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A hybrid deep learning model for
predicting the Kuroshio path
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Lige Cao1 and Wanqiu Dong1

1School of Marine Science and Technology, Tianjin University, Tianjin, China, 2Tianjin Key Laboratory for
Oceanic Meteorology, Tianjin Meteorological Service, Tianjin, China
At present, many prediction models based on deep learning methods have been

widely used in ocean prediction with satisfactory results. However, few deep

learning models are used to predict the Kuroshio path south of Japan. In this

study, a hybrid deep learning prediction model is constructed based on the long

short-term memory (LSTM) neural network, combined with the complex empirical

orthogonal function (CEOF) and bivariate empirical mode decomposition (BEMD),

called CEOF-BEMD-LSTM. We train the model by using a 50-year (1958-2007)

long time series of daily mean positions of the Kuroshio path south of Japan

extracted from a regional ocean reanalysis dataset. During the test period of 15

years (2008-2022) by using daily altimetry dataset, our model shows a good

performance for the Kuroshio path prediction with the lead time of 120 days, with

0.44° root-mean-square error (RMSE) and 0.75 anomaly correlation coefficient

(ACC). This model also has good prediction skill score (SS). Moreover, the CEOF-

BEMD-LSTM model successfully hindcasts the formation of the latest Kuroshio

large meander since the summer of 2017. Predictions of the Kuroshio path for the

coming 120 days (from January1 to April 30, 2023) indicate that the Kuroshio will

continue to remain in the state of the large meander. Besides, predictor(s) of the

Kuroshio path south of Japan need to be sought and added in future research.

KEYWORDS

Kuroshio path prediction, south of Japan, ocean reanalysis, complex empirical
orthogonal function, empirical mode decomposition, long short-term memory,

altimetry data
1 Introduction

The Kuroshio is the western boundary current of the North Pacific Subtropical Gyre. It

originates from the bifurcated North Equatorial Current on the eastern side of the

Philippines, flows into the East China Sea via the east of Taiwan Island, and then veers

eastward through the Tokara Strait into the sea south of Japan (Usui et al., 2006; Usui, 2019;

Qiu et al., 2021). As the second warmest current globally, the Kuroshio brings a large amount

of heat to the southern coast of Japan (Tsujino et al., 2006). Due to topographic constraints,

the Kuroshio path south of Japan exhibits three typical paths (Kawabe, 1995): the typical large
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meander (tLM) path, offshore non-large meander (oNLM) path, and

nearshore non-large meander (nNLM) path (Figure 1). The variation

of the Kuroshio path has large effects on climate, fisheries, and ship

navigation (Nakata et al., 2000; Tsujino et al., 2006; Sugimoto et al.,

2020; Sugimoto et al., 2021). Therefore, it is of great significance to

conduct prediction of the Kuroshio path south of Japan.

Numerical prediction plays a dominant role in predicting the

variation of the Kuroshio path south of Japan. Several studies used

experiments to predict the variability of the Kuroshio path using data

assimilation models, and the results showed that the predictive limit

for the Kuroshio path south of Japan is about a couple of months

(Komori et al., 2003; Kamachi et al., 2004; Miyazawa et al., 2005; Usui

et al., 2006). The Japan Coastal Ocean Predictability Experiment

(JCOPE), which is aimed to describe the Kuroshio path, Kuroshio

Extensions, and Oyashio variability (Miyazawa et al., 2008; Miyazawa

et al., 2009); It provides the Kuroshio prediction two months ahead

of time.

As one of the most popular and consequential technologies, deep

learning methods have been widely used for ocean prediction

(Reichstein et al., 2019). Among them, the recurrent neural network

(RNN) and its variants are known to work well in processing time series

data to find the time-varying principles hidden in the time series data

(Song et al., 2020). The long short-term memory (LSTM) neural

network, as one of the essential variants of the RNN, can detect even

minor changes from the time series and avoids the problem of

vanishing gradient and exploding gradient (Hochreiter and

Schmidhuber, 1997). In recent years, the LSTM neural network had a

good performance in the time series prediction of ocean variables (Liu

et al., 2018; Xiao et al., 2019; Shao et al., 2021b). However, few deep

learning models are used to predict the Kuroshio path south of Japan.

