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Introduction: The Changjiang (Yangtze) River is one of the largest rivers in the

world, and its estuary and offshore plume create a diversity of ecological habitats

for the phytoplankton community. The phytoplankton community has to balance

between light limitation in the sediment-laden inshore waters and nutrient

limitation in the offshore waters. Active fluorescence measurements can provide

rapid, non-intrusive estimates of photosynthetic characteristics at high spatial and

temporal resolution.

Methods: In the summer of 2020, a field survey of hydrodynamic characteristics,

availability of nutrients, the maximum quantum efficiency of photosystem II (Fv/

Fm), and rapid light curves across the Changjiang River Estuary and its adjacent sea

was conducted, assessing relationships between photosynthetic physiology and

biomass accumulation.

Results: The photosynthetic activities significantly differed among the turbid river

water, the stratified river plume water, and the oceanic East China Sea Water. The

photosynthetic physiology of phytoplankton was the most active near the front of

Changjiang Diluted Water, where the Fv/Fm was over 0.5.

Discussion: Phytoplankton photosynthesis was alleviated from light limitation

downstream of the river mouth, and benefited from phosphorus supply via tidal

mixing and upwelling. The relatively suitable light and nutrients led to high

photosynthetic activities, supporting increased productivity and biomass in this

water. The phytoplankton in the Changjiang estuary rivermouth were under

intense stress, suggested by the Fv/Fm values under 0.3. Also, the strong vertical

mixing process diluted the river nutrients before the phytoplankton consumed

them. Nutrients further limited the phytoplankton offshore in the East China Sea.

KEYWORDS
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1 Introduction

The Changjiang (Yangtze) River is the longest river in Asia and is

ranked 5th in water discharge and 4th in sediment loading in the world

(Dai and Lu, 2014; Luan et al., 2016). The maximum discharge rate of

Changjiang River has been reported to be over 40,000 m3/s in summer

(Luan et al., 2016). The terrestrial nutrients from the Changjiang

River make the Changjiang River Estuary (CRE) one of the most

productive areas in coastal China (Gong et al., 2003; Wang et al.,

2016). However, due to the rapid development of China’s economy

and the rapid increase in population, the CRE has contributed

significantly to eutrophication of its estuarine system, causing a

shift from diatoms to a degraded system with frequent harmful

dinoflagellate blooms every year (Zhang et al., 2007; Zhou

et al., 2022).

The CRE is also one of the most studied coastal ecosystems in

China (e.g., Zhang and Liu, 2002; Zhang et al., 2007; Zhou et al.,

2008). The estuarine dynamics and the biogeochemical processes

have been extensively studied in detail. A massive plume region is

created when the large amount of freshwater enters the ocean (Wu

and Wu, 2018). The suspended sediments from river input form a

sediment front between the well-mixed low-salinity water near the

river mouth and the stratified plume water seaward (Ge et al., 2020).

Complicated mechanisms between the river strongly influence the

CRE, including Pacific ocean water masses in the East China Sea

(ECS), the Taiwan Warm Current (TWC), the Subei coastal current

and the intrusion of the Kuroshio Current (Qi et al., 2014). The

complex dynamic physical characteristics of the CRE drive the

biochemical cycles of nutrients, suspended matter, and light,

ultimately affecting the spatial and temporal distribution and

physiological status of phytoplankton in the estuary and its adjacent

sea areas (Li et al., 2021). There are many records of the temporal and

spatial dynamics of the phytoplankton in the CRE (e.g., Wang et al.,

2021; Fang et al., 2022; Gao et al., 2022). However, there has been a

lack of in situ data sets about the photosynthetic characteristics of

phytoplankton in the mixing of different water masses of this

estuarine area.

The maximal photochemical efficiency (Fv/Fm) is one of the

principal parameters of photosynthesis. Fv/Fm is often used as an

indicator of the physiological status of phytoplankton (Parkhill et al.,

2001). Relatively low Fv/Fm indicates the environmental stresses and/

or photoinhibition (Tan et al., 2019). Rapid light curves (RLC)

measure effect ive quantum yields , and accl imation of

photosynthetic activates over a range of changing actinic

irradiances, which provide additional information about the

efficiency (alpha, a) and maximum photosynthetic capacity (as

relative electron transport rate, rETRmax) of photosynthesis to

assess the photosynthetic activates (Marshall et al., 2000; Ralph and

Gademann, 2005). Here, these measures were used to assess spatial

variations in physiological status of the phytoplankton across the

gradient of light and nutrient limitation of the CRE.

In the study, we hypothesized that the photosynthetic activities of

phytoplankton along the CRE were impacted by variations in the

mixing of different water masses because of differences in their

turbidity and nutrient content. The investigations of phytoplankton

biomass and photosynthesis parameters were conducted along the

transition from the inner river mouth to the adjacent shelf in the
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Changjiang River Estuary in the summer of 2020. This region spans

the gradient from the inner light-limited zone through the plume to

the offshore nutrient limited zone (sensu Li et al., 2021). Highest

chlorophyll a (Chl-a) has previously been documented in the

transition zone beyond the sediment front where sufficient light is

available for growth. These measurements therefore build an

understanding of the physiological status of the phytoplankton to

support the previously observed biomass accumulation.
2 Materials and methods

2.1 Study sites and sampling regime

A cruise was conducted between 1 and 5 July 2020 in the CRE and

its adjacent ECS onboard the R/V RunJiang. Observations of physical

and biogeochemical variables were made along two cross-shelf

transects extending from the estuary and another two transects

parallel to these two transects located in the north and south of

them in the lower Yellow Sea and the upper East China Sea,

respectively. These transects are labeled as A, B, C, and D from

north to south, and data and samples were collected at the 52 stations

on these four transects (Figure 1).
2.2 Sampling and hydrographic properties

The basic physical parameters, including temperature, salinity,

dissolved oxygen (DO) and turbidity, were measured at each station

through a Sea-Bird Electronics (SBE) 911 Sealogger CTD

(Conductivity-Temperature-Depth) system with DO sensor SBE43

(U.S.). The Apparent Oxygen