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Cross-sensor vision system for
maritime object detection

Vinay Mohan* and Steven J. Simske*

Department of Systems Engineering, Colorado State University, Fort Collins, CO, United States
Accurate and automated detection of maritime vessels present in aerial images is

a considerable challenge. While significant progress has been made in recent

years by adopting neural network architectures in detection and classification

systems, these systems are usually designed specific to a sensor, dataset or

location. In this paper, we present a system which uses multiple sensors and a

convolutional neural network (CNN) architecture to test cross-sensor object

detection resiliency. The system is composed of five main subsystems: Image

Capture, Image Processing, Model Creation, Object-of-Interest Detection and

System Evaluation. We show that the system has a high degree of cross-sensor

vessel detection accuracy, paving the way for the design of similar systems which

could prove robust across applications, sensors, ship types and ship sizes.

KEYWORDS

deep learning, vessel detection system, maritime vessel, optical satellite system, object
detection, convolutional neural network, synthetic aperture radar
Introduction

From the advent of passenger ships in the late 19th century to container-revolutionized

maritime transport in the 1970s, there has been increasing interest in monitoring, tracking

and identifying vessels at sea. Before the first artificial earth satellite was placed into orbit in

the mid 1950s, vessels were primarily tracked using either primitive cooperative systems

such as inter-ship radio transmission or rudimentary non-cooperative systems such as

coastal or on-board RADAR. Human interests at this time – revolving around safety &

rescue, fishing and passenger transport - were largely satisfied by these systems.

More recently, effective understanding of the global maritime domain – or Maritime

Domain Awareness (MDA) – has exploded in importance around the world with a

significant number of commercial, defense and other government applications. There has

been increasing attention given to exclusive economic zones (EEZ) and governance of a

country’s natural resources with state interests including maritime security, monitoring of

marine traffic, illegal fishing, smuggling and maritime search & rescue. Commercial

interests have expanded to include drilling and exploration of ocean floors, the

management of fisheries, maritime piracy and cargo transportation. Private entities and

NGOs have interests ranging from forecasting weather to the protection of ecology and

sea health.
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A number of these applications use knowledge of position and

behavior of vessels as their cornerstone with MDA being enabled by

information from land, sea, air and/or space systems and in some

cases, vessel information repositories (Dekker et. al, 2013). These

systems can broadly be classified into one of two types –

Cooperative and Non Cooperative Systems - based on whether

the system is employed by vessels to communicate information

about themselves or whether they are observation systems which

function independently of vessel cooperation (Table 1).

Information captured usually includes the vessel type, cargo,

position, velocity, route as well as other identifying and

tracking data.

Cooperative systems are rarely used for comprehensive MDA.

Most small (<300) ton vessels are not required to carry either an

Automatic Identification System (AIS) or a Long-Range

Identification and Tracking System (LRIT) while fishing vessels –

regardless of size – are not required to carry a Vessel Monitoring

System (VMS). Additionally, illegally operating vessels rarely carry

or operate their systems accurately. Some vessels turn off their

systems while others spoof their mandatory position reports.

Operations such as search and rescue can’t be carried out

effectively if one is to rely solely on cooperative reports either.

These reasons make non-cooperative systems among the most

beneficial sources of information for a number of the MDA

applications outlined above. In particular, Synthetic Aperture

Radar (SAR) and Optical Imaging Satellite Systems have several

advantages such as their remote access, global reach, frequency of

information updates and the high amount of data they can collect

and process.

While the last century saw incremental progress made in

computer-generated detection and classification of objects

in images, the creation of the first convolutional neural network

in the 1980s and GPU-accelerated training in the 2000s enabled

significant strides in machine learning approaches to detection,

segmentation and localization of objects in images.

However, a number of distinct challenges exist which prevent

the robust detection of vessels at sea. Sea surfaces can be complex,

and variations in weather and vessel reflectivity can lead to a loss of

system precision. Small, densely packed and blurry vessels – as well

as vessels very close to land – have all proven challenging for

detection systems. While traditional systems are inefficient and

generally have lower accuracy, modern systems have been time-

consuming to build and require large amounts of labeled data.
Frontiers in Marine Science 02
Lastly, no single technique has proved robust across sensors, leading

to piecemeal solutions for various sensors, datasets and locations.

