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The availability and stoichiometry ratio of nitrogen (N) and phosphorus (P) play vital

roles in plant trophic dynamics and primary production. However, the responses of

these plant traits to varying N and P supplies remain largely unclear for supratidal

wetland herbs. Here, we conducted a 4-year field manipulation experiment in a

supratidal wetland in the Yellow River Delta. The changes in aboveground biomass,

leaf N and P concentrations and N:P ratios of two dominant herbs (Suaeda glauca

and Phragmites australis) were examined at 3 overall nutrient supply levels (low,

medium and high) combined with 3 N:P supply ratios (5:1, 15:1 and 45:1). The

results showed that the leaf trophic dynamics of the two dominant species rely on

the overall supply level as well as on the N:P supply ratio, while the aboveground

biomass of both species was only significantly influenced by the overall supply

level. With the increase in supply level, S. glauca gained an advantage over P.

australis in aboveground biomass competition. The leaf N and P concentrations of

both species raised with the respective increasing nutrient inputs, and N:P

improved with the increasing supply ratio. The leaf stoichiometry of S. glauca

was more strongly influenced by the various N and P supplies than that of P.

australis. Specifically, the gap of nutrient contents between the two species

widened as nutrient availability improved, with the dominance of S. glauca

increasing while that of P. australis decreasing. This species-specific response

may explain the altered aboveground biomass of the two species. Our findings

suggested that changing the N and P supply can potentially influence primary

productivity by changing leaf nutrient status, indirectly affecting the shifts in plant

dominance and community composition in supratidal wetland ecosystems.
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N and P supply, dominant species, aboveground biomass, leaf nutrient stoichiometry,
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1 Introduction

Nitrogen (N) and phosphorus (P) are essential nutrients controlling

plant growth and primary production (Elser et al., 2007; Sardans and

Peñuelas, 2012). In terrestrial ecosystems, the increase in N deposition

due to fossil fuel burning and anthropogenic fertilizer input has not been

paralleled by a proportional increase in P inputs (Venterink and

Güsewell, 2010; Peñuelas et al., 2012), leading to changes in the

ambient N and P supply status from both aspects of overall supply

level and relative supply ratio (Elser et al., 2009; Carnicer et al., 2015).

Normally, plants respond to these changes at metabolic and physiological

levels (Elser et al., 2010; Wang et al., 2018; Chen et al., 2020) and further

alter the elemental composition and growth rate of plants (Sardans and

Peñuelas, 2012). As responses are frequently species-specific (Mayor

et al., 2014), patterns of plant competition and dominant species in the

plant community may be changed (Bobbink et al., 2010).

Plants can optimize nutrient acquisition and conservation strategies

to acclimate to altered nutrient availability and elemental stoichiometry

(Yan et al., 2014; Huang et al., 2018a; Jin et al., 2020). Accordingly, the

concentrations and stoichiometric ratio of N and P in plants are widely

used to reflect the plant nutrient status and nutrient supply of ecosystems

(Sardans and Peñuelas, 2012). Notably, many previous studies have

focused on green leaves (Mayor et al., 2014; Yan et al., 2018; Liu et al.,

2021). Leaf nutrient dynamics are a more reliable indicator of plant

adaptive strategies than total nutrient concentrations (Yang, 2018; Xu

et al., 2021); moreover, their species-specific responses could explain the

changes in community structure (Wan et al., 2020). To date, the effects of

altered absolute nutrient availability on leaf N and P stoichiometry have

been well demonstrated (Lü et al., 2013; Jing et al., 2017; Huang et al.,

2018b). Evidence from grasslands, wetlands, and forests indicates that

enriched N and P availability generally increased the respective nutrient

concentrations in the leaves (Yuan and Chen, 2015), which will in turn

have important feedbacks on productivity (Li et al., 2016; Huang et al.,

2018b). The N:P supply ratio is also perceived as a key factor affecting leaf

nutrient traits, which could influence the trade-offs in the nutrient

allocation of different species and may explain their distinct

performances under competition (Venterink and Güsewell, 2010; Yuan

et al., 2013); however, relatively little attention has been given to it.

Considering that the environmental N and P status had been changed

from both the overall supply level and the supply ratio, it is necessary to

distinguish the respective and interactive effects of the two aspects on the

leaf nutrient status thus to predict future changes in the productivity and

community composition.

Wetlands are experiencing an increase in reactive N and P loadings

globally (Jordan et al., 2011; Wolf et al., 2013; Hu et al., 2017), and the

plant trophic dynamics under the changing external environment have

been extensively studied in wetland ecosystems (Yuan and Chen, 2015).

Nonetheless, the response of plant stoichiometry to varying N and P

supplies, and its role in vegetation community structure shifts, are still

elusive due to different climate, vegetation and soil properties (Yue et al.,

2017; Gao et al., 2018; Wan et al., 2020). Given these uncertainties, more

studies are urgently needed to further reveal the plant ecological

stoichiometry responses to altered nutrient supply conditions

in wetlands.

The Yellow River Delta wetland, the most efficiently conserved

and youngest wetland ecosystem in the warm temperature zone in

China, is regarded as vulnerable to climate change and anthropogenic
Frontiers in Marine Science 02
impacts (Yu et al., 2016). During the last several decades, jointly

influenced by atmospheric deposition and regional economic

development, the region has been undergoing increasing N and P

inputs, which has significant impact on plant communities (Yu et al.,

2014; Li et al., 2017). Generally, the adaptive capacity of plants to

environmental change varies with species evolutionary history, and

may lead a change in interspecific competition, thus shifting the

community composition (Peñuelas et al., 2008; Sardans and Peñuelas,

2014; Sardans et al., 2015). Suaeda glauca and Phragmites australis are

two dominant species in the supratidal wetland of this area but have

received little attention in previous studies. Comparatively, S. glauca

is an annual forb and is restricted to the upland of the Yellow River

Delta (He et al., 2012), while P. australis is a perennial and widespread

wetland grass (Guo et al., 2018). Although our previous study based

on a field-stimulated experiment showed how the two species respond

to various N and P supplies (Liu et al., 2019), it mainly focused on the

variation in their dominance, while the species-specific responses of

leaf nutrient status and plant biomass remain unclear.

In this study, we examined the effects of nutrient supply level and

N:P supply ratio on the aboveground biomass and leaf nutrient

stoichiometry of P. australis and S. glauca using the same field-

stimulated experiment (Liu et al., 2019). The primary objectives of

this study were to (i) clarify the main and interactive effects of

nutrient supply level and supply ratio on the aboveground biomass

and leaf nutrient stoichiometry of two dominant species, (ii) assess

the linkage between aboveground biomass and leaf nutrient

stoichiometry in two dominant species, and (iii) compare the plant

growth strategies employed by two dominant species in response to

various N and P supplies. Our previous findings suggest that the plant

community composition in this area was only affected by the overall

nutrient supply level, in which S. glauca became increasingly

dominant with increasing supply level and thus suppressed other

species, including P. australis. In addition, the N:P supply ratio and

overall supply level both significantly affected the concentrations of

soil inorganic N and available P and the N:P ratio, with the soil

resource availability being more affected by the supply level and the

soil N:P ratio being overridingly influenced by the N:P supply ratio

(Liu et al., 2019). We therefore hypothesized that (i) the aboveground

biomass of both species was only significantly influenced by the

overall supply level, while the leaf nutrient stoichiometry relied on

the overall supply level as well as on the N:P supply ratio (H1); (ii) the

aboveground biomass of S. glauca was positively associated with the

altered leaf nutrient contents, while the performance of P. australis

was the opposite, and there was no significant relationship between

the N:P and aboveground biomass of both species (H2); and (iii) S.

glauca exhibited relatively greater plasticity in plant growth strategies

than P. australis, leading to its dominance in the plant community

under increased nutrient inputs (H3).
2 Materials and methods

2.1 Experimental site

This study was conducted in the Yellow River Delta Ecology

Research Station of Coastal Wetland (37°45’52” N, 118°58’52” E),

Chinese Academy of Sciences. The study site has a warm-temperate
frontiersin.org
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and continental monsoon climate with a mean annual temperature

and precipitation of 12.9°C and 560 mm, respectively. This area is

periodically flooded from July to September, and nearly 70% of the

annual precipitation is concentrated in this period. The soil type is a

saline-alkali soil with a pH of 7.20–7.89 and conductivity of 1.64–3.15

ms cm-1. The dominant plant species at the experimental site are S.

glauca, P. australis and Suaeda salsa, comprising more than 90% of

the total aboveground biomass.
2.2 Experimental design

In July 2014, a N and P addition experiment was installed to

simulate future nutrient supply changes in this wetland. Detailed

information about the experimental design has been reported in a

previous study (Liu et al., 2019). Briefly, there were nine fertilization

treatments combined with 3 overall nutrient supply levels (low,

medium, high) and 3 N:P supply ratios (5:1, 15:1, 45:1) with four

replicates for each treatment, and one control treatment (CK) was

also set up with six replicates, for a total of 42 plots (Figure 1). Each

plot was 3.5 × 3.5 m in size and was laid out separated by 1 m aisles.

Starting in 2015, fertilizer was applied twice each year with 50% of the

supply in early April and 50% in late June. N and P were supplied as

urea and dihydrogen phosphate (NaH2PO4) dissolved in 6 L water,

respectively, and the CK plots received an equal amount of water.
2.3 Field sampling and measurement

In late July 2018, peak aboveground biomass was estimated by

clipping at ground level in three 0.3 m × 0.3 m random quadrats

within each plot and sorting the biomass into different species. After

clipping, living biomass was oven-dried at 75 °C for 48 h to a

consistent weight and then weighed and ground. Dominant species

S. glauca and P. australis were sampled in all experimental plots

(Figure 2), while another dominant species S. salsa was not sampled in

3/4 of the high nutrient supply experimental plots due to its low

occurrence. Therefore, we only measured the N and P concentrations
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of S. glauca and P. australis. Total N concentrations in plant leaf were

analyzed by a C/N analyzer (Vario Micro, Germany). For total P

concentration, powders of plant leaf samples were digested with

H2SO4-H2O2 and then determined by the molybdenum blue

method on a continuous-flow autoanalyzer (AA3, Seal

Analytical, Germany).
2.4 Statistical analysis

Data were tested for normality using Levene’s test. Two-way

ANOVA was employed to examine the effects of supply level, supply

ratio and their interactions on aboveground biomass, N

concentration, P concentration and the N:P ratio of the two species.

The ANOVAs were followed by S-N-K post hoc tests to determine the

difference level (if necessary). Independent samples t-test was used to

compare the mean values of the parameters between the two species

under different N and P supplies. The Pearson coefficient was

calculated to detect the relationship between the community

biomass and aboveground biomass of the two species and the

correlation among the N and P concentrations, the N:P ratio and

the aboveground biomass of the two species. Structural equation

model (SEM) was further constructed with Amos 21.0 software (SPSS

Inc., IBM Co., Armonk, NY, USA) to examine direct and indirect

hypothetical relationships among supply level, supply ratio, plant N

and P concentrations, plant N:P ratios and plant biomass. In these

analyses, the data were fit to the model using maximum likelihood

estimation. All statistical analyses were performed with SPSS 17.0

(SPSS Inc., Chicago, IL, USA). The significance level was set as 0.05.
3 Results

3.1 Effects on aboveground biomass

The increase in aboveground biomass of S. glauca (BSg) occurred

in all N and P addition plots compared to the control plots

(Figure 3A). In contrast, the aboveground biomass of P. australis
FIGURE 1

Location and layout of the experimental plots.
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(BPa) decreased with N and P addition, except for the 5:1 M and 45:1

M treatments (Figure 3B). Both BSg and BPa were significantly affected

by the N and P supply level rather than the supply ratio, and no

significant supply level × supply ratio interaction was observed

(Table 1). Compared with the control treatment, BSg increased

strongly at the medium and high supply level, while BPa decreased

significantly at the low and high supply level (Figure 4A). With the

rise of the overall supply level, BSg increased significantly between all

gradual supply levels. For BPa, there was no difference between the low

and medium supply level, while it decreased significantly at the high

supply level. Relative to BPa, BSgwas lower at the low supply level,

nearly equal at the medium supply level, and higher at the high supply

level (Figure 4A).

The plant community structure in the control plots was co-

dominated by S. glauca (20.8%) and P. australis (57.6%) with over
Frontiers in Marine Science 04
75% of the total aboveground biomass (Figure 4B). However, these

two dominant species showed opposite patterns in relative

aboveground biomass along the nutrient supply gradient. When the

supply level reached a high level, S. glauca became the single-

dominant species, accounting for 88.4% of the total aboveground

biomass, while P. australis deceased to only 10.9%. Further linear

regression analysis showed that the community biomass response was

positively correlated with BSg (P<0.001, Supplementary Figure S1) and

negatively correlated with BPa(P=0.005, Supplementary Figure S1).
3.2 Effects on N and P stoichiometry

For both S. glauca and P. australis, all of the N and P addition

treatments had greater N and P concentrations than the control
FIGURE 2

S. glauca is a C3 annual forb with fibrous roots; P. australis is a C4 perennial rhizome grass.
BA

FIGURE 3

Effects of N and P addition on aboveground biomass of S. glauca (A) and P. australis (B). CK=control. Different bars indicate the mean value (± SE) for
each treatment (N and P addition, n=4; CK, n=6).
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treatment (Figures 5A–D). However, foliar nutritional traits

responded differently to changing N and P supply conditions

between S. glauca and P. australis. Two-way ANOVA showed that

the effects of supply level and supply ratio on the N and P

concentrations of S. glauca were significant, and there was a

significant supply level × supply ratio interaction. For P. australis,

the P concentration was significantly affected by the supply level and

supply ratio, while the N concentration was only significantly affected

by the supply level, and no significant supply level × supply ratio

interaction was observed (Table 2). In terms of the N:P ratio, the

supply ratio rather than the supply level had a significant effect on

both species, and a significant supply level × supply ratio interaction

was observed only for S. glauca. The N and P concentrations of the

two species tended to increase with increasing supply level. With the

increase in the supply ratio, the N concentration and N:P ratio also

increased, while the P concentration declined (Figures 5E–F,

Supplementary Figure S2).

Overall, changing the supply conditions affected the foliar

nutritional traits of S. glauca more than those of P. australis, which

could be indicated by the F value (Table 2). Correspondingly, the N

and P concentrations of S. glauca among the 3 supply levels and 3

supply ratios were all significantly different, and there were significant

differences in N:P among the 3 supply ratio gradients. Otherwise, the

N and P concentrations of P. australis increased significantly only at

the high supply level, and only the high supply ratio significantly

increased the N:P ratio and decreased the P concentration. At the

medium and high supply level, the N and P concentrations of S.

glauca were significantly higher than those of P. australis.

Furthermore, the N concentration of S. glauca was significantly
Frontiers in Marine Science 05
higher than that of P. australis at the 45:1 supply ratio, and the P

concentration was significantly higher at the 5:1 and 15:1 supply ratio.

Compared with the N:P ratio of P. australis, that of S. glauca was

higher at the 45:1 supply ratio and lower at the 5:1 and 15:1 supply

ratio (Supplementary Figure S2).
3.3 Linkages between nutrient stoichiometry
and aboveground biomass

The SEM results indicated that the supply level had a significant

positive direct effect on the leaf N and P concentrations of S. glauca and

P. australis (Figure 6). In addition, the supply ratio had a significant

negative direct effect on the leaf P concentrations of S. glauca and P.

australis, whereas it had a significant positive direct effect on the leaf N

concentration of S. glauca. The leaf N concentrations of S. glauca and P.

australis showed significant positive correlations with the N:P ratios of

the corresponding species, which is contrary to the observed

relationship between leaf P concentration and the N:P ratio.

Regression analysis suggested that the variation in the N:P ratio was

primarily determined by foliar P for both species (Supplementary

Figure S3). The two dominant species showed opposite patterns in

the relationship between leaf nutrient concentrations and aboveground

biomass. The N and P concentrations of S. glauca had a positive direct

effect on the biomass of S. glauca, but the N and P concentrations of P.

australis had a negative direct effect on the biomass of P. australis

(Figure 6, Supplementary Figure S4). However, there were no

significant correlations between the aboveground biomass of the two

species and the N:P ratio of the corresponding species.
TABLE 1 Two-way ANOVA for the aboveground biomass of S. glauca and P. australis using the overall supply level (SL) and N:P supply ratio (SR) as the
main effects. P-values in bold indicate significant differences at P < 0.05.

Source df S. glauca P. australis

F P F P

Supply Level (SL) 2 111.763 <0.001 8.638 <0.001

Supply Ratio (SR) 2 0.991 0.384 0.984 0.387

SL×SR 4 0.526 0.717 1.416 0.256
frontie
Significant P values are marked in bold (P < 0.05).
BA

FIGURE 4

Mean aboveground biomass (A) and relative biomass (B) of S. glauca and P. australis under different treatments. Data show the mean ± SE (supply level
treatment, n=12; control treatment, n=6). Different capital letters represent significant differences in plant biomass among the three supply level
treatments at the 0.05 level. Different lowercase letters represent significant differences between S. glauca and P. australis under the same treatments at
the 0.05 level. * denotes a significant difference between the control treatment and the supply level treatment at the 0.05 level.
rsin.org

https://doi.org/10.3389/fmars.2023.1113629
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2023.1113629
4 Discussion

4.1 Effects of the overall supply level and
supply ratio on plant aboveground biomass

The responses of S. glauca and P. australis to N and P supply were

inconsistent from the perspective of plant biomass. Overall, N and P

supply had a positive effect on the biomass of S. glauca and a negative

effect on that of P. australis (except for the 5:1 M and 45:1 M

treatments). The results correspond principally with our first
Frontiers in Marine Science 06
hypothesis (H1), the biomass of both species was mainly affected by

the supply level rather than either the supply ratio or the interactive

effect. Correlation analysis of species biomass and soil properties

demonstrated that BSgwas significantly correlated with soil available P

(R2 = 0.309, n =36, P<0.01) and the available N:P ratio (R2 = 0.130, n

=36, P=0.031), while BPa was negatively correlated with soil

conductivity (R2 = 0.185, n =36, P=0.009). Correspondingly, our

previous analysis showed that the supply level affected the soil

available P, available N:P ratio and soil conductivity more than the

supply ratio in the 4th study year (Liu et al., 2019), which could help
B

C D

E F

A

FIGURE 5

Effects of N and P addition on the N (A, B) and P concentrations (C, D) and the N:P ratio (E, F) of S. glauca and P. australis. Different bars indicate the
mean value (± SE) for each treatment (N and P addition, n=4; CK, n=6). Green and red indicate positive and negative relationships corrected to red and
green indicate positive and negative relationships.
TABLE 2 Two-way ANOVA for N and P concentrations and the N:P ratio of S. glauca and P. australis using the overall supply level (SL) and N:P supply
ratio (SR) as the main effects. P-values in bold indicate indicate significant differences at P < 0.05.

Species Source df N concentration P concentration N: P ratio

F P F P F P

S. glauca

SL 2 67.543 <0.001 49.602 <0.001 0.984 0.387

SR 2 21.272 <0.001 19.099 <0.001 157.139 <0.001

SL×SR 4 2.691 0.052 2.783 0.047 13.126 <0.001

P. australis

SL 2 4.221 0.025 7.773 0.002 0.303 0.741

SR 2 1.605 0.219 4.297 0.024 9.663 <0.001

SL×SR 4 0.768 0.555 1.149 0.355 1.276 0.304
frontie
Significant P values are marked in bold (P < 0.05).
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explain the stronger effects of the supply level on plant

aboveground biomass.

As frequently observed in previous studies, grasses and forbs may

have contrasting biomass responses to nutrient inputs (Xia and Wan,

2008; Li et al., 2019). Grasses often have high resource use ability and

consequently become increasingly dominant with nutrient supply

(Zhang et al., 2018a; Su et al., 2020). However, the response of the

grass species P. australis in our study is some different. The

dominance shifted from P. australis in low nutrient condition to S.

glauca in high nutrient condition, indicating S. glauca was well

acclimated to nutrient enrichment. Shifts in species dominance may

favor acquisitive rather than conservative resource use strategies (Lan

and Bai, 2012). P. australis, as a C3 species with conservative

resource-use strategies, might perform poorer than S. glauca (C4

species) when exposed to the same changing nutrient conditions

(Wang et al., 2015; Zhang et al., 2018b). That is, S. glauca, with faster-

growing traits, tends to have a high aboveground competitive ability

following nutrient enrichment, which indirectly causes a reduction of

P. australis dominance. Additionally, the enhancement of S. glauca

led to the positive response of plant community biomass to nutrient

addition (Supplementary Figure S1), which confirmed that the growth

of S. glauca was the main driver of changes in the plant community

(Liu et al., 2019).
4.2 Effects of the overall supply level and
supply ratio on plant N and P stoichiometry

Generally, the varying supplies of N and P had significant effects

on plant N and P uptake (Fujita et al., 2010; Chen et al., 2020), which

could further mediate plant stoichiometry (Zhan et al., 2017). For

instance, a pot-culture study showed that the N:P supply ratio had a

significant effect on the N and P concentrations and the N:P ratio of

wetland grasses through a direct effect on nutrient uptake, whereas

the supply level only affected the N:P ratio with a slight effect
Frontiers in Marine Science 07
(Güsewell, 2005). Partly consistent with hypothesis 1 (H1), our

results indicated that the leaf N and P concentrations of S. glauca

and P. australis were affected more by the supply level than by the

supply ratio, while the plant N:P ratio only varied as a function of the

supply ratio. Given the positive feedback between soil nutrient

availability and plant nutrient contents (Fan et al., 2015; Lü et al.,

2015; Su et al., 2021), the inconsistent result with the previous study

(Liu et al., 2019) was probably caused by the fact that supply level

mainly affected soil resource availability, while the N:P supply ratio

overridingly influenced the variations of the soil N:P. Moreover, we

found that supply level and supply ratio significantly interacted to

affect the N and P concentrations and N:P of S. glauca. This

observation highlights the importance of the synergistic effects of

supply level and supply ratio on plant stoichiometry (Güsewell and

Bollens, 2003; Venterink and Güsewell, 2010), although the

underlying mechanism remains unclear.

From the perspective of plant stoichiometry, species with distinct

resource use strategies may exhibit different responses to the same

changes in environmental conditions (Lü et al., 2015; Li et al., 2019;

Qi et al., 2015). Consistent with previous results (Mao et al., 2016;

Huang et al., 2018a), the N and P concentrations of both S. glauca and

P. australis were significantly enhanced with corresponding

increasing N and P input amounts. Theoretically, P. australis is a

clonal rhizome grass with strong root reproduction and could benefit

from relatively rapid extensive growth to have more chances to access

different available nutrients (Cao et al., 2021). Unlike the

extensiveness of P. australis root growth, S. glauca is a forb with

fibrous roots, and its forage range for obtaining soil available nutrients

is relatively limited. Unexpectedly, in contrast to the pattern observed

with S. glauca, P. australis exhibited a lower variability in N and P

concentrations with the input of corresponding elements, suggesting

the relatively stable access of P. australis to N and P despite the

nutrient supply gradients (Li et al., 2014; Lü et al., 2015). The nutrient

supply had a greater effect intensity on the leaf nutritional traits of S.

glauca than that of P. australis after fertilization annually for four
FIGURE 6

Structural equation model (SEM) considering the underlying causal relationships among leaf N and P contents, N:P ratio and biomass of S. glauca and P.
australis under various N and P supplies. CFI, confirmatory fit index. Bold and dashed lines indicate significant (P<0.05) and nonsignificant (P>0.05)
pathways, respectively. The width of arrows indicates the strength of the causal effect, while arrows colored red and green indicate positive and negative
relationships respectively. The numbers listed within arrows are the standardized path coefficients. The R2 values represent the proportion of the variance
explained for each variable. Significance levels are as follows: *P < 0.05, **P < 0.01, and ***P < 0.001.
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years. By comparing variations in the N:P ratio of the two species

along the supply ratio gradient, we found that P limitation was

transformed to N-P colimitation in S. glauca under decreased N:P

supply ratios, whereas P. australis remained P limited (Güsewell,

2004) (Supplementary Figure S2). These results supported the idea

that grasses with stronger homeostasis are generally less sensitive to

varying N and P supplies than forbs (Yu et al., 2011; Luo et al., 2016).

Accordingly, leaf stoichiometry of P. australis spanned a much

smaller range than the nutrient availability gradient due to the

plant’s regulatory control (Qi et al., 2015), and that in S. glauca

could better reflect variation in the N and P supply.
4.3 Plant growth strategies under varying
supplies of N and P

In this study, variation in leaf N:P ratios was primarily

determined by the response of leaf P concentration, which

emphasized the important role of P in affecting plant growth in the

supratidal wetland in the Yellow River Delta (Liu et al., 2019).

Concretely, the leaf N:P ratios of the two dominant species

improved with increasing N concentrations and decreasing P

concentrations. Based on this, both the leaf N and P concentrations

of the two species increased with increasing supply level, and the leaf

N:P ratio remained relatively constant, indicating a higher access of

the species to both nutrients and no change in its relative access to N

and P (Lü et al., 2015). Alternatively, with an increasing N:P supply

ratio, the leaf N concentration improved, while the P concentration

exhibited an opposite change trend thus directly determined the

positive response of the leaf N:P ratio to the supply ratio. In

accordance with the growth rate hypothesis (Elser et al., 2000),

changes of plants N:P ratio under changing environments would

directly affect biomass accumulation, while our results do not support

this view. Our observations suggest that the aboveground biomass of

the two dominant species was significantly affected by the supply level

rather than the supply ratio, while the leaf N:P ratio was significantly

affected by the supply ratio rather than the supply level, which may

indirectly result in no significant correlations between the

aboveground biomass and the leaf N:P ratio of the two species.

Although species-level stoichiometry exhibited a similar response

trend under varying nutrient statuses, the altered leaf nutrients of the

two species in turn have divergent feedbacks to plant aboveground

biomass (Huang et al., 2018b). Consistent with our expectation (H2),

the aboveground biomass of S. glauca increased with increasing leaf N

and P concentrations, while that of P. australis increased with

reducing leaf N and P concentrations, which may be partially

attributed to the differences in their growth strategies. With

acquisitive resource-use strategies, S. glauca showed high leaf

nutrient contents, corresponding to high aboveground competitive

ability (Lan and Bai, 2012). In contrast, P. australis with conservation

resource-use strategies exhibited disadvantages in competition, and

even increased leaf nutrient contents were insufficient to increase

biomass accumulation. Rather, a previous study found that the

nutrient contents of grasses affected their biomass positively, while

forbs showed an opposite trend (Li et al., 2019). Considering that our
Frontiers in Marine Science 08
results are contrary to the typical expectations (Fujita et al., 2014; Luo

et al., 2016), more empirical evidence is needed to clarify the

competitive strategies between these two functional groups.

Together, these results supported our third hypothesis (H3) that

S. glauca exhibited relatively greater plasticity in growth strategies

than P. australis. Our SEM consistently showed that S. glauca has

stronger positive feedback under nutrient enrichment (Figure 6) and

therefore contributes to increasingly dominance when facing elevated

N and P inputs. This finding might provide an underlying mechanism

for the changes in the plant community structure from the S. glauca

and P. australis co-dominant community to the S. glauca single-

dominant community under N and P enrichment.
5 Conclusion

Unbalanced N and P supply as well as absolute nutrient status

significantly influenced the leaf stoichiometry of both S. glauca and

P. australis, however, the aboveground biomass of the two species

was only significantly affected by the overall supply level. Nutrient

enrichment promoted the growth of S. glauca but decreased the

biomass of P. australis in the coexist community, owing to the

strong competitiveness of S. glauca to resources. There was

both convergence and divergence in the responses of the leaf

stoichiometry of S. glauca and P. australis to various N and P

supplies. The plasticity of nutrient resorption in S. glauca was much

higher than that of P. australis, although the leaf N and P

concentrations of the two species were both significantly

enhanced with the increase in corresponding nutrient availability.

Furthermore, the altered nutrient concentrations of the two species

in turn have contrasting feedbacks to aboveground biomass due to

the substantial differences in growth strategies. Comparatively, S.

glauca with acquisitive resource-use strategies might become

increasingly dominant under increasing nutrient inputs in the

supratidal wetland in the Yellow River Delta. These species-

specific responses are contrary to the typical expectations of

competitive outcomes between grasses and forbs in nutrient

supply conditions. The results can provide a scientific basis for

adaptive management of wetlands under evolving nutrition change.

As the prescribed fertilization was only performed for four years in

this study, continuous monitoring is needed to test whether the

results still be constant under longer-term fertilization.
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