,

pathogen surveillance of cultured samples showed that the DIV1 detection rate of

farmed P. japonicus samples from five coastal provinces in China was 5.3% (9/157)

in 2022. The results mentioned above support that P. japonicus is a newly

confirmed susceptible host for DIV1, enhancing the pathogen ecological

understanding of pathogens and giving more support for developing DIV1

preventive and control strategies.
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Introduction

Large icosahedral viruses belonging to the Iridoviridae family

have diameters between 120 and 350 nm, and some of them can reach

350 nm (e.g. genus Lymphocystivirus) (King et al., 2011). This family

of viruses is distinguished by the broad range of vertebrate and

invertebrate hosts it can infect, including fish, amphibians, and

reptiles as well as invertebrates (such as insects) (King et al., 2011).

Based on the particle size, host range, and the presence of

methyltransferase, International Committee on Taxonomy of

Viruses (ICTV) classifies the Iridoviridae family as Iridovirus,

Chloriridovirus, Daphniairidovirus, Decapodiridovirus, Ranavirus,

Lymphocystivirus, and Megalocytivirus, a total of 7 genera (ICTV,

2021). In farmed shrimps and crabs, a newly discovered virus called

Decapod iridescent virus 1 (DIV1) has resulted in significant

economic losses (Xu et al., 2016; Qiu et al., 2017; Qiu et al., 2019a;

Qiu et al., 2021; Qiu et al., 2022) and was designated as the only

species of the genus Decapodiridovirus within the Iridoviridae family

by the ICTV (ICTV, 2019). DIV1 is a double-stranded DNA

(dsDNA) virus with a 166 kbp-long genome (Li et al., 2017; Qiu

et al., 2018b). It has two original isolations, Cherax quadricarinatus

iridovirus (isolate CQIV CN01) and Shrimp hemocyte iridescent

virus (isolate SHIV 20141215) (ICTV, 2019). According to the

current database, only these two original isolates have completed

whole-genome sequencing with very high sequence similarity.

Previous studies have confirmed that DIV1 susceptible hosts

meeting the World Organization for Animal Health (WOAH)

criteria (WOAH, 2022) include P. vannamei, P. monodon,

Macrobrachium rosenbergii , M. nipponense, Exopalaemon

carinicauda, Procambarus clarkii, Cherax quadricarinatus, Portunus

trituberculatus (Xu et al., 2016; Qiu et al., 2017; Qiu et al., 2019a; Chen

et al., 2019; Srisala et al., 2021; Qiu et al., 2022). Eriocheir sinensis and

Pachygrapsus crassipes, two species of crab, were intramuscularly

injected with DIV1 in an invasive experimental challenge (Pan

et al., 2017), rendering them unable to be designated as susceptible

species just yet. P. chinensis, M. superbum, Nereis succinea, Pomacea

canaliculata, Plexippus paykulli, and a few other cladocera can all have

DIV1 detected by PCR (Qiu et al., 2017; Qiu et al., 2018c; Qiu et al.,

2019a; Qiu et al., 2019b; Qiu et al., 2021), however the infection status

has not been determined at the histology level. Therefore, more

research is required to determine whether these species are

susceptible hosts, vectors, or carriers.

Crustaceans provide nutritious and high-quality protein,

unsaturated fatty acids, vitamin D, and other micronutrients for

human beings. With the increase in market demand, the scale of

shrimp and crab farming is expanding year by year. However, due to

the lack of biosecurity awareness in the rapid rise of intensive

aquaculture, disease has become one of the main factors restricting

the increase of shrimp and crab production. The kuruma shrimp,

Penaeus japonicus, is one of the most essential cultured and captured

shrimps in the world and is farmed in Southeast Asian nations such as

China, Japan, Korea, Australia, and others (Hewitt and Duncan, 2001;

Ren et al., 2020; Cao et al., 2022). Due to its excellent desiccation

resistance, tasty flavor, and abundant nutritional value, it is regarded

as one of the most commercially important species of the Penaeidae
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family (Zhang et al., 2022). In 2021, China’s annual P. japonicus

aquaculture production totaled 44,548 tons (Bureau of Fisheries et al.,

2022). DIV1 was detected in samples of P. japonicus raised in China,

according to target surveillance, in 2017 and 2018 (Qiu et al., 2018c;