In this study, we present a hybrid deep learning prediction model,

combining the complex empirical orthogonal function (CEOF)

analysis, bivariate empirical mode decomposition (BEMD) analysis,

and LSTM neural network, named CEOF-BEMD-LSTM model, to

predict the Kuroshio path south of Japan. The rest of this paper is

organized as follows. In section 2, we introduce the data and methods.

In section 3, we describe the prediction experiments and results of the

Kuroshio path. Summary and discussion are given in section 4.
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2 Data and methods

2.1 Data

We use the sea-surface height (SSH) data from an ocean

reanalysis dataset, which is produced by a Northwest Pacific

regional ocean reanalysis system, called China Ocean ReAnalysis

(CORA, http://www.cmoc-china.cn; see Han et al., 2013). The

CORA system uses a sequential three-dimensional variational (3D-

Var) scheme implemented within a multigrid framework (Li et al.,

2008), and assimilates satellite remote sensing sea-surface

temperature (SST), altimetry SSH anomaly (SSHA), and in-situ

temperature/salinity profiles into the parallelized Princeton Ocean

Model with generalized coordinate system (POMgcs; Mellor et al.,

2002; Ezer and Mellor, 2004). The daily reanalysis dataset from

January 1958 to December 2007 is used for this study.

We also use the daily absolute dynamic topography (ADT) data of

the Ssalto/Duacs altimeter products from January 2008 to December

2022 from the Copernicus Marine and Environment Monitoring

Service (CMEMS) (https://marine.copernicus.eu) to conduct

prediction experiments. The study domain is from 131°E to 141°E

and from 29°N to 36°N (see Figure 1). The spatial resolution of both

datasets in the study region is 0.25° × 0.25°.

In this study, the Kuroshio path south of Japan is defined by the

70-cm SSH isoline and 110-cm ADT isoline, respectively. The

discrepancy between the definitions with these two datasets results

from different reference mean sea surfaces used (Yang and Liang,

2019), but both definitions can capture the Kuroshio axis position

well (Wu et al., 2022). The time series of the Kuroshio path (hereafter

the Kuroshio path data), which are the latitude value in degrees (°)

corresponding to each longitude of the study area, are selected as the

truth to conduct subsequent prediction experiments. One part of the

Kuroshio path data ranging from 1958 to 2007 serves as the training

dataset to train the prediction model, and the other part from 2008 to

2022 is used as the testing dataset to test the prediction model.
2.2 Methods

2.2.1 EOF and CEOF analyses
The empirical orthogonal function (EOF) analysis is widely used

in dimensionality reduction and pattern extraction in atmospheric

and oceanic sciences (Hannachi et al., 2007). However, the EOF

analysis cannot deal with propagating features. Therefore, the CEOF

analysis is introduced to solve such problem.

In this study, the Kuroshio path data can be expressed as matrix

X:

X =

x11 … x1n … x1n

⋮ ⋮ ⋮ ⋮ ⋮

xm1 … xmn … xmN

⋮ ⋮ ⋮ ⋮ ⋮

xM1 … xMn … xMn

0
BBBBBBBB@

1
CCCCCCCCA

(1)

where the dimensions are M×N, with M representing the spatial

dimension and N representing the temporal dimension.
FIGURE 1

Three typical Kuroshio paths south of Japan: nNLM (red line), oNLM
(green line), and tLM (blue line) derived from a regional ocean
reanalysis described in section 2.1. Thin black contours are isobaths of
1 000 and 2 000 m.
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The matrix X is first normalized, expressed as X':

X 0 = s−1(X − �X) (2)

where s is the standard deviation matrix and �Xis the climatology.

In the EOF analysis, the spatial modes (EOFs) and associated

temporal coefficients (PCs) are obtained by performing a Jacobi

decomposition on the covariance matrix of X'.

