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It is significant for port ship scheduling and traffic management to be able to

obtain more precise location and shape information from ship instance

segmentation in SAR pictures. Instance segmentation is more challenging than

object identification and semantic segmentation in high-resolution RS images.

Predicting class labels and pixel-wise instancemasks is the goal of this technique,

which is used to locate instances in images. Despite this, there are now just a few

methods available for instance segmentation in high-resolution RS data, where a

remote-sensing image’s complex backgroundmakes the task more difficult. This

research proposes a unique method for YOLOv7 to improve HR-RS image

segmentation one-stage detection. First, we redesigned the structure of the

one-stage fast detection network to adapt to the task of ship target

segmentation and effectively improve the efficiency of instance segmentation.

Secondly, we improve the backbone network structure by adding two feature

optimization modules, so that the network can learn more features and have

stronger robustness. In addition, we further modify the network feature fusion

structure, improve the module acceptance domain to increase the prediction

ability of multi-scale targets, and effectively reduce the amount of model

calculation. Finally, we carried out extensive validation experiments on the

sample segmentation datasets HRSID and SSDD. The experimental

comparisons and analyses on the HRSID and SSDD datasets show that our

model enhances the predicted instance mask accuracy, enhancing the instance

segmentation efficiency of HR-RS images, and encouraging further

enhancements in the projected instance mask accuracy. The suggested model

is a more precise and efficient segmentation in HR-RS imaging as compared to

existing approaches.

KEYWORDS

computer vision, object detection, instance segmentation, HR-RS, YOLOv7, SSDD,
HRSID, SAR Complex background images
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1 Introduction

SAR is a microwave imaging sensor built on electromagnetic

wave scattering properties that may be used in all weather

conditions and has some ability to penetrate clouds and the

ground. With the ongoing exploitation of maritime resources as

well as the increased attention being paid to the monitoring of

marine ships, it has special benefits in marine monitoring, mapping,

the military, and all of these fields(Li et al., 2022; Liu et al., 2022;

Kong et al., 2023; Yasir et al., 2023a; Yasir et al., 2023b). SAR ship

detection technique is therefore very important for protecting

marine ecosystems, maritime law enforcement, and territorial sea

security. Ocean ship monitoring has received a lot of attention

(Zhang et al., 2020b; Chen et al., 2021; Xu et al., 2022a; Zhang et al.,

2023). Synthetic aperture radar (SAR) is more suited for monitoring

ocean ships than optical sensors (Zeng et al., 2021; Zhang and

Zhang, 2021a; Xu et al., 2022b; Zhang and Zhang, 2022c) because of

its ability to operate in all weather conditions (Zhang and Zhang,

2021b). Ship monitoring is a key maritime task that is crucial for

ocean surveillance, national defense security, fisheries management,

etc. identification Ship in the SAR picture is a significant area of

remote sensing research because it relies on target detection

technology, which is in high demand (Wang et al., 2018; Chang

et al., 2019; Qian et al., 2020; Su et al., 2022). Ship identification in

satellite RS pictures has grown in importance as a research area

recently (Nie et al., 2020). The marine transportation sector is now

developing extremely quickly. The number of maritime infractions

has increased as a result of the quick expansion in ship numbers and

shipping volume. Automated ship identification plays an

increasingly essential role in maritime surveillance, monitoring,

and traffic supervision as well as in the regulation of illegal fishing

and freight transit. It can assist in gathering information about ship

dispersion. HR-RS pictures are given by a variety of airborne and

spaceborne sensors, including Gaofen-3, TerraSAR-X,

RADARSAT-2, Ziyuan-3, Sentinel-1, Gaofen-2, and unmanned

aerial vehicles (UAV), owing to the quick development of

imaging technology in the domain of RS. These HR pictures are

being used in the military and the domains of the national economy,

such as traffic control, marine management, urban monitoring, and

ocean surveillance (Mou and Zhu, 2018; Cui et al., 2019; Su et al.,

2019; Sun et al., 2021b). The HR RS pictures are especially well

suited for object identification and segmentation in areas like

military precision strikes and maritime transportation safety (Su

et al., 2019; Wang et al., 2019; Zhang et al., 2020a). Instance

segmentation, which may be characterized as a technology that

addresses both the issue of object identification and semantic

segmentation, has emerged as a significant, sophisticated, and

challenging area of research in machine vision. Parallel to

semantic segmentation, it has both pixel-level classification and

object identification properties, where dissimilar instances must be

located even if they belong to the same type (Xu et al., 2021). Since

the two-stage object identification algorithm’s introduction, other

convolutional neural network-based object detection and

segmentation methods have appeared, including the R-CNN,

Faster R-CNN (Ren et al., 2015), andMask R-CNN (He et al., 2017).
Frontiers in Marine Science 02
Deep learning innovation demonstrates inspiring outcomes

recently in several fields, including object identification (Zhang

et al., 2019a; Zhang et al., 2020c; Zhang et al., 2021a), image

classification (Liu et al., 2021b; Zhou et al., 2022a; Zhou et al.,

2022b), Segmentation (Liu et al., 2021b; Zhou et al., 2021; Zong and

Wan, 2022; Zong and Wang, 2022), and so on (Zhou et al., 2019; Liu

et al., 2021a; Wu et al., 2022; Yin et al., 2022; Zhu and Zhao, 2022).

Recently, despite the existence of many excellent algorithms, like the

path aggregation network (Liu et al., 2018), Mask Score R-CNN

(Wang et al., 2020a), Cascade Mask R-CNN (Dai et al., 2016), and

segmenting objects by locations (Wang et al., 2020b) and so on (Zhang

and Zhang, 2019; Zhang et al., 2019b; Zhang et al., 2021b; Shao et al.,

2022; Zhang and Zhang, 2022a; Zhang and Zhang, 2022b; Zhang and

Zhang, 2022c; Zhang and Zhang, 2022d), common issues, such as

erroneous segmentation edges and the development of global

relations, still exist. The extension of the model will lead to

dimensional disasters if the long-range dependencies are represented

by dilated convolution or by expanding the number of channels.