Qiu et al., 2019b). He et al. (2021) infected healthy P. japonicus with

DIV1 by intramuscular injection as an invasive challenge. DIV1 had

an inhibitory effect on the immune enzyme activity of shrimp,

according to the enzyme activity study and transcriptomics analysis,

and HSP70, C-type lectins, and caspase may be crucial defenses

against DIV1 infection (He et al., 2021). The intramuscular

injection, however, does not satisfy the WOAH requirements for

listing species susceptible to a pathogen because it is not a technique

that mimics natural transmission channels. Therefore, it is necessary

to confirm further that P. japonicus is susceptible to DIV1.

It is necessary to identify a pathogen’s susceptible hosts for

international trade and disease control (Qiu et al., 2022). Therefore,

healthy kuruma shrimp were experimentally infected using invasive and

non-invasive experimental techniques to test P. japonicus’ susceptibility

to DIV1. In this investigation, clinical observation, pathogen detection,

and histology were used to examine the infection status of the individuals.

Additionally, we conducted the DIV1 analysis on the cultivated P.

japonicus in a few Chinese coastal provinces.
Materials and methods

Shrimp

P. japonicus individuals from a farm in Jiaonan, Qingdao,

Shandong Province of China were utilized for the experimental

infection of DIV1. They were about 9 - 10 cm in body length and

had been cultured for 80 days. The shrimp were healthy and showed

good activity.

Prior to the challenge experiment, the samples of shrimp were

tested by real-time PCR and confirmed to be free of white spot

syndrome virus (WSSV), infectious hypodermal and hematopoietic

necrosis virus (IHHNV), acute hepatopancreas necrosis disease-

causing Vibrio (VAHPND), Enterocytozoon hepatopenaei (EHP) and

DIV1. All detection techniques were created from previous research

(Liu et al., 2018; Qiu et al., 2020) or were advised by the World

Organization for Animal Health (WOAH) (WOAH, 2021).
Preparing the DIV1 inoculum

This study prepared DIV1 inoculum from DIV1-infected (isolate

SHIV 20141215) P. vannamei tissues previously, which tested DIV1

positive and common shrimp pathogens negative by real-time PCR

(Chen et al., 2019). PPB-Tris was used to homogenize shell-off

cephalothoraxes of DIV1-infected P. vannamei (Huang et al., 1999).

A 0.45 mm filter was used to remove the supernatant after the

homogenate had been centrifuged at 9,100 g for 10 min. Real-time

PCR was utilized to determine the viral load of the filtered

supernatant’s template (Qiu et al., 2020). Prior to usage, the

inoculum was kept at -80°C.
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The experimental infection of P. japonicus
with DIV1

The operation of the experimental infection was similar to that of

the host susceptibility studies previously published (Chen et al., 2019;

Qiu et al., 2022), and was partially adjusted according to the

characteristics of P. japonicus. A total of 200 individuals of

P. japonicus were raised in 90-L plastic tanks (61×42.5×35 cm) filled

with 45 L of sand-filtered seawater, which had a salinity of around 32

and a temperature of 23–24°C. Throughout the experiment, 90% of the

seawater in plastic containers was changed daily and continually

aerated. Glass windows and a natural light/dark cycle were provided

in the wet laboratory. The shrimp were temporarily raised for 5 days

while fed daily with minced oyster meat. Then 180 individuals were

randomly divided into four groups, including the per os (PO),

intramuscular injection (IM), intramuscular injection control (CIM),

and per os control (CPO) groups (each group contained three 90-L

plastic tanks and 15 individuals per tank). Each individual in the IM

group received an injection of 50 mL of the DIV1 inoculum, which had

been diluted to 103 copies/L using PPB-His (376.07 mM NaCl, 6.32

mMK2SO4, 6.4 mMMgSO4, 14.41 mMCaCl2, and 26.10 mM histidine

hydrochloride, pH 6.5) (Huang et al., 1999). PPB-His was administered

in the same amount to the CIM group. After a 24-hour starving period,

shrimp in the PO group were fed minced DIV1-infected P. vannamei

tissues mixed with equal amounts of minced oyster meat at 10% of their

total body weight, while the CPO group was fed minced oyster meat at

10% of their total body weight in the same way.