In the CEOF analysis, a Hermite matrix (U) is constructed by

applying the Hilbert transform to the matrix X'. It can be further

expanded as:

U = BP (3)

where P is composed of the complex EOFs (aka, spatial modes,

hereafter CEOFs), while B is composed of the corresponding complex

PCs (aka, temporal coefficients, hereafter CPCs). In this study, the

temporal coefficients (PCs and CPCs) will be taken as the raw data for

the input of the deep learning prediction model. Detailed information

about the use of the CEOF analysis in this study is given in sections

3.1 and 3.2.

2.2.2 BEMD analysis
The empirical mode decomposition (EMD) analysis is an efficient

method for data denoising (Huang et al., 1998). Rilling et al. (2007)

purposed the BEMD to handle bivariate (complex) time series. This

method considers the complex signal as a superposition of fast and

slow oscillation components. First, the poles of the projection vectors

of the complex signal in different directions and their envelopes are

obtained; then, the mean of the envelope is defined as the slow

oscillation signal, and the fast oscillation signal is obtained by

separating it from the original signal, which is called the complex

intrinsic mode function (CIMF). The BEMD analysis achieves the

direct decomposition of a complex signal, and avoids the

inconsistency between real and imaginary decompositions (Ma

et al., 2015).
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y(t) =o
m

i=1
CIMFi(t) (4)

After the BEMD analysis, the original signal y(t) can be

decomposed into m CIMFs, and expressed as:

In this study, the BEMD analysis is applied to the CPCs. Details

about the use of the BEMD analysis in this study are provided in

section 3.2.
2.2.3 LSTM neural network
The LSTM neural network can tackle the long-term dependence

of sequence data well, and is regarded as a state-of-the-art method for

time series prediction. As a variant of the RNN, it solves the problem

of gradient vanishing and gradient explosion that exist in the

traditional RNN (Hochreiter and Schmidhuber, 1997). Figure 2

shows the structure of an LSTM cell. The LSTM cell is made up of

forget gate, input gate, and output gate. Specifically, the forget gate

mainly selectively forgets the previous cell state quantity; the input

gate mainly selectively memorizes the new input information; and the

output gate selectively outputs the updated cell state quantity. The

main calculation is defined by a series of equations as follows:

ft = s (Wf · ½ht−1, xt � + bf ) (5)

it = s (Wi · ½ht−1, xt � + bi) (6)

~Ct = tanh(Wc · ½ht−1, xt � + bC) (7)

Ct = ft ∗Ct−1 + it ∗ ~Ct (8)

ot = s(Wo · ½ht−1, xt � + bo) (9)

ht = ot ∗ tanh (Ct) (10)
FIGURE 2

Structure of an LSTM cell.
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where ft, it, and ot represent the outputs of forget gate, input gate,

and output gate, respectively. Ct is the cell state vector, and s is the

sigmoid function.Wf,Wi,Wo, andWC are the corresponding weights;

bf, bi, bo, and bc are the corresponding biases. ht is the output, ~Ct is the

new memory vector, and xt is the input.

In this study, we build a 4-layer deep neural network model to

conduct 120-day Kuroshio path prediction experiments based on the

LSTM neural network. By trial and error, the size of the time window

used to predict the Kuroshio path is set to 30, which means that we

use the preceding 30-day Kuroshio path data for prediction. Besides,

the adaptive moment estimation (Adam) is taken as the gradient

optimization algorithm, which provides an optimized method for

solving sparse gradients and noise problems (Song et al., 2020). The

rectified linear unit (ReLU) function is used as the activation function.

This function avoids the gradient vanishing problem of the sigmoid

function and tanh function, and it has a high calculation efficiency.

2.2.4 Evaluation criteria
To evaluate the performance of the prediction models, we employ

root-mean-square error (RMSE), anomaly correlation coefficient

(ACC), and prediction skill score (SS) as the evaluation criteria.