This paper proposes a vision system which can provide robust

target detection across disparate sensor types. The system is

comprised of the following subsystems – Image Capture

Subsystem, Image Processing Subsystem, Model Creation

Subsystem, Object-of-Interest Detection Subsystem and System

Evaluation Subsystem - and provides functionality for object

detection using distinct independent data sources for model

creation and object detection.
Related work

LandSat-1, launched in 1972, was the first civil optical satellite.

Since then, hundreds of optical satellites with varying resolutions

have been launched with many continuing to orbit our planet.

Recent VHR additions like the WorldView and GeoEye series have

expanded spectral and spatial resolutions while others like

QuickBird and IKONOS have a higher radiometric resolution as

well. An increasing number of optical satellite sensors now also

provide more frequent coverage of Earth. At the turn of the century,

there was a significant increase in the availability of commercial

VHR sensor data and with it an explosion in the number of

publications exploring the viability of maritime vessel detection

using satellite systems.

Some of the earliest systems for maritime vessel detection used a

number of pre-processing steps prior to target detection. Sea-land

separation was considered crucial for accurate detection of vessels in

harbors (Willhauck et al., 2005) as well as reducing the high number

of false positives generated when vessel detection systems were

applied to land (Corbane at. al, 2008). Consequently, coastline data

was either incorporated from existing GIS data (Lavalle at al., 2011)

or land masks were created from the images themselves (Dong et al,

2013). Similarly, key environmental effects – cloud coverage, waves

and sunlight – were usually minimized using cloud masks (ESA,

2015), texture discrimination (Yang et. al, 2014) or Fourier transform

algorithms (Buck et al., 2007; Jin and Zhang, 2015).

Vessel Detection and Classification methods ranged from

simple geometrical feature detection (Lin et al, 2012; Heiselberg,

2016) to machine learning techniques. Prior to the advancements

made in object detection systems which used neural networks,

support vector machines (SVM) – a supervised classification
TABLE 1 Cooperative vs Non Cooperative Systems.

Cooperative Systems Non-cooperative Systems

Examples Type Examples Spectrum

Automatic Identification System (AIS) Visual Sighting Shore or Ship-based Sighting Varies

Long-Range Identification & Tracking System (LRIT) Optical Camera Optical Imaging Satellites
Panchromatic,
Multispectral

Vessel Monitoring System (VMS)
Infrared Camera FLIR, Weather Satellites Thermal Infrared

Radar Real Radar , SLAR , SAR Electromagnetic
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model – dominated publications (Bi et al., 2010; Bi et al., 2012;

Kumar and Selvi, 2011; Li and Itti, 2011; Xia et al., 2011; Guo and

Zhu, 2012; Satyanarayana and Aparna, 2012; Song et al., 2014).

Other classifiers for vessel detection include the Bayesian classifier

(Antelo et al., 2009), random forest models (Johansson, 2011) and

Fisher classification (Zhang et al., 2012).

More recently, neural network-based systems have taken the

world of image recognition and object recognition by storm.

AlexNet, a convolutional neural network architecture designed by

Alex Krizhevsky in 2012 achieved a top-5 error of 15.3%, a full 10

percentage points lower than that of the runner up and paved the

way for significant strides in image classification, segmentation and

object detection.

In Ramani et al., 2019 the authors build a vessel detection

system for real-time maritime applications. The system employs a

Mask R-CNN architecture to segment and classify 30 images every

30 seconds.

In Gallego et al. (2018), results from a Convolutional Neural

Network are passed to a k-NNmodel to improve detection performance.

In Zhang et al. (2019), pre-processing of satellite images is

performed using a support vector machine framework following

which variations of the Faster R-CNN neural network architecture

are applied to measure each system’s performance on different sizes

and types of vessels. The authors are able to identify a framework which

performs reasonably well for both offshore and inland vessel detection.

Chen et al., 2020 also used CNNs to create an end-to-end

detection system capable of detecting both inshore and offshore

ships with an accuracy >90%. Their detection speed was 72 fps and

their system intentionally balanced accuracy against speed of

detection on the SAR Ship Detection Dataset (SSDD).