During the experiment, the survival number of each group was

counted every day, then used GraphPad Prism 8 to make the survival

curve. The dying individuals were dissected and sampled daily during

the experiment, and all surviving individuals were dissected and

sampled after the experiment.
DNA extraction and detection of DIV1
by real-time PCR

In the artificial infection experiment, total DNA was extracted using

the TIANamp Marine Animal DNA Kit (TIANGEN Biotech, Beijing,

China) from 30 mg of each P. japonicus’s gills and hepatopancreas

mixture. Utilizing the Nanodrop 2000c, the extracted DNA’s quality and

concentration were assessed (Thermo Fisher Scientific). Real-time PCR

was utilized to examine DNA samples as templates for quantitative

detection (Qiu et al., 2020). To determine the geometric averages and

standard deviations for each group, copies of DIV1 per mg of total DNA
(copies/g-DNA) were converted to respective logarithms. The viral load

data of the IM group and the PO group were used for one-way analysis of

variance using Excel (Microsoft 365MSO).
Histopathological analysis

The cephalothoraxes of P. japonicus, sampled during the

challenge experiment, were treated for 24 hours with Davison’s

AFA fixative (DAFA) before being switched to 70% ethanol (Bell

and Lightner, 1988). According to Bell & Lightner’s instructions,
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paraffin-embedded sections were produced and stained with

hematoxylin and eosin (H&E) solutions (1988).

In situ DIG-labeling loop-mediated
isothermal amplification (ISDL)

The ISDL assays targeting the gene of the second largest subunit

of DNA-directed RNA polymerase II of DIV1 followed the method

published by Chen et al., 2019. Paraffin sections were dewaxed and

rehydrated according to previous literature (Bell and Lightner, 1988;

Lightner, 1996). Rehydrated slides were added with ddH2O and

denatured on a 100°C heating block for 2 min, then subsequently

placed in a wet box. Total of 150 µL DIG-LAMP mixture, which has

the same constituents as described in in Chen et al., 2019, were added

dropwise to each slide. The slides were horizontally incubated at 65°C

for 60 min, followed by 85°C for 5 min. Subsequent steps were

performed in accordance with the post-hybridization steps of a

normal in situ hybridization (Lightner, 1996). Tissue sections of

healthy P. japonicus were used as the control.
TEM

For TEM examination, tissue samples from P. japonicus samples

were cut into ultrathin sections. Minute tissue fragments of the

lymphoid organ, nervous tissue, gills, heart, and stomach in less

than 1 mm3 of P. japonicus were preserved for 24 hours at 4°C using

TEM fixative, which contains 2% paraformaldehyde, 2.5%

glutaraldehyde, 160 mM NaCl, and 4 mM CaCl2 in 200 mM PBS

(pH 7.2). The tissues were secondarily fixed with 1% osmium

tetroxide for 2 hours prior to ultrathin sectioning, after which they

were embedded in Spurr’s resin and stained with uranyl acetate and

lead citrate. In the Medical College of Qingdao University, ultrathin

sections were placed on collodion-coated grids and studied using a

JEOL JEM-1200 electron microscope (Jeol Solutions for Innovation,

Japan) and HT7700 (Hitachi, Japan) operating at 80 to 100 kV.
Detection of DIV1 in clinical P. japonicus
samples in some coastal provinces of China