These calculation formulas are defined as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
m

j=1
xPi,j − xTi,j

m

vuuut
(11)

ACC =
o
n

i=1
(xPi,j − �xPj )(x

T
i,j − �xTj )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
n

i=1
(xPi,j − �xPj )

2(xTi,j − �xTj )
2

s (12)

SS = 1 −
MSE(p, o)
MSE(c, o)

(13)

where xPi,j and xTi,j are prediction and true values, respectively, of

the Kuroshio path of the ith grid point on the jth day; . �xPj =o
n

i=1
xPi,j. and

�xTj =o
n

i=1
xTi,j are prediction and true mean values of the Kuroshio path

on the jth day, respectively;m is the number of days of testing data; n is

the number of spatial grid points representing the Kuroshio path;

RMSE is the root-mean-square error of the ith grid point; and ACC is

the spatial anomaly correlation coefficient of the jth day. MSE(p, o) =
1
mo

m

j=1
(xPi,j − xTi,j)

2 denotes the mean square error between prediction

and observations; MSE(c, o) = 1
mo

m

j=1
(xCi − xTi,j)

2denotes the mean

square error between climatology and observations, in which xCi is

climatological value of the Kuroshio path of the ith grid point.
3 Prediction experments

3.1 Comparison of EOF-LSTM and
CEOF-LSTM models

First, we construct the CEOF-LSTM (EOF-LSTM) prediction

model, based on the CEOF (EOF) analysis and LSTM neural

network only (see Figure 6). To compare the performance from the
Frontiers in Marine Science 04
CEOF analysis with the EOF analysis for the Kuroshio path

prediction, we conduct 120-day Kuroshio path prediction

experiments. After the CEOF (EOF) analysis, the Kuroshio path

data are decomposed into several modes and separated into CEOFs

(EOFs) and CPCs (PCs). To reduce the cost time, we use the first 16

CEOFs (18 EOFs) and their corresponding CPCs (PCs), accounting

for 99% of the total variance, as input parameters to predict the CPC

(PC) time series for different lead times. All the modes used pass the

North significance test (North et al., 1982); and these CEOFs (EOFs)

and CPCs (PCs) are able to reconstruct the main characteristics of the

Kuroshio path. After training the model, the CPC (PC) time series of

the significant Kuroshio path are predicted, and the Kuroshio paths

are reconstructed by using these predicted CPCs (PCs) and the

CEOFs (EOFs) from the CEOF (EOF) analysis. The residual from

the unused higher-order modes of the CEOF (EOF) analysis

(accounting for 1% of the total variance) at the start time serves as

a correction to obtain the final prediction in a form of persistence.

Such a correction can improve the prediction skill in the first three

days of the lead time. Compared with the prediction experiment

without the correction, the RMSEs of the CEOF-LSTM (EOF-LSTM)

model prediction results are reduced by 12.2% (6.2%), 6.1% (2.7%),

and 1.8% (0.7%), respectively; and the ACC values are increased by

0.0038 (0.0032), 0.0022 (0.0014), and 0.0007 (0.0007), respectively.

Figure 3 shows the averaged RMSE and ACC of the predictions

for different lead times using CEOF-LSTM (red line) and EOF-LSTM

(green line) models. The dashed black line indicates the climatological

standard deviation of the 50-year (1958-2007) Kuroshio path. It can

be seen that the RMSE of the CEOF-LSTM model is significantly

smaller than that of the EOF-LSTM model for each lead time. The

ACC of the CEOF-LSTM model is below 0.6 (the black dashed line in

Figure 3B, which has the spatial ACC of 0.6, a thumb rule for

measuring “usefulness” of predictions; Pendlebury et al., 2003) at

the lead time of 100 days, while the ACC of the EOF-LSTM is below

0.6 as early as 35 days. When the lead time is 120 days, the RMSE of

the CEOF-LSTM model is reduced by 12%, and the ACC is improved

by 0.23 compared to the EOF-LSTM model.

Figures 4A, C depict temporal-spatial distributions of RMSE for the

1-120 days Kuroshio path predictions using the EOF-LSTM and CEOF-

LSTM models. The solid black contour indicates the prediction range

where the RMSE at each location of the Kuroshio path reaches its

climatological standard deviation. Both RMSEs exhibit similar spatial

distributions, but the RMSE of the CEOF-LSTM model is smaller. To

compare the RMSEs of these two models better, we also calculate the

temporal-spatial distributions of difference between the RMSE of the

CEOF-LSTM model and that of the EOF-LSTM model, as shown in

Figure 5A. The RMSE of the CEOF-LSTM model is significantly smaller

than that of the EOF-LSTM model in all regions, especially in the region

of 137°-140°E. It can be reduced by as much as 0.3°.