YOLOv7 serves as the basic foundational framework for the

development of a framework model for RS picture object

identification and instance segmentation in order to get over CNNs’

limitations in terms of their capacity to extract spatial information.

Detecting and segmenting ships in SAR images is difficult because of

the complexity and variety of the images themselves, which include

speckle noise, shadows, and cluttered backgrounds. These elements

make it challenging to reliably identify ships among other objects in

the image and to define the ship’s boundaries.

In addition, different from moving targets such as aircraft and

vehicles, ship targets often dock side by side near the port, so it is

difficult for general detection methods to accurately distinguish each

target, resulting in a large number of missing targets. Meanwhile, Ship

case segmentation can not only accurately obtain the position of the

object, but also effectively achieve the shape information of the target,

which can further promote the research of SAR ship recognition.

However, at present, a large number of studies only focus on the SAR

ship targets detection and do not further achieve the target-level

instance segmentation. It is specifically affected by the following

factors, (1) the complexity of the instance segmentation model is

high, often reaching hundreds of megabytes, which is difficult to be

applied. (2) The running efficiency of the instance segmentation

algorithm is relatively low, and the initial training of the model takes

a long time. (3) There is not enough sample data to train the model,

which makes the performance of existing deep learning methods

insufficient. In our study, we utilized various data augmentation

techniques, such as random flipping, rotation, and scaling, to

generate additional samples from the limited dataset. These

techniques effectively increase the diversity of the training samples

and help prevent overfitting.

To overcome this problem, we propose an improved version of

the YOLOv7 object detection algorithm that incorporates an

ELAN-Net backbone and feature pyramid network (FPN) to

boost the model’s capability to extract relevant features from SAR

images in complex backgrounds. Our suggested algorithm achieves

state-of-the-art effectiveness on two benchmark datasets,

demonstrating its effectiveness in addressing the research problem
frontiersin.org
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of accurate ship identification and segmentation in complex SAR

pictures. The main contributions in this paper are outlined in the

following order:

L An upgraded YOLOv7 model has been proposed for instance

segmentation ship detection.

L An effective feature extraction module has been developed

and added to the improved backbone network, enhancing the

network’s focus on target features and making the process of

feature extraction more efficient.

L The feature pyramid module is optimized with feature fusion

to increase the accuracy of multi-scale target segmentation and

further improve the speed of image processing to boost the

identification and segmentation performance of the network for

multi-scale ship targets.

L Two ship datasets, an SSDD dataset, and an HRSID dataset

are used to evaluate the efficiency of the suggested technique. To test

the model’s robustness, two ship datasets are run (which contain

images with different scales, resolutions, and scenes).

The paper is structured as follows: Part 2 explains the materials

and experimental setup and demonstrates how the study acts as an

organizing foundation for the remaining portions of the research.

Part 3 provides a description of the research project’s results and

analyses. It has also shown the model’s potential by comparing it

with other innovatively made versions. The ablation study is

described in Section 4, and Section 5 concludes the paper.
2 Related work

2.1 Deep learning-based
instance segmentation

Instance segmentation in SAR photos has the advantage of

combining semantic segmentation with object identification. Using

semantic segmentation, each pixel of the input picture is separated

into logical groups according to where the ship targets are located. It

offers a better description and perception of the ship targets because

of the more complex interpretation technique. As the first attempt

at segmenting CNN, Mask R-CNN (Lin et al., 2017b) adds a mask

branch that is analogous to the classification and regression branch

in Faster R-CNN in order to forecast the segmentation mask for

each region of interest (RoI). Mask Scoring R-CNN (Wang et al.,

2020a) utilizes the product of the classification score and the IoU

score of the mask to construct the mask score in order to increase

the quality of an instance. Cascade Mask R-CNN is created by

combining Mask R-CNN and Cascade R-CNN (Chen et al., 2019b).

Each cascade framework adds a mask branch to complete the

instance segmentation task, combining the best features of the

two approaches. In order to improve identification accuracy,

Hybrid Task Cascade (Chen et al., 2019b) proposes integrating

the concurrent structures of identification and segmentation, which

leverage semantic segmentation branches to build a spatial context

for the bounding box. In recent years, a number of one-stage

algorithms, notably YOLACT (Bolya et al., 2019) and SOLO

(Wang et al., 2020b), have appeared that correspond to object

identification methods. In addition, a few approaches such as
Frontiers in Marine Science 03
BlendMask (Chen et al., 2020) and PolarMask (Xie et al., 2020)

are built on an item identification network without anchors. Due to

their speed benefits, these one-stage techniques are frequently

utilized in the domain of autonomous vehicle operation and facial

detection. However, in some complex ship identification tasks, the

identification technique can only assess a ship’s length and contour

when they are important details for the particular type of ship.

Improvements to the current algorithms for segmenting SAR

images by an instance are not currently being made in a

substantial way. The HRSID (Lin et al., 2017a) dataset was

recently created for the segmentation of ship instances in

SAR images.
2.2 SAR images-based ship detection

SAR can continually monitor the planet, in contrast to optical

sensors, which are inoperable at night. Because SAR images do not

contain information about color, texture, shape, or other aspects,

they show ships differently than optical images do. Furthermore, the

SAR image has a lot of noise; as a result, identifying SAR images

might be difficult for researchers without the appropriate skills.

Because there is a dearth of data on tagged SAR ships as an

outcome, it is more challenging to identify ships from SAR

images. In order to find ships in SAR images, several deep-

learning techniques have been used (Sun et al., 2021a; Liu et al.,

2022; Sun et al., 2022; Yasir et al., 2022). (Fan et al. 2019b)

implemented a multi-level features extractor into the Faster R-

CNN for polarimetric SAR ship identification. A dense attention

pyramid network was created to identify SAR ships by densely

connecting each feature map to the attention convolutional module

(Cui et al., 2019). For pixel-by-pixel ship identification in

polarimetric SAR photos, a fully convolutional network has been

created (Fan et al., 2019a). The feature pyramid structure contained

a split convolution block and an embedded spatial attention block

(Gao et al., 2019). Against a complex background, the feature

pyramid structure can identify ship items with accuracy. Wei

et al. (Wei et al., 2020) created a high-resolution feature pyramid

structure for ship recognition that combined high-to-low-

resolution features. The challenge of ships of various sizes and

crowded berthings has been addressed by the development of a

multi-scale adaptive recalibration structure (Chen et al., 2019a). A

one-stage SAR target identification approach was suggested by Hou

et al. (Hou et al., 2019) to address the low confidence of candidates

and false positives. (Kang et al. 2017) proposed a method

integrating CFAR with faster R-CNN. The object proposals

produced by the faster R-CNN used in this method for extracting

small objects served as the protective window of the CFAR. Zou

et al. (Zou et al., 2020) integrated YOLOv3 with a generative

adversarial network with a multi-scale loss term to increase the

accuracy of SAR ship recognition. In order to identify and recognize

ships in complex-scene SAR images, Xiong et al. (Xiong et al., 2022)

suggested a lightweight model that integrated several attention

mechanisms into the YOLOv5-n lightweight model.

Results from using CNN methods to identify ships in SAR

imagery are impressive. However, there are still two significant
frontiersin.org
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areas of work that need to be addressed. One of these involves

methodically combining the most recent advancements in

computer vision to connect optical and SAR images. The other

seeks to broaden the use of ship identification to further

applications, such as instance segmentation. The two SAR image

components were combined as part of this study to enhance the

images’ suitability for RS applications, which is another goal of

the investigation.
3 Proposed improved methodology

3.1 Overall structure of our model

In addition to classifying and locating the object of interest in

an image, instance segmentation also labels each pixel that is a

component of the particular object instance. It enhances the

identification process by associating the bounding box and mask

with the object. As a result, instance segmentation will help us

identify ships more accurately and will also help us deal with

crowded sceneries and detect partially occluded ships. Semantic

segmentation-based bottom-up and identification-based top-down

techniques have been the main focus of case segmentation research

for a very long time. The majority of CNN-based models and their

derivation models, including RCNN, have been used for computer

vision tasks such as object identification, tracking, segmentation,

and classification. Faster RCNN (Chen et al., 1993) is improved by a

cutting-edge technique known as Mask RCNN (He et al., 2017),

which also does instance segmentation using region proposals.

Additionally, it locates every instance of the target object down to

the pixel level in an image.

YOLO is a single-stage object detector that can forecast a

particular object in each area of the feature maps without the aid

of the cascaded location classification stage. YOLO categorizes and

locates the object using bounding boxes and a particular

Convolution Neural Networks (CNN) network. It splits the image

into an S×S; S ∈ Z+ grid and identifies an object as a grid cell if its
Frontiers in Marine Science 04
focal point crosses one. A one-stage detection method called YOLO

may recognize objects instantly and is very quick (Redmon et al.,

2016). The YOLOV7 algorithm, which is now the most

sophisticated in the YOLO series, balances the conflict between

the quantity of parameters, the amount of calculation, and the

performance. It also outperforms earlier iterations of the YOLO

series in terms of accuracy and speed. In this paper, we used the

improved Yolov7 for segmentation ship detection, and Figure 1

illustrates the outline of the method recommended in the research.

The 1024x1024 SAR images are concurrently supplied to the

network feature extraction at the input end, as shown in Figure 1. In

order to successfully manage the framework training, the proper

ship target labeling must be delivered. The entire deep framework is

divided into three sections: the backbone structure, which is

primarily used to extract features from the input picture; the

feature pyramid, which is used to scale the extracted features and

strengthen the expression of the target feature; and the network

prediction layer, which predicts the target at three scales. Finally,

post-processing techniques like maximum value suppression

(NMS) are used to acquire the results of the identification output.
3.2 Improved backbone networks

The two new modules that are added to the backbone structure

in this research are as follows: SiLu function is used by the MP-

Conv module, the E-ELAN module, and its activation function. The

SiLU activation function used by the MP-Conv module is known to

be more computationally efficient and effective than the traditional

ReLU activation function. By incorporating the SiLU function, the

MP-Conv module can better capture relevant features from SAR

images, leading to improved object detection performance.

Meanwhile, The MP-Conv module adopts the way of double-

branch fusion to carry out super downsampling of convolution

blocks, which on the one hand improves the operational efficiency

of target feature extraction, on the other hand, it can fuse and

enhance target feature expression. The E-ELAN module is designed
FIGURE 1

The overall structure of the proposed ship detection and segmentation model. E-ELAN, MP-Conv, Cat-Conv, and SPPSPC are some improved
modules.
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to boost the capability of the algorithm to retrieve spatial

information from the SAR image. This is achieved by

incorporating an attention mechanism that selectively weighs the

feature maps based on their relevance to the final prediction. By

selectively weighing the feature maps, the E-ELAN module can help

the model focus on the most relevant information, leading to

improved detection and segmentation performance. In addition,

the E-ELAN module can stack more blocks by considering the

shortest gradient path, so as to enhance the feature extraction

capability of the network without significantly increasing the

complexity of the model.

The E-ELANmodule is an effective network structure, as shown

in Figure 2A, that enables the network to learn more features and

has stronger robustness by managing the shortest and longest

gradient routes. The ELAN module has two branches specifically:

The first branch involves using a 1x1 convolution to adjust the

number of channels. The second branch, which is more difficult,

first passes through a 1x1 convolution module to alter the number

of channels. Then, run four 3x3 convolution modules to

extract features.

The reason for selecting the fourth B-Conv as the branch for

channel concatenating in Figure 2 is that we conducted extensive

experiments and found that this branch provides the best

performance for ship detection. Specifically, we found that by

selecting the fourth B-Conv branch, the network can effectively

capture features at different scales and resolutions, which is critical

for accurate ship instance segmentation detection in complex

background SAR images.

Two branches of the MP-Conv (Max-Pooling Convolution)

module, as seen in Figure 2B, are employed for downsampling. A

Max-pool, or maximal pooling, is used on the first branch. The

result of maximizing is downsampling and a 1x1 convolution to

change the number of layers. The second branch initially performs a

1x1 convolution to change the number of layers before passing

through a convolution block with a 3x3 convolution kernel and a 2

stride. Downsampling is another application for this convolution

block. In the end, the two branches’ results are combined, the
Frontiers in Marine Science 05
number of layers equals the number of input layers, but the spatial

resolution is decreased by a factor of 2.

In summary, the proposed model structure is designed to

enhance the model’s ability to extract relevant features from SAR

images and to incorporate spatial information through the attention

mechanism. These improvements contribute to improved object

detection and segmentation performance, as demonstrated in

our experiments.
3.3 Improved neck networks

Figure 3 displays the detailed structures of two enhanced

modules in the neck network. Figure 3A illustrates how similar

the Cat-conv module is to the E-ELAN (Encoder Enhanced Layer

Aggregation Network) module, with the exception that it chooses a

different number of outputs for the second branch. Three outputs

are chosen by the E-ELAN module for final addition, and five

channels are chosen by the Cat-conv module for contact. The Cat-

conv structure utilized in this article can assist the entire pyramid

framework in aggregating multi-scale features, increasing the multi-

scale representation of ship targets, which have remarkable multi-

scale features in SAR images.

In order to increase the receptive field more efficiently and

further promote the algorithm to adapt to different resolution

images, we optimize to design of the SPPSPC (Spatial Pyramid

Pooling with Spatial Pyramid Convolution) module to replace the

original SPP module. As seen in Figure 3B, the first branch has four

branches following the Max-pool operation. Through maximal

pooling, it obtains various receptive fields. These four distinct

branches signify the network’s ability to process a variety of

objects. That is to say, it has four receptive fields for each of its

four separate scales of maximum pooling, which are utilized to

differentiate between large and small targets. In this way, the

SPPSPC module designed in this paper combines and optimizes

the feature reorganization, which can effectively increase the

accuracy of the algorithm while greatly reducing the amount of
B

A

FIGURE 2

The detailed structures of two improved modules in the backbone network. (A) The E-ELAN module. (B) The MP-Conv module. “Conv” means the
ordinary convolution-2D layer, “BN” means the batch normalization layer, “Max-Pooling” means the max pooling-2D layer; “k” is the kernel size, and
“s” is the sliding step.
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computation. The loss function used in our proposed network is a

combination of three loss functions: the localization loss, the

confidence loss, and the segmentation loss. The localization loss

measures the difference between the predicted bounding box and

the ground truth bounding box. The confidence loss measures the

objectness score and the background score. Finally, the

segmentation loss measures the pixel-wise difference between the

predicted mask and the ground truth mask. The overall loss

function is a weighted sum of these three loss functions, and it is

optimized using the stochastic gradient descent (SGD) algorithm.
4 Experimental result and discussions

4.1 Dataset overview

4.1.1 HRSID dataset
The High-Resolution SAR Images Dataset for Ship Detection

and Instance Segmentation (HRSID) provided by Wei et al. (Lin

et al., 2017b) is made up of images from 99 Sentinel-1B imageries,

36 TerraSAR-X, and 1 TanDEM-X imagery. The resolutions of the

800 x 800-pixel images, which contain 16951 ships and 5604 sliced

SAR images, range from 1 to 15 meters.
4.1.2 SSDD dataset

The first and most important stage in applying deep learning

algorithms to recognize ships is the construction of a substantial

and comprehensive dataset. As a result, the experiment makes use

of the SSDD (Li et al., 2017) dataset, which contains 1160 SAR
Frontiers in Marine Science 06
pictures from Sentinel-1 TerraSAR-X, and RadarSat-2 with

resolutions ranging from 1m to 15m and polarizations in HV,

HH, VH, and VV (Table 1). Scenes of offshore ships and inshore

ships are both present in the collection as background elements.
4.2 Implementation setting

The experiments are all run on an Intel Core i9-9900KF CPU

and an NVIDIA Geforce GTX 2080Ti GPU utilizing CUDA 10.1

CUDNN 7.6.5 and PyTorch 1.7.0. In each experiment, the initial

learning rate is set to 0.01, the final one-cycle learning rate is set to

0.001, the momentum is set to 0.937, the optimizer weight decay is

set to 0.0005, and the ship detection confidence is set to 0.7. We use

the Stochastic Gradient Descent (SGD) algorithm for learning

optimization. The ship instance segmentation task in this research

also requires labeling the object instance as supervision information

and sending it to the suggested deep learning framework for

learning optimization, unlike the general detection task. In order

to more thoroughly assess the proposed model, we separated the

entire training set into the test set and the training set in a 7:3 ratio.

We then compared the detection results with the true value

annotation to assess how well the algorithm performed.
4.3 Evaluation metrics

The traditional methods for quantitatively and thoroughly

assessing the effectiveness of object detectors are the estimate

metrics precision (p), recall (r), intersection of union (IoU), and

average precision (AP) (Everingham et al., 2010). The expert
TABLE 1 Information about the SAR imageries in detail for construction.

Dataset Image (num) Size (Pixel) Satellite Resolution (m)

HRSID (Lin et al., 2017b) 5604 800 x 800 Sentinel-1B/TerraSAR-X /TanDEM-X 1-15

SSDD (Li et al., 2017) 1160 800 x 800 RadarSat-2/TerraSAR-X/Sentinel-1 1-15
The first two SAR image examples in Figure 4 show offshore ships, whereas the last two in the row, respectively, show ships docking in ports and large ships and show the cluster-distributed tiny
ships in the canal.
BA

FIGURE 3

The detailed structures of two improved modules in the neck network. (A) The Cat-Conv module. (B) The SPPSPC module. “Conv” means the
ordinary convolution-2D layer, “BN” means the batch normalization layer, “Max-Pooling” means the max pooling-2D layer; “k” is the kernel size, and
“s” is the sliding step.
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annotation of the object’s geographic coordinates is referred to as

the ground truth in supervised learning for object identification and

instance segmentation. The percentage of overlap between the

expected outcome and the actual result serves as a proxy for the

correlation between two variables; a higher level of overlap denotes

a stronger connection and a more precise prediction. Eq (1) states

that the bounding box IoU is determined by the percent of overlap

between the predicted bounding box and the ground truth

bounding box.

The efficiency of various techniques is evaluated using a number

of recognized indicators, such as AP, r, p, and IoU, and these

indications are particularly specified in the following Eq (1–5) since

SAR photo object identification tasks are comparable:

IoUbbox =
Bboxp ∩ Bboxg
Bboxp ∪ Bboxg

(1)

In object identification tasks, AP is a frequently used indicator

that compares the proportion of properly recognized items to the

total number of objects in the picture. Another often-used metric is

r, which compares the fraction of successfully recognized items to

the total number of objects in the picture. It is determined as the

ratio of true positives (items that have been accurately identified) to

the sum of true positives and false negatives (objects that were

present in the image but not detected).

p is an indicator that calculates the proportion of successfully

detected items concerning the total number of detected objects in

the picture. It is calculated by dividing the number of true positives

by the total number of true positives and false positives. IoU

(Intersection over Union) is an indicator that calculates the ratio

of the intersection of two bounding boxes to the union of two

bounding boxes to determine the similarity between two bounding

boxes (Bbox p and Bbox g). These indicators (AP, r, p, IoU) are

extensively employed in the domain of SAR picture object

identification to evaluate and compare the efficacy of

various methodologies.
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The rate of overlap between the ground mask and predicted

mask, as shown in equation (2), determines the mask IoU in a

manner similar to how segmentation precision is calculated.

IoUmask =
Maskp ∩ Maskg
Maskp ∪ Maskg

(2)

The IoU may also be used to assess segmentation tasks such as

object recognition in SAR images. The IoU is determined using

equation (2), which is comparable to the calculation for IoU of

bounding boxes that has been previously described. The IoU mask

is the ratio of the predicted mask (Mask p) and the ground truth

mask (Mask g) intersection to the union of the two masks. IoU is

also known as the Jaccard Index in the context of image

segmentation, which is a standard statistic for evaluating the

performance of image segmentation algorithms. A high IoU score

implies that the predicted mask and the ground truth mask have a

high degree of overlap, indicating that the model is accurate.

During classification, algorithms may incorrectly recognize the

surroundings and the objects. True Positives (TP), True Negatives

(TN), False Positives (FP) and False Negatives (FN) are the four

categorization findings, where TP stands for the number of

successfully categorized positive samples, TN for correctly classed

negative samples, FN for correctly classified missed positive

samples, and FP for correctly classified false alarms in the

background. These criteria establish p and r, as shown by

equations (3, 4).

Pr ecision =
TP

TP + FP
(3)

Re call =
TP

TP + FN
(4)

In classification tasks, the four categorization findings are used

to evaluate the algorithm’s performance. Precision and recall, two

often used indicators in classification tasks, are calculated using TN,
B

A

FIGURE 4

Photos are shown from the dataset used in the current paper. (A) some photos from the HRISD dataset and, (B) some photos from SSDD datasets.
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FN, TP, and FP. The equation (3) is used to calculate precision, it

calculates the fraction of correctly identified positive samples to the

total number of positive samples. A high accuracy score suggests

that the algorithm has a low number of false positives, indicating

that it accurately identifies a large majority of positive samples.

The AP is established using recall and precision measurements.

If the horizontal coordinate is the r value and the vertical coordinate

is the precision value, as shown in equation (5), then the area under

the recall-precision curve is the AP value in the Cartesian

coordinate system:

AP =  

Z 1

0
P(R)dR                 (5)

The mathematical average of all categories in a dataset with

multiple classes is defined as the mean AP (mAP). The AP measure

is extensively used to assess the effectiveness of object identification

systems. The area under the recall-precision curve, which is a plot of

recall vs. accuracy, is what it is. According to equation (5), the AP

value in the Cartesian coordinate system is the definite integral of

the accuracy value with respect to the recall value, ranging from 0 to

1. A greater AP value suggests that the algorithm is doing well, as

seen by a larger area under the recall-precision curve.

Mean Average Precision (mAP) is a statistic used to assess the

effectiveness of multi-class object identification systems. It is the

average of all the AP values in a dataset. It provides an overall

measure of the algorithm’s performance across all classes in the

dataset. A greater mAP number implies that the method performs

better across all classes in the dataset.
4.4 Visualization experiment of
proposed algorithm

Due to various incident angles of the radar signal,

environmental conditions, polarization techniques, etc., the
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preprocessing SAR images include clutter noise that interferes

with the feature of ships and prohibits ship identification and

instance segmentation using CNN. Therefore, while building a

SAR dataset for ship identification and instance segmentation,

ships should be totally and precisely labeled as opposed to

creating an optical RS dataset for object recognition and instance

segmentation (Waqas Zamir et al., 2019). In current research work,

we have established an effective and reliable algorithm for building

an HR-RS dataset for CNN-based ship identification and instance

segmentation. Instance segmentation’s impacts on low-resolution

SAR pictures may be limited in order to escape missing annotation

and incorrect annotation brought on by artificial structures that

resemble ships (Wang et al., 2019), which are displayed as

highlighted spots in low-resolution SAR images. High-resolution

remote sensing pictures are utilized to create the dataset, and the

images are sliced into 800 x 800 size segments for optimal function

development, such as multi-scale training.

The results of ship identification instance segmentation for SAR

images using the proposed model are shown in Figures 5, 6. The

ground truth mask results are shown in the first row of the figure,

and the projected instance outcomes are outcomes presented in the

second row. Figures 5, 6 demonstrate how our model’s output is

suitable for our goal of segmenting instances in HR-RS images. As

missed and false alarms increase in our model, instance

segmentation is carried out on the mask branch. Finally, these

synthetic targets can be detected and segmented quite well, and the

segmentation outcomes produced by our model are very close to

reality. With the help of our model, the instance segmentation task

in HR-RS images was completed successfully.
4.5 Ablation studies

We performed ablation experiments to assess the efficacy of

various components in their suggested ship instance segmentation
FIGURE 5

Outcomes of the proposed approach instance segmentation in the HRSID dataset (first row show the ground truth and second row is the predicted
instance outcomes).
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detection model. Table 2 shows the findings of the ablation

research. As the default model, the writers used the YOLOv7

model with an input size of 640x640 pixels. The standard model

had an AP of 57.8, with an AP50 of 83.7 and an AP75 of 69.5. Also

we have added E-ELAN, an edge enhancement module, to the basic

model in the first ablation trial. With the inclusion of E-ELAN, the

AP increased to 59.4, with an AP50 of 89.6 and an AP75 of

71.9.Then we have added MP-Conv, a multi-path convolution

module, to the basic model in the second ablation analysis. The

inclusion of MP-Conv increased the AP to 60.7, with an AP50 of

83.9 and an AP75 of 69.8. Cat-Conv, a channel attention transfer

convolution module, was added to the baseline model in the third

ablation trial. Cat-Conv increased the AP to 62.3, with an AP50 of

83.1 and an AP75 of 68.3. Also we have added SPPSPC, a spatial

pyramid pooling module, and convolution to the baseline model in

the fourth ablation trial. SPPSPC increased the AP to 63.5, with an

AP50 of 87.8 and an AP75 of 73.5. In the last, the authors added all

of the previously stated modules (E-ELAN, MP-Conv, Cat-Conv,

and SPPSPC) to the baseline model in the fifth and concluding

ablation trial. The finished model had the greatest AP of 69.7, as

well as an AP50 of 94.9 and an AP75 of 86.5. The authors

discovered that incorporating all four modules greatly enhanced

the baseline model’s performance, particularly in terms of accuracy
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and recall, showing the efficacy of their suggested model for real-

time ship instance segmentation recognition in complicated

backdrop SAR images.
4.6 Comparison with other state-of-the-
art techniques

Figures 7 and 8 show the qualitative outcomes of our model and

the comparable algorithm on the SSDD and HRSID dataset,

individually, to further validate the efficiency of instance

segmentation and ship identification. Row 1 displays the ground-

truth mask, while rows 2 to 6 display the results of Faster R-CNN,

Cascade R-CNN, Mask R-CNN, and Hybrid Task Cascade,

respectively. When compared to existing instance segmentation

techniques, the results of our improved model can accurately

recognize and separate artificial targets in a variety of scenes, as

shown in row 7. The expected instance masks, in particular,

precisely cover these contrived objectives. As a result of our

model’s nearly complete elimination of false alarms and missed

detections, our mask branch consistently accomplishes superior

instance segmentation. When contrast to bounding box

identification approaches like Faster R-CNN, Mask R-CNN,
TABLE 2 The ablation experiment study.

Model Input size E-ELAN MP-Conv Cat-Conv SPPSPC AP AP50 AP75 APS APM APL

Yolov7 640x640 – – – – 57.8 83.7 69.5 57.3 60.6 24.5

640x640 ✔ – – – 59.4 89.6 71.9 59.1 60.6 39.7

640x640 – ✔ – – 60.7 83.9 69.8 56.9 61.2 30.4

640x640 – – ✔ – 62.3 83.1 68.3 60.7 63.5 47.8

640x640 – – – ✔ 63.5 87.8 73.5 65.5 67.4 45.5

640x640 ✔ ✔ ✔ ✔ 69.7 94.9 86.5 73.4 76.8 58.6
frontier
FIGURE 6

Results of the proposed model’s instance segmentation in the SSDD detection dataset (the first row show the ground truth and the second row
shows the predicted instance outcomes).
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Cascade Mask R-CNN, Hybrid Task Cascade, and Cascade R-CNN,

instance segmentation outcomes are more closely connected to the

shape of the original targets. Additionally, separate instances within

the same category can be distinguished using the instance

segmentation. The ships in Figures 7, 8 stand out because to their

dissimilar colors, and in addition, the suggested model, when

compared to other instance segmentation approaches, has no

false alarms and no missed targets detection while also producing
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better results for mask segmentation. The results from the HRSID

and SSDD dataset show that our technique is appropriate for

instance segmentation in HR-RS photos and outperforms

existing instance segmentation strategies when it comes to

mask segmentation.

To quantitatively assess the achievement of instance

segmentation, we compared the suggested approach with other

cutting-edge approaches on the HRSID and SSDD in Tables 3 and
B

C

D

E

F

G

A

FIGURE 7

Outcomes of CNN-based techniques for visual ship identification instance segmentation using the HRSID dataset. Outcomes from (A) illustrate the
ground truth, (B) the Faster-R-CNN technique, (C) the Cascade R-CNN, (D) the Mask R-CNN, (E) the Cascade Mask R-CNN, (F) the Hybrid Task
Cascade, and (G) the results from our proposed method.
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4. Faster R-CNN, Mask R-CNN, Cascade R-CNN, Cascade Mask R-

CNN, and Hybrid Task Cascade are some of these techniques.

Tables 3 and 4 show that the suggested strategy achieves the

maximum ap of 69.7%. Hybrid Task Cascade and our model

outperform Faster R-CNN, Cascade R-CNN, Mask R-CNN,

Cascade Mask R-CNN, and Cascade R-CNN by 6.3%, 3.2%, 4.5%,

0.8%, and 2.4%, respectively. In summary, the recommended

method has superior instance segmentation effectiveness and

better precise predicted instance masks on the HRSID dataset

compared to other instance segmentation algorithms. The
Frontiers in Marine Science 11
reduced parameter count, and computational expense are due to

the use of the SiLU activation function, which is more

computationally efficient than the traditional ReLU activation

function. Additionally, the E-ELAN module selectively weighs the

feature maps, further reducing the computational expense without

compromising performance. The AP50 score of our model is 94.9%,

which is also 10.2% higher than Faster R-CNN, 9.3% higher than

Cascade R-CNN, 7.4% higher than Mask R-CNN, 8.2% higher than

Cascade Mask R-CNN, and 7.3% higher than Hybrid Task Cascade.

Our model achieves an AP75 score of 86.5%, which is an
B

C

D

E

F

G

A

FIGURE 8

Outcomes of CNN-based techniques for visual ship identification instance segmentation using the SSDD. Results from (A) illustrate the ground truth,
(B) the Faster-R-CNN technique, (C) the Cascade R-CNN, (D) the Mask R-CNN, (E) the Cascade Mask R-CNN, (F) the Hybrid Task Cascade, and
(G) the results from our proposed method.
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improvement of 14.9% over Faster R-CNN, 9.3% over Cascade R-

CNN, 12.5% over Mask R-CNN, 9.7% over Cascade Mask R-CNN,

and 7.2% over Hybrid Task Cascade. Mask segmentation has

proven to be more precise and superior to other state-of-the-art

techniques, such as segmentation utilizing the HRSID dataset. The

efficacy of large medium, and small targets on the HRSID dataset

has also improved, according to APS, APM, and APL.

Table 3 shows that our model achieves a 70.3% AP, which

represents an improvement of 11.7% compared to Faster R-CNN,

9.2% compared to Cascade R-CNN, 13.8% compared to Mask R-

CNN, 10.3% compared to Cascade Mask R-CNN, and 2.5%

compared to Hybrid Task Cascade. In summary, the

recommended model has superior instance segmentation
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effectiveness and more precise predicted instance masks when

compared to previous instance segmentation algorithms on the

SSDD dataset. The AP50 score of our model is also 94.7%, which is

an improvement of 15.7% over Faster R-CNN, 3.3% over Cascade

R-CNN, 4% over Mask R-CNN, 7.7% over Cascade Mask R-CNN,

and 2% over Hybrid Task Cascade. Our model obtains an AP75 of

76.5 percent, which is an improvement of 11% over Faster R-CNN,

9.8% over Cascade R-CNN, 10.8% over Mask R-CNN, 8.8% over

Cascade Mask R-CNN, and 1.6% over Hybrid Task Cascade. It has

been proven that segmentation using the mask will be more

accurate and superior than segmentation using other cutting-edge

techniques, such as segmentation on the SSDD dataset. According

to APL, APM, and APS, the HRSID dataset’s small, medium, and
TABLE 3 Comparing to various cutting-edge methods on the HRSID dataset.

Methods Backbone Time
(ms)

Model
(Size)

AP AP50 AP75 APS APM APL

Faster R-CNN(Ren et al., 2015) ResNet-50
+FPN
ResNet-101
+FPN

52.6
64.2

330M 482M 64.9
63.4

84.6
84.7

71.5
71.6

65.1
65.7

66.2
67.3

17.8
25.3

Cascade R-CNN(Cai and Vasconcelos, 2019) ResNet-50
+FPN
ResNet-101
+FPN

73.9
85.5

552M 704M 67.8
66.5

85.8
85.6

77.6
77.3

68.6
68.2

68.8
69.7

29.9
28.8

Mask R-CNN (He et al., 2017) ResNet-50
+FPN
ResNet-101
+FPN

53.7
62.9

351M 503M 66.8
65.2

87.3
87.5

74.9
74.0

67.9
67.3

67.8
69.3

18.4
24.3

Cascade Mask R-CNN(Cai and Vasconcelos,
2019)

ResNet-50
+FPN
ResNet-101
+FPN

73.0
87.1

615M 768M 68.7
68.9

86.1
86.7

76.6
76.8

69.4
69.8

68.5
70.6

21.5
22.9

Hybrid Task Cascade (Chen et al., 2019b) ResNet-50
+FPN
ResNet-101
+FPN

118.9
134.6

639M 791M 67.1
67.3

88.4
87.6

79.8
79.3

70.3
70.8

72.6
73.6

39.0
32.8

Our Model ELAN-Net 87 403M 69.7 94.9 86.5 73.4 76.8 58.6
front
TABLE 4 Comparing to various cutting-edge methods on the SSDD dataset.

Methods Backbone Time
(ms)

Model
(Size)

AP AP50 AP75 APS APM APL

Faster R-CNN(Ren et al., 2015)
ResNet-50+FPN ResNet-
101+FPN

55.5 66.1 330M 482M
57.5
58.6

78.1
79.0

64.2
65.5

42.8
43.6

57.8
58.1

62.7
61.6

Cascade R-CNN (Cai and Vasconcelos,
2019)

ResNet-50+FPN ResNet-
101+FPN

61.9 70.2 552M 704M
60.7
61.1

90.2
91.4

67.8
66.7

46.4
45.7

61.7
61.4

66.4
61.3

Mask R-CNN (He et al., 2017)
ResNet-50+FPN ResNet-
101+FPN

63.0 72.3 351M 503M
55.3
56.5

91.3
90.7

64.8
65.8

41.8
41.1

55.7
54.4

59.9
60.2

Cascade Mask R-CNN(Cai and
Vasconcelos, 2019)

ResNet-50+FPN ResNet-
101+FPN

85.6 93.8 615M 768M
60.2
59.7

88.5
87.2

66.8
67.7

47.5
46.2

63.5
63.0

66.4
65.7

Hybrid Task Cascade (Chen et al.,
2019b)

ResNet-50+FPN ResNet-
101+FPN

153.2
168.5

639M 791M
68.7
67.8

91.2
92.6

75.5
74.9

52.2
54.6

68.9
67.8

70.5
73.8

Our Model ELAN-Net 96 403M 70.3 94.7 76.5 55.9 70.2 75.1
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large target efficacy has also enhanced. We achieve the similar

achievement as our model on the NWPU VHR-10 dataset under

several AP indicators, and some AP indicators even outperform it.

Tables 3, 4 show how our model performs better with fewer

parameters and less computational expense. The proposed model

incorporates several improvements to the YOLOv7 backbone

architecture, including the addition of an ELAN-Net backbone and

FPN, the SiLU activation function, and the E-ELAN module. These

improvements allow the model to more effectively extract and use

relevant features from SAR images, resulting in improved detection

and segmentation performance. Moreover, the proposed model

achieves this improved performance while using fewer parameters

and less computational expense compared to other modern models, as

shown in Tables 3 and 4. The reduced parameter count and

computational expense are due to the use of the SiLU activation

function, which is more computationally efficient than the traditional

ReLU activation function. Additionally, the E-ELANmodule selectively

weighs the feature maps, further reducing the computational expense

without compromising performance.

Furthermore, with comparable model sizes and levels of

computational complexity, our models outperform the Mask Scoring

R-CNN and Mask R-CNN. Comparing our models to Hybrid Task

Cascade and Cascade Mask R-CNN, we find that our models

outperform them while consuming less processing power and having a

smaller model size. Our network is therefore better than other modern

algorithms in terms of model size and processing complexity.

In order to assess the detectors’ capacities to locate the ship in

complex situations and to test their capacity to deliver adequately

observable results, some complex scenarios are added to the

datasets. The findings demonstrate that complex situations, like

those containing nearby ships and small ships scattered in a cluster,

continue to provide a challenge to detectors. The generated mask

may accurately show the distribution of ships with their concrete

shape pixel-by-pixel with regard to the visual identification

outcomes in instance segmentation, laying the groundwork for

further instance segmentation investigations. As a result, when

compared to other cutting-edge techniques, our model creates

instance masks that are more precise and improves the

performance of instance segmentation in HR-RS images.

The object detection of RS images has been shown to have

problems by CNN. YOLOv7 was actually created as the

fundamental detecting network, whereas the ELAN-Net backbone

network was designed for advancement. The results of our studies

demonstrate that the enhanced algorithm we built would

considerably improve the identification efficiency of small-scale

items in RS pictures and can increase the accuracy of multi-scale

object segmentation. The HRSID and SSDD datasets were used for

our investigation because there are no established, open remote

sensing mask datasets available, and there might only be a few

different varieties. We also need to conduct further research to

improve and advance the model inference speed. However, using

fuzzy preprocessing techniques to images is also necessary because

the processed images are frequently affected by unknown factors

(Versaci et al., 2015). Our next study will focus on solving the

aforementioned issues, and in order to test our new models, we will

first look for and create more RS mask datasets with a wider range
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of object classes. Additionally, we will use more accurate and

representative datasets. The next phase of our research will

involve creating a lightweight framework model that will speed

up inference without sacrificing identification accuracy.

In summary, our proposed model achieves better performance

with fewer parameters and less computational expense by

incorporating several improvements to the YOLOv7 backbone

architecture, and by using the SiLU activation function and the E-

ELAN module to more effectively extract and use relevant features

from SAR pictures.
5 Conclusions

The field of aerospace and remote sensing (RS) domains is

heavily influenced by instance segmentation and object recognition

tasks, which have a wide range of potential applications in various

real-world scenarios. In recent times, the importance of ship

identification in RS satellite images has increased. While most

current algorithms identify ships using rectangular bounding boxes,

they do not segment pixels. As a result, our research offers an

enhanced YOLOv7 one-stage detection technique for ship

segmentation and identification in RS imagery, capable of

accurately recognizing and segmenting ships at the pixel level. We

have redesigned the network structure to adapt to the task of ship

target segmentation and added two feature optimization modules to

the backbone network to increase the robustness of network feature

extraction. In addition, we improved the network feature fusion

structure and enhanced the prediction capability of multi-scale

targets by optimizing the model acceptance domain. Based on the

experimental outcomes on the SSDD and HRSID datasets, our model

demonstrates improved accuracy in predicting instance masks,

promoting the success of instance segmentation in HR-RS imaging

and encouraging further advancements in mask prediction accuracy.

Our proposed method outperforms existing methods for segmenting

ships in remote sensing images, and we plan to extend our research to

the segmentation of objects in drone images. While our proposed

approach has limitations in handling extremely small or crowded

ship instances, we acknowledge this limitation and suggest further

optimization of the network architecture and training strategies.

Additionally, we have not yet explored the potential of other

advanced techniques such as depthwise separable convolution

neural network, balance learning, and attention mechanisms, which

could be interesting directions for future research. In summary, our

proposed approach provides a more precise and effective solution for

ship segmentation and identification in RS imagery, and our future

work will focus on extending the application of our proposed method

to other remote sensing scenarios.
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