A total of 153 farmed P. japonicus samples from 17 batches were

gathered from five provinces of China in 2022. DNA was extracted

from about 30 mg gills and hepatopancreas mixture of each shrimp,

followed by the test of DIV1 using two real-time PCR methods

targeting the fragment of MCP and ATPase genes, respectively (Qiu

et al., 2018a; Qiu et al., 2020).
Results

Clinical signs of artificially infected P.
japonicus

The infection experiment lasted for 10 days post-infection (dpi) of

P. japonicus. The P. japonicus in the IM group was the earliest to show
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clinical signs of anorexia, retardation, and reddish body, and all died

within 3 dpi (Figure 1). In the PO group, the overall onset was

relatively slow. At 3 dpi, P. japonicus began to show clinical signs like

those in the IM group, and at 5 dpi, significant death began to occur,

and at 6 dpi, most of the individuals died. For the CIM and CPO

groups, within 10 dpi, there was no large number of deaths except for

accidental factors (Figure 1).

By comparing the clinical signs between the challenge groups and

the control groups, it was found that in addition to anorexia and

retardation, the most obvious appearance sign of the infected groups

was the reddish body, and almost all infected individuals showed

obvious red body color (Figures 2A, D). When central longitudinal

dissection was performed, the infected individuals showed a swollen

and whitish lymphoid organ in front of the hepatopancreas

(Figures 2B, C), whereas this was not observed in control

individuals (Figures 2E, F).
DIV1 detection of experimental P. japonicus

A total of 28 DNA samples (seven individuals were randomly

selected for each group of IM, CIM, PO, and CPO) were extracted and

subjected to real-time PCR. With geometric average DIV1 loads of

10(9.09 ± 0.58) and 10(8.94 ± 0.45) copies/mg-DNA, respectively, all
samples in the IM and PO groups were tested to be DIV1 positive

(Table 1). All samples in the control group were negative for DIV1

(Table 1). One-way analysis of variance showed no significant

difference in viral load between the IM and PO groups.
Histopathological examination

In the lymphoid organ, hematopoietic tissue, and gills of the

moribund P. japonicus samples (from PO and IM groups),

histopathological analysis revealed karyopyknosis and eosinophilic

inclusions intermingled with minute basophilic stains (Figures 3A, C,

E). In addition to the above unique lesions, lymphoid organs show

disorganization of the lymphoid tubule matrix accompanied by

abnormal morphology of the nuclei plus the presence of

karyorrhectic and pyknotic nuclei. The muscle, hepatopancreas, and

epithelial tissue did not exhibit any notable histological alterations
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(not shown). After H&E staining, the tissue samples from healthy

individuals (from CPO and CIM groups) were shown as normal

under the microscope (Figures 3B, D, F).
ISDL

For ISDL, a LAMP system was applied to in situ amplification to

produce DIG-labeled products and subsequently detected with anti-

DIG antibody on histological sections. Consistent with the

histopathological findings, ISDL results of diseased P. japonicus

(from PO and IM groups) revealed the presence of positive blue

signals in lymphoid organs, hemopoietic tissue and gills(Figures 4A,

C, E). These positive signals are concentrated and scattered, both

intracellular and extracellular. In addition, blue signals were also

observed in epithelial tissue, hepatopancreas, and muscle, and most of

these signals were concentrated in the nucleus (Figures 4G, I, K). In

contrast, there was no positive signal in the tissues above from healthy

P. japonicus (from CPO and CIM groups) (Figures 4B, D, F, H, J, L).
TEM of ultrathin sections

In the lymphoid organ (Figures 5A, B), nervous tissue (Figure 5C)

and stomach (Figure 5I), and in hemocytes of gills (Figures 5D, E, F)

and heart (Figures 5G, H) of diseased P. japonicus (from PO and IM

groups), TEM of ultrathin sections revealed agminate or dispersive

icosahedral particles with the usual iridescent virus structure.

Moreover, the paracrystalline arrays of mature virions were

observed in the stromal matrix cells of the lymphoid organ

(Figures 5A, B) and the hemocytes of gills (Figure 5F). On the

other hand, healthy P. japonicus (from CPO and CIM groups)

tissue showed no signs of virus (data not shown).
DIV1 detection of epidemiological samples

DNA samples extracted from 17 batches of farmed P. japonicus in

five provinces were tested with two real-time PCR methods targeting

the fragment of ATPase and MCP genes, respectively. The results

(Table 2) showed that 4 samples were positive for both MCP and
FIGURE 1

Survival curve of P. japonicus in each group of infection experiment; IM: intramuscular injection challenge group; CIM: intramuscular injection control
group; PO: per os challenge group; CPO: per os control group; ***: P value was less than 0.001; ****: P value was less than 0.0001.
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ATPase genes of DIV1, with a total positive rate of 2.6% (4/153).