In summary, the CEOF analysis is significantly better than the

EOF analysis for predicting the Kuroshio path south of Japan. It may

be due to these following reasons: The CEOF analysis can resolve

propagating wave signals (Bouzinac et al., 1998), which are closely

related to the variation of the Kuroshio path, while the EOF analysis

cannot reveal such signal characteristics. The LSTM neural network

can capture and learn these signal features during the training

process, and thus the prediction of the CEOF-LSTM model is

better. Considering the comparison results and explanations above,
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we conduct further predictions based on the CEOF-LSTM model in

the following-up experiments.
3.2 Prediction experiments using CEOF-
BEMD-LSTM model

To improve the performance of the CEOF-LSTM model, we add

the BEMD analysis to the prediction model (Rilling et al., 2007; Shao

et al., 2021a), called the CEOF-BEMD-LSTM model. Figure 6 shows

the framework of the CEOF-BEMD-LSTM model, which can be

broken down into three parts: (A) data preprocessing, (B) LSTM

prediction, and (C) correction. During the first part of data

preprocessing, the Kuroshio path data are first divided into training

dataset and testing dataset. Then, the CEOF analysis decomposes the

training dataset into CEOFs and CPCs. The CPCs of the testing

dataset are obtained by projecting the testing dataset onto the CEOFs.

Next, the BEMD analysis is conducted on the first 16 CPCs

(accounting for 99% of the total variance) to extract the CIMFs.

Each CPC is decomposed into 16 CIMFs; and all the CIMFs serve as

the inputs for the LSTM neural network. In the second part of LSTM

prediction, the LSTM neural network is used to predict the CIMFs.

After training and predicting, the predictions of the CPCs are

obtained by using the predictions of the CIMFs, which are the

outputs of the LSTM neural network. Based on the predictions of

the CPCs and the CEOFs obtained from the CEOF analysis, the

predictions of the Kuroshio path are reconstructed. In the last part of

the correction, the final prediction is obtained by adding the residual,

which consists of unused higher-order modes of the CEOF analysis

(accounting for 1% of the total variance) at the start time, as a

correction in a form of persistence. Similar to the results presented in

section 3.1, the prediction skill in the first three days of the lead time is

better than that of the prediction experiment without the correction.

Specifically, the RMSEs of the prediction results are reduced by 14.2%,

6.4%, and 1.9%, respectively; and the ACC values are increased by

0.0038, 0.0023, and 0.0006, respectively.

In this section, we compare the predictions of the CEOF-BEMD-

LSTM model with those of the CEOF-LSTM model to evaluate the
Frontiers in Marine Science 05
performance of the CEOF-BEMD-LSTM model. Figure 3 shows the

averaged RMSE and ACC values of the predictions for different lead

times using the CEOF-LSTM (red line) and CEOF-BEMD-LSTM

(blue line) models. The dashed black line indicates the

climatological standard deviation of the 50-year (1958-2007)

Kuroshio path. The RMSE of the CEOF-LSTM model is

significantly larger than that of the CEOF-BEMD-LSTM model

when the lead time is 120 days, and exceeding the climatological

standard deviation of the Kuroshio path. Compared with the CEOF-

LSTM model (red line), the performance of the CEOF-BEMD-

LSTM model (blue line) exhibits better prediction results, with

smaller RMSE and larger ACC (blue line). Even to 120 days, the

RMSE of the CEOF-BEMD-LSTM model is much smaller than the

climatological standard deviation of the Kuroshio path, and the

ACC of the CEOF-BEMD-LSTMmodel exceeds 0.7. Compared with

the CEOF-LSTM model, the RMSE of the CEOF-BEMD-LSTM

model in the prediction results of day 120 is reduced by 26%, and

the ACC is improved by 0.19.