Li et al. (2017) used a CNN architecture-based detection system

on a custom dataset consisting of ships of various sizes as well a

variety of environmental and sea conditions. Their paper

established a higher precision with the custom framework than

an equivalent Faster R-CNN system applied on the same dataset.

In contrast to common SAR and Optical Satellite Systems used

in other publications, Yang et al. (2018) uses a remote sensing

system which captured and segmented Google Earth images which

were then used for vessel detection. The authors also used a custom

neural network framework with a Feature Pyramid Network (FPN)

to minimize false positives in images consisting of densely

packed ships.

When we examine a collection of approaches used to build

vessel detection systems, we observe a number of underlying trends:
Fron
-Neural networks have gained popularity in recent

publications due to the largely scripted/automated

approach to building highly accurate detection systems.

-Classification of vessels by vessel type has proven very

challenging regardless of the type and resolution of the

sensor(s) used.

-Most publications have built and tested their systems using a

homogenous dataset of images collected from either a single

sensor or a set of sensors, thereby failing to establish

robustness of their system across sensor types.
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In this paper, we tackle the challenge of building a system robust

enough to collect and use images from one sensor to detect objects

in images collected from a second, disparate sensor. Such a system

would be tunable, adaptable and re-purposable across applications.

In the Object-of-Interest Detection subsystem, we evaluate several

state-of-the-art algorithms as well as create a custom model

architecture from scratch.

While we do not intend to recommend a winning algorithm to

solve cross-sensor vessel detection, we show that the designed

system has a high degree of cross-sensor vessel detection

accuracy, paving the way for future research in tunable, adaptable

and re-purposable systems which could prove robust across

applications, sensors, ship types and ship sizes.
System overview

Image capture subsystem

The Image Capture Subsystem (Figure 1) uses two satellite

sensor feeds along with two XML file feeds to obtain and provide

data to the consequent subsystems. The XML files contain

annotated image information for the corresponding image feeds.

The first input is an optical aerial image feed of maritime scenes

on the visible spectrum. The images are sourced in the RGB color

scheme, and can contain zero, one or multiple maritime vessels in

varying weather and lighting conditions. The images contain scenes

from different regions of the world including Africa, Europe and

Asia and different water bodies including the Mediterranean Sea as

well as the Atlantic and Pacific Oceans. While the images are of

different sizes, the average image has a spatial resolution of 512 x

512 pixels.

The second input is a synthetic aperture radar (SAR) generated

feed of maritime scenes (sea waves, shallow sea topography, coastal

zones, maritime vessels etc.) with a spatial resolution between 1-

500m. This feed provides images of 256 pixels in both range and

azimuth, and the vessels in these images have distinct scales and

backgrounds. A given image can contain a single vessel, multiple

vessels or none.

For each image feed, annotations are provided in the Pascal

VOC format. The Pascal VOC format is a common annotation

format for images which stores annotations in the XML file format

with a separate XML annotation file for each image. Optionally,

bounding box information is included in the [x-top-left, y-top-left,

x-bottom-right, y-bottom-right] format.

The image feeds are tagged with their source before being

merged together into a single stream and sent to the Image

Processing Subsystem. The two streams of XML annotations

comprise the other outputs of this system.
Image processing subsystem

The inputs to the Image Processing Subsystem (Figure 2) are
-a single stream of images tagged with their source, &
frontiersin.org

https://doi.org/10.3389/fmars.2023.1112955
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Mohan and Simske 10.3389/fmars.2023.1112955

Fron
-two annotation feeds corresponding to the respective image

streams.
First, the images are re-sized for uniformity across input

streams and to match the dimensions of the input layer in the

Model Creation Subsystem. The pixels in the image stream are then

converted to the float datatype following which each image is

normalized. Normalization scales the pixel values down from a
tiers in Marine Science 04
range of (0,255) to a range of (0,1). Lastly, the image streams are

split based on their source, annotations are appended and the

output of the subsystem consists of two tagged and annotated

image streams. Convolutional Neural Network Architectures like

AlexNet and GoogleNet perform various image chopping and

feature extraction steps which, in conjunction with pooling layers

make them translation (and to a large degree, rotation) invariant

model architectures.
FIGURE 1

Image Capture Subsystem.
FIGURE 2

Image Processing Subsystem.
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Model creation subsystem

The input to the Model Creation Subsystem (Figure 3) is a single

annotated image feed. This feed is used to train a binary classification

model to detect the presence of a vessel in an image using a

combination of pre-defined model frameworks and hyperparameters.

The models employed are (a) a custom convolutional neural network

architecture, defined and trained from scratch, and (b) transfer learning

and benchmarking using four common computer vision model

architectures. For the latter, we re-define and fine-tune the last layers

for our specific task while leaving the architecture and weights of other

layers as is. Model parameters for each fitted model comprise the

output of the Model Creation subsystem as well as each model’s

predictions on the input image feed.
Frontiers in Marine Science 05
Object-of-interest detection subsystem

The inputs to the Object-of-Interest Detection Subsystem

(OOIDS) (Figure 4) are the fitted model parameters and the

second image feed on which OOI Detection is to be performed.

The fitted model parameters can either be the hyperparameters of

the model – in which case the model will need to be re-fit on the

original dataset – or a fit model, as we have assumed here. The

model is applied (‘scored’) on the second image stream producing

predictions indicating the presence or absence of maritime vessels.

The output of this subsystem are the model results on the second

image stream. As a reminder, this is an image feed the model itself

has not been exposed to, and is an attempt to measure the model’s

power on a disparate and independent data source.
FIGURE 3

Model Creation Subsystem.
FIGURE 4

Object-of-Interest Detection Subsystem.
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System evaluation subsystem

The System Evaluation Subsystem (Figure 5) calculates and

produce model metrics which measure the performance of the

model on the dependent (‘training’) and independent (‘test’) data

sources. The inputs to this subsystem are the model results on both

the training (image feed #1) and test (image feed #2) datasets. Using

these model results, model metrics such as accuracy, precision and

recall can be calculated, dependent on the number and frequency of

classes in each dataset. The metrics indicate the overall performance

of the system at performing object detection using different sensors

and sensor types, i.e SAR and Optical Satellite sensors.,,,,
Methodology

The System Block Diagram is shown in Figure 6.

To test system functionality and gauge performance, we use the

MASATI (Maritime Satellite Imagery Dataset) and Sentinel datasets as
Frontiers in Marine Science 06
inputs to the Image Capture Subsystem. The images contained in these

datasets containmaritime scenes in the visible spectrumusing optical aerial

cameras and SAR-based radio waves, respectively. These datasets mimic

and satisfy the earlier outlined assumptions regarding the two satellite

image feeds (III.A) and are accompanied by annotations indicating the

presence/absence of maritime vessels which are treated as ground truth in

the subsequent model design and evaluation subsystems.

The datasets are tagged with their source name, re-sized to

standardized dimensions, normalized and the bits converted to the

float datatype. The Model Creation Subsystem uses the Keras Deep

Learning API with the Tensorflow backend to fit four pre-defined

convolutional neural network architectures and one custom

architecture on the MASATI dataset. The MASATI dataset

consists of 1027 (48%) images containing one or more maritime

vessels and 1132 (52%) images with none. In addition to a custom

model trained from scratch, the 4 pre-defined architectures include
-VGG-16, proposed by Karen Simonyan and Andrew

Zisserman of Oxford University in 2014, the ‘16’ in the
FIGURE 5

System Evaluation Subsystem.
FIGURE 6

System Block Diagram.
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name indicating the number of layers with weights

(Simonyan and Zisserman, 2014).

-InceptionV3, originally a module for GoogleNet in 2015

(Szegedy et al., 2016)

-ResNet50, a variant of the ResNet Model consisting of 48

convolution layers and residual blocks, introduced in 2015,

and

-XCeption, a deep convolutional neural network architecture

involving Depthwise Seperable Convolutions, introduced

by Francois Chollet in 2016
Since (a) one of the primary goals behind most maritime object

detection systems is real-time processing, and (b) our primary goal

is to develop a system capable of using data from one sensor to

detect objects in incoming data from a second sensor, each of the 5

models is trained for <=5 epochs. There is no minimum stopping

threshold or other optimization criteria since we want flexible

models which aren’t overfit or optimized on the MASATI

dataset alone.

While the custom model is trained from scratch, each pre-

defined architecture has the following changes:
-The input layer is altered to match the dimensions of the

incoming data stream,

-The output layer is altered to a softmax function with two

classes of interest, and

-while the fitted weights of most layers stay the same, the last

five layers are re-trained for the purpose of optimizing

detection of our classes of interest
Each model is trained using specific values of hyperparameters

following which fitted parameter values are saved and transferred as

outputs to the Object-of-interest Detection Subsystem. The OOI

Detection Subsystem re-fits models and uses the fit models to

predict the presence or absence of a maritime vessel in the second
tiers in Marine Science 07
(SAR) input stream. The results of the 5 models on the SAR image

stream is an input to the System Evaluation Subsystem which

calculates, compares and displays metrics for the system’s user(s).

Model Configuration and hyperparameters for each model are

shown in Table 2.
Results and discussion

The System Evaluation Subsystem calculates each model’s

accuracy in detecting ships on the two datasets – MASATI and

Sentinel, referred to as the training data and test data, respectively.

The number of images in each dataset as well as the time to train

and score each model on the respective datasets is also calculated.

These results are shown in Table 3.

As we can see, the results are interesting and varied.
-While the custom model – trained from scratch – has a low

accuracy, recall and F-Score, it has high precision and beats

larger architectures like ResNet50 across the board when

trained for only a few epochs.

-ResNet50, as we can see in Table 2 also has the highest

number of parameters of all the architectures indicating

that the extra learning potential of this network likely

requires additional parameter tuning and in its current

form results in overfitting on the training data.

-Most pre-trained models performed better than the custommodel

indicating that the extra layers, learning capacity and learned

features in these models aided in our binary classification task,

despite being designed for larger and more complex image

classification and object detection tasks. In addition to the higher

F-Scores, InceptionV3 and XCeption have much lower training

times than the custom architecture.

-Despite the datasets being collected from different sensors and

sensor types, many of the models are successfully able to
TABLE 2 Parameters for Models 1-5.

Architecture Custom VGG-16 InceptionV3 ResNet50 Xception

Train-Val Ratio N/A (Train = 1.0) N/A (Train = 1.0) N/A (Train = 1.0) N/A (Train = 1.0) N/A (Train = 1.0)

Image Width 200 200 200 200 200

Image Height 200 200 200 200 200

Number of Images 2,159 2,159 2,159 2,159 2,159

Number of Classes 2 2 2 2 2

Number of Epochs 5 5 1 1 1

Learning Rate 0.001 0.001 0.001 0.001 0.001

Decay Factor 0.9 0.9 0.9 0.9 0.9

Optimizer RMSProp RMSProp RMSProp RMSProp RMSProp

Total Parameters 1,483,010 14,751,554 21,868,322 23,735,298 21,062,186

Trainable Parameters 1,483,010 2,396,674 65,538 200,706 204,802
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identify maritime vessels in one using data solely from the

other with both high precision and recall despite the

unbalanced Sentinel dataset.

-While most modern systems built on underlying neural

network architectures require sufficiently large (a)

computing power, (b) time, and/or (c) data to perform

well, a dataset of ~2K images was used to sufficiently

capture between 62% - 94% of vessels in a dataset 10x as

large (21,682 images) with training and testing times of

<=10 minutes.

-While many systems require significant tuning and selection

of hyperparameters to optimize object detection, limited

fine-tuning resulted in respectable vessel detection results.
While we have not examined incorrect classification results

further to discover potential underlying trends, future research in

cross-sensor vessel detection could prove robustness across ship

and sensor types with longer training times, other model

architectures and/or further hyperparameter tuning.

We propose the following guidelines which similar studies

could consider:
-Using multiple sensors for both system training and testing

-Verification of algorithms on varied maritime scenes

-Validation of accuracy and false detection rates across

different ship sizes and difficult conditions

-Introduction of ship classification algorithms for specific

applications
Given that earth observation is a rapidly growing field with an

increasing availability of open data and new satellite technology,

cross-sensor vessel detection systems would be more adept than

traditional systems and could prove less cost-sensitive for new

applications. Future research using small datasets and low system
tiers in Marine Science 08
processing times may also lead to rapid detection rates, thereby

aiding real-time maritime applications including safety, logistics

and transportation.
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