Regarding the sampling area, all 4 positive samples were from 3 out of

4 farms in Zhejiang Province.

The positive rates (MCP & ATPase positive) of these three farms

of P. japonicus samples were 20% (2/10), 10% (1/10) and 10% (1/10),

respectively, and the total positive rate (MCP & ATPase positive) of

samples in Zhejiang Province was 13.3% (4/30). Comparing the

results of the two real-time PCR methods, the number of positive

samples detected by the method targeting the MCP gene (25 samples)

was significantly higher than that targeting the ATPase gene (6

samples). A total of 21 samples were positive by the MCP method

but negative by the ATPase method. However, only 2 samples were

positive for the ATPase method and negative for the MCP method.
Discussion

International Committee on Taxonomy of Viruses (ICTV) now

classifies the Iridoviridae family comprising 7 genera, including

Chloriridovirus, Daphniairidovirus, Decapodiridovirus and Iridovirus,

belonging to Betairidovirinae, which mainly infecting insects and

crustaceans, while Lymphocystivirus, Megalocytivirus and Ranavirus,

belong to the Alphairidovirinae, which mainly infecting amphibians,
Frontiers in Marine Science 05
reptiles and fish (ICTV, 2021). The infection with Decapod iridescent

virus 1 (iDIV1) is an important emerging disease, often causing

mortalities higher than 80%. It has been included in the Quarterly

Aquatic Animal Disease Report (QAAD) by the Network of

Aquaculture Centres in Asia-Pacific (NACA) in 2016 and listed by

the World Organization for Animal Health (WOAH) in 2021. China

has classified iDIV1 as a Class II animal pandemic disease in 2022.

According to the Criteria for Listing Species as Susceptible to

Infection with a Specific Pathogen of WOAH, species of aquatic

animals are considered susceptible to infection with a pathogenic

agent when the presence of a multiplying or developing pathogenic

agent has been demonstrated by the occurrence of natural cases or by

experimental exposure that mimics natural transmission pathways

(WOAH, 2022). Therefore, Pr. clarkii,M. rosenbergii, P. vannamei, P.

monodon, M. nipponense and C. quadricarinatus have been shown to

be susceptible hosts of DIV1 by the occurrence of natural cases (Xu

et al., 2016; Qiu et al., 2017; Qiu et al., 2019a; Srisala et al., 2021), and

E. carinicauda and Po. trituberculatus has been confirmed by

experimental exposure that mimics natural transmission pathways

(Chen et al., 2019; Qiu et al., 2022).

China’s targeted surveillance detected DIV1 in farmed P. japonicus

samples in 2017 and 2018 (Qiu et al., 2018c; Qiu et al., 2019b). Ren et al.

(2022) also detected DIV1 in cultured P. japonicus samples collected
TABLE 1 DIV1 copies in different challenge and control groups of Penaeus japonicus.

Group Positive/Total Samples Geometric Mean
(copies/mg-DNA)

DIV1 Range
(copies/mg-DNA)

IM 7/7 10(9.09±0.58) 1.92×108~1.55×1010

CIM 0/7 / /

PO 7/7 10(8.94±0.45) 3.10×108~6.72×109

CPO 0/7 / /
One-way analysis of variance showed no significant difference in viral load between the IM and PO groups.
FIGURE 2