Figures 4C, E show temporal-spatial distributions of RMSE for

the 1-120 days Kuroshio path prediction results using the CEOF-

LSTM and CEOF-BEMD-LSTM models. The solid black contour

indicates the prediction range, where the RMSE of each location of the

Kuroshio path achieves its climatological standard deviation. The

RMSEs of both models expand progressively with increasing lead

time; and the RMSEs of both models in the Kuroshio large meander

region gradually converge downstream and attain their maxima in the

Izu-Ogasawara Ridge (IOR) region with the same lead time. This is

probably because the Kuroshio path in this region changes frequently,

leading to lower signal-to-noise ratios and larger errors for the

predictions. More importantly, the prediction range of the CEOF-

BEMD-LSTM model exceeds 120 days (Figure 4E), while the

prediction ranges of the CEOF-LSTM model are under 120 days in

the upper Kuroshio (131°-135°E) and IOR (Figures 4C) and their

RMSEs are larger. We also depict the temporal-spatial distributions of

the difference between the RMSE of the CEOF-BEMD-LSTM model

and that of the CEOF-LSTM model in the 1-120 days predictions.

Figure 5B clearly shows that the RMSE of the CEOF-BEMD-LSTM

model is smaller than that of the CEOF-LSTM model in all locations.
BA

FIGURE 3

(A) Space-averaged RMSE (°) of the prediction using the EOF-LSTM, CEOF-LSTM, and CEOF-BEMD-LSTM models. The dashed black line indicates the
climatological standard deviation of the Kuroshio path. (B) Averaged ACC values of the predictions using the EOF-LSTM, CEOF-LSTM, and CEOF-BEMD-
LSTM models. The dashed black line indicates spatial ACC of 0.6, a thumb rule for measuring “usefulness” of predictions.
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We also calculate the prediction skill score (SS) with each model

to further evaluate the predictions. The SS is positive (negative) when

the accuracy of the prediction is greater (less) than the accuracy of the

climatology (Murphy, 1988). Meanwhile, the closer the SS approaches
Frontiers in Marine Science 06
toward 1, the better the prediction. The temporal-spatial distributions

of SS for the 1-120 days Kuroshio path predictions using the EOF-

LSTM, CEOF-LSTM, and CEOF-BEMD-LSTM models are described

in the right panels of Figure 4. The SSs of all models show similar
B

C D

E F

A

FIGURE 4

Left panels (A, C, E): Temporal-spatial distributions of RMSE (°) of the 1-120 days Kuroshio path predictions using EOF-LSTM, CEOF-LSTM, and CEOF-
BEMD-LSTM models. The solid black contour indicates the prediction range where the RMSE at each location of the Kuroshio path reaches its
climatological standard deviation. Right panels (B, D, F): Same as the left panels, except for temporal-spatial distributions of prediction skill score.
BA

FIGURE 5

(A) Temporal-spatial distributions of difference between the RMSE of the CEOF-LSTM model and that of the EOF-LSTM model in the 1-120 days
predictions. Negatives value means that the RMSE of the CEOF-LSTM model is smaller than that of the EOF-LSTM model. (B) Same as (A), except for the
difference between the RMSE of CEOF-BEMD-LSTM model and that of the CEOF-LSTM model. Negatives value means that the RMSE of the CEOF-
BEMD-LSTM model is smaller than that of the CEOF-LSTM model.
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distributions. Specially, the SSs decrease gradually as the lead time

increases. They are larger in the 135°-138°E region and gradually

decrease to the east and west (Figures 4D, F). Moreover, the CEOF-

BEMD-LSTM model demonstrates the best SS. When the lead time is

120 days, the SS of this model is still maintained above 0.3, being

larger than other models’. In the meanwhile, the SS remains relatively

high in the IOR despite the large RMSE in the region. To summarize,

the CEOF-BEMD-LSTM model exhibits the best prediction skill in

the 120-day Kuroshio path prediction experiments.
Frontiers in Marine Science 07
3.3 The latest Kuroshio large
meander prediction

The latest Kuroshio large meander occurred in August 2017, and

is the second Kuroshio large meander in this century. As a unique

phenomenon, the Kuroshio large meander has a significant impact on

climate change along the southern coast of Japan (Sugimoto et al.,

2020; Sugimoto et al., 2021). Therefore, Kuroshio large meander

prediction is one of the important goals to conduct the experiments
B C

A

FIGURE 6

Framework of CEOF-BEMD-LSTM model.
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for predicting the Kuroshio path south of Japan. Considering the best

performance of the CEOF-BEMD-LSTM model presented in section

3.2, we use the CEOF-BEMD-LSTM model to predict the latest

Kuroshio large meander next.

Figure 7 depicts the predictions of the Kuroshio path with the lead

time of 120 days from July 1 (1-day) to October 28 (120-day), 2017. In

general, the Kuroshio large meander transforms from the nearshore

non-large meander. However, this one switched from the offshore

non-large meandering path (Figure 7A), accompanied by a smaller

meander in the IOR. Then, the smaller meander continued to be

advected downstream with decreasing amplitude and eventually

disappeared (Figures 7B, C). Meanwhile, a trigger meander from

upstream was advected to the southern sea of Honshu with increasing

amplitude, eventually forming a stable Kuroshio large meander path

(Figures 7D–I). Overall, the predicted Kuroshio path captures this

process, namely, which implies that the Kuroshio path prediction

with the CEOF-BEMD-LSTM model can predict the latest Kuroshio

large meander formation process. Noted that the prediction errors

exist within the region of Kuroshio large meanders and the prediction

magnitude is smaller than the actual Kuroshio path (Figures 7C–I).

The latest Kuroshio large meander has lasted for five years and

remains so. In the final part of this section, we use the CEOF-BEMD-

LSTMmodel to predict the Kuroshio path south of Japan for 120 days

from January 1 (1-day) to April 30 (120-day), 2023. The prediction

results indicate that the Kuroshio will remain in the state of the large

meander (Figure 8). The position of the large meander will gradually

shift westward from 137.4°E on January 1, 2023 (dashed red line) to

136.5°E on April 30, 2023 (dashed brown line).
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4 Summary and discussion

In this study, a hybrid deep learning prediction model, called CEOF-

BEMD-LSTM model, is developed for predicting the Kuroshio path

south of Japan based on the CEOF analysis, BEMD analysis, and LSTM

neural network. To evaluate the performance of this model, we use the

Kuroshio path data obtained from the CORA reanalysis dataset from

1958 to 2007 (50 years) as a training dataset, and its counterpart from the

altimetry data from 2008 to 2022 as a testing dataset, to conduct 120-day

Kuroshio path prediction experiments. Prediction results show that the

CEOF-BEMD-LSTM model has good performance in the 120-day

prediction range evaluated by using two common deterministic skill

metrics, the ACC and RMSE. Even when the lead time is 120 days, the

RMSE is about 0.44°, which is less than the climatological standard

deviation, and the ACC can still reach 0.75, which is greater than 0.6 (a

widely used measure for forecast verification; Pendlebury et al., 2003).

This model also exhibits a good prediction skill score (SS). Besides, the

model successfully hindcasts the formation of the latest Kuroshio large

meander since the summer of 2017. Finally, we predict the Kuroshio path

from January 1 to April 30, 2023, and the predictions indicate that the

Kuroshio will continue to be a large meander.

Comparatively speaking, the prediction range of the traditional

numerical prediction is usually 60 days (Komori et al., 2003; Miyazawa

et al., 2005; Usui et al., 2006). At present, the JCOPE operational system

provides the prediction of the Kuroshio path south of Japan with a two-

month lead time (https://fra-roms.fra.go.jp/fra-roms/). However, since

its predictions are given in figures with no statistics of the prediction

results available, we cannot compare our results with theirs
B C

D E F

G H I

A

FIGURE 7

Prediction results of the Kuroshio path with the lead time of 120 days from July 1 (1-day) to October 28 (120-day), 2017 (A–I). The solid curve represents
the true path, and the dashed one represents the prediction.
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quantitatively. Currently, its two-month predictions show that the

Kuroshio will continue to be a large meander, as our model does.

Some recent studies showed that the inclusion of appropriate

predictors can improve the prediction range of deep learning models

(e.g., Oh and Suh, 2018; Liang et al., 2021). In future research, great

effort is required to seek predictor(s) of the Kuroshio path south of

Japan, which should be encoded in a reasonable way.
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