Clinical signs of Penaeus japonicus. (A–C) External appearance, central longitudinal section and close view of central longitudinal section of diseased
individuals (from PO and IM groups); (D–F) External appearance, central longitudinal section and close view of central longitudinal section of healthy
individuals (from CPO and CIM groups). Red circle: whitish lymphoid organ; A: toward the anterior region of the shrimp; D: toward the dorsal region of
the shrimp. Bar, 20 mm (A, D); 10 mm (B, E); 2 mm (C, F).
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from Dalian, Liaoning Province of China, in 2020 through

epidemiological investigation. He et al. (2021) challenged P. japonicus

with DIV1 by intramuscular injection, which can lead to infection in

healthy individuals. Although the above reports add to the evidence

that P. japonicus may be susceptible to DIV1, there is no complete

confirmation that P. japonicus is a susceptible host of DIV1. In this

study, healthy P. japonicus were artificially infected with SHIV (an

original isolate of DIV1) by per os (the pathway that mimics natural

transmission) and intramuscular injection (invasive pathway). A

variety of methods, nucleic acid detection, histopathological analyses,

TEM, and ISDL, were then used to confirm whether P. japonicus was

successfully infected with DIV1 and whether DIV1 is multiplying or

developing in the cells. Through the present research, P. japonicus
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could be verified as a susceptible host of DIV1 because it fully complied

with the Criteria for Listing Species as Susceptible to Infection with a

Specific Pathogen of WOAH (WOAH, 2022).

Compared with the typical ‘white head’ ofM. rosenbergii infected

with DIV1, the penaeid shrimp is often thought to present with some

atypical clinical signs, including an empty guts and stomach, softshell,

expanded and deeper pigmentation spots on the epithelium, and

reddish body (Qiu et al., 2017; Qiu et al., 2019a; Qiu et al., 2021). In

this study, in addition to anorexia and retardation, the most obvious

appearance symptom of DIV1-infected P. japonicus was that almost

all of the challenged individuals showed the evident reddish body,

consistent with the clinical signs published by He et al. (2021).

Similarly, previous reports have shown that many individuals of P.
FIGURE 3

Histopathological features of Davison’s AFA fixative fixed P. japonicus. (A, C, E) Lymphoid organ, hemopoietic tissue, and gills of diseased individuals
(from PO and IM groups); (B, D, F) Lymphoid organ, hemopoietic tissue, and gills of healthy individuals (from CPO and CIM groups). White arrows show
the eosinophilic inclusions and black arrows show the karyopyknotic nuclei. Bar, 20 mm (A–F).
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vannamei infected with DIV1 exhibit an evident reddish body (Qiu

et al., 2017; Qiu et al., 2021; Guo et al., 2022). The clinical sign of

reddish body have been reported in many cases of shrimp disease in

China and other Asian countries, but the earlier etiology is thought to

be mainly due to infection with V. parahaemolyticus or WSSV

(Huang et al., 1995; Alapide-Tendencia and Dureza, 1997; Liu et al.,

1999; Fan et al., 2006; Jayasree et al., 2006; Zheng et al., 2011; Felix

et al., 2011; Cao et al., 2014). The clinical sign of reddish body is a

general sign indicating an imbalance in shrimp, but it may be caused

by several pathogens and other uninfectious factors. In addition, the

hepatopancreas and digestive tract of the infected P. japonicus did not

show significant abnormalities compared with the healthy individuals

in appearance and dissection. It is worth noting that the lymphoid

organ of infected P. japonicus showed a swollen and whitish

appearance, which could be clearly observed in front of the

hepatopancreas in the central longitudinal dissection of the shrimp.

Therefore, like the ‘white head’ of M. rosenbergii, the swollen and

whitish lymphoid organs of P. japonicus may also be regarded as the

typical symptom of iDIV1, which can be used to assist the clinical

diagnosis. Unlike prawns, species such as crabs or crayfish infected

with DIV1 cannot easily observe signs in their internal organs from

the outside due to their thick and opaque carapace (Xu et al., 2017;

Qiu et al., 2019a).

At the histopathological level, unique characteristics of

karyopyknosis and eosinophilic inclusions and minute basophilic

stains were combined in lymphoid organs, hematopoietic tissues,

and gills of diseased P. japonicus, which was additionally confirmed

by the ISDL blue signals at the same site in these tissues. In contrast to

hematopoietic tissues and gills, lymphoid organs indicate disorder of
Frontiers in Marine Science 07
the lymphoid tubule matrix followed by aberrant morphology of the

nucleus plus the presence of karyorrhectic and pyknotic nuclei, and

such lesions are more easily observed at low magnification. These

lesions in lymphoid organs have also been reported previously and

can be used as a preliminary marker to speed up screening for DIV1

infections (Sanguanrut et al., 2021). The eosinophilic inclusions were

also present in cytoplasm in hemocytes, the cells of hematopoietic

tissues and lymphoid organs of DIV1-infected shrimp, crayfish and

crabs (Qiu et al., 2019a; Qiu et al., 2021; Qiu et al., 2022), which is very

similar to some reported cases caused by the putative iridovirus in

penaeid shrimp Protrachypene precipua (Lightner and Redman,

1993). The karyopyknosis is similar to some fish cases caused by

grouper sleepy disease iridovirus (GSDIV) (Mahardika et al., 2004)

and iridovirus in African lampeye and dwarf gourami (Sudthongkong

et al., 2002). For ISDL results, in addition to lymphoid organs,

hemopoietic tissues, and gills, DIV1 positive signals were also

detected in epithelial tissues, hepatopancreas tubules, and muscle,

but the signals in these three tissues were more concentrated in the

nucleus. However, upon closer inspection, no obvious abnormalities

were found in any of the three tissues. Therefore, for penaeid shrimp

samples, lymphoid organs and hematopoietic tissues are the most

suitable tissues for the pathological diagnosis of iDIV1. Sanguanrut

et al. (2021) reported that a preliminary diagnosis could be made

through lymphoid organs, and a further comprehensive diagnosis

could be made combined with hematopoietic tissues. From TEM, the

agminate or dispersive DIV1 virions were observed in lymphoid

organs, the nervous tissue, the stomach, and hemocytes of gills and

the heart of diseased P. japonicus. In addition, the virogenic stroma

and the process of nucleocapsid formation could be observed in the
FIGURE 4

In situ DIG-labeling loop-mediated isothermal amplification targeting DIV1 on histological sections of P. japonicus. Lymphoid organ, hemopoietic tissue,
gills, epithelial tissue, hepatopancreas, and muscle of DIV1 infected individuals (from PO and IM groups) (A, C, E, G, I, K); Lymphoid organ, hemopoietic
tissue, gills, epithelial tissue, hepatopancreas, and muscle of healthy individuals (from CPO and CIM groups) (B, D, F, H, J, L). Bar, 20 mm (A–C, G–J); 10
mm (D); 50 mm (E, K, L); 100 mm (F).
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cytoplasm. Xu et al., (2016) also observed clearly icosahedral DIV1

particles in the cytoplasm of hematopoietic tissue cells of diseased C.

quadricarinatus by TEM (Xu et al., 2016; Qiu et al., 2017; Qiu et al.,

2019a; Qiu et al., 2021; Qiu et al., 2022). In this study, hematopoietic

tissues of prawn individuals were difficult to be identified by naked

eye, so hematopoietic tissues could not be obtained during TEM

sampling. In TEM observation of target tissue of P. vannamei, M.

rosenbergii and Po. tritomatus, virion formation took place in the

cytoplasmic morphologically distinct regions, termed virogenic
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stromata and the assembly of nucleocapsid can be observed, which

was consistent with the results in this paper (Qiu et al., 2017; Qiu

et al., 2019a; Qiu et al., 2022). Notably, some dispersive DIV1 particles

were also observed in neural tissues, but virus replication and

assembly were not observed. In terms of lymphoid organs,

histopathological observation showed disorganization of the

lymphoid tubule matrix accompanied by abnormal morphology of

the nuclei plus the presence of karyorrhectic and pyknotic nuclei after

DIV1 infection, while TEM also showed a large number of viruses in
FIGURE 5

TEM of tissues of diseased P. japonicus (from PO and IM groups). (A, B) lymphoid organ; (C) nervous tissue; (D–F) gills; (G, H) heart; (I) stomach. (A, B),
and (F) show the paracrystalline arrays of mature virions; H show the assembling virions. Bar: 5 µm (A, G); 1 µm (B, D, F, H, I); 500 nm (C, E).
TABLE 2 DIV1 detection results of 153 Penaeus japonicus samples in some coastal provinces of China.

Province Positive
(MCP)1 Positive (ATPase)2 MCP & ATPase positive/Total Samples3

Hainan 1/10 1/10 0/10 (0)

Zhejiang 11/40 4/40 4/40 (10%)

Shandong 11/69 1/69 0/69 (0)

Guangdong 2/14 0/14 0/14 (0)

Fujian 0/20 0/20 0/20 (0)

Total 25/153 (16.3%) 6/153 (3.9%) 4/153 (2.6%)
The denominator in a fraction of results indicates the total number of samples, while the numerator indicates the positive samples. 1. Real-time PCR targeting the fragment of DIV1-MCP (Qiu et al.,
2020); 2. Real-time PCR targeting the fragment of DIV1-ATPase (Qiu et al., 2018a); 3. A sample tested positive by both two methods targeting MCP and ATPase genes.
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and out of lymphoid organ cells and a large number of abnormal cells,

which also explained the swollen and whitish appearance of lymphoid

organs from the histopathological and cytopathological levels.

China’s targeted surveillance showed that DIV1 was detected in

farmed P. japonicus samples in 2017 and 2018, and the positive rate was

7.7% (1/13 in samples) in both years (Qiu et al., 2018b; Qiu et al., 2019b).

Ren et al. (2022) showed that the positive rate of DIV1 in cultured P.

japonicus collected from Liaoning Province of China in 2020 was 5.3% (9/

157 in samples). In this study, DIV1 test results of epidemiological P.

japonicus samples from five provinces in 2022 showed that a total of 4

samples were DIV1 (MCP & ATPase) positive, with a total positive rate of

2.6% (4/153 in samples). According to the above test results of collected

samples, the positive rate of DIV1 in the farmed P. japonicus samples was

relatively low. However, considering that the above surveys are active

surveillance and the samples with disease onset are not investigated, the

prevalence of DIV1 in the farmed P. japonicus cannot be ignored. In the

present study, considering 17 batches of cultured samples investigated were

all healthy asymptomatic shrimp, to improve the accuracy of detection, two

published real-time PCR assays (Qiu et al., 2018a; Qiu et al., 2020) targeting

two different genes (MCP and ATPase) were selected to detect DIV1.

Samples were judged to be DIV1 (MCP & ATPase) positive only if both

assays were positive. The results of the two methods were significantly

different, which showed that the positive rate of the real-time PCRmethod

for the MCP gene was significantly higher than that of the method for

ATPase. Since the P. japonicus samples collected in this paper were all

healthy and asymptomatic prawns, the DIV1 in the samples may be in a

state of low load carrying rather than infection. Therefore, the difference in

sensitivity and the instability in the detection of low-load samples may be

the main reason for the different detection results of the two real-time PCR

methods. Besides, the above results suggest that at least two gene fragments

of DIV1 genome should be detected in the monitoring investigation of

healthy samples, and only when two DIV1 gene fragments are detected

positive can a positive result be given. In the Aquatic Manual of WOAH,

the definition of confirmed case of pathogens such as WSSV and IHHNV

is based on the detection of two gene fragments of pathogens at the same

time (WOAH, 2021). Since theWOAHmanual of iDIV1 has not yet been

formulated, such double gene detection criteria should also be used in the

identification of confirmed cases.

Similar to the results of surveillance surveys in previous reports

(Qiu et al., 2018b; Qiu et al., 2019b; Ren et al., 2022), the detection rate

of DIV1 in cultivated P. japonicus samples investigated in this paper

was also relatively low. However, since these surveys did not fully

cover the breeding ponds with clinical signs, and P. japonicus has also

been confirmed to be susceptible hosts of DIV1, which can be infected

through natural ingestion, therefore, the potential threat of DIV1 to P.

japonicus aquaculture should raise alarm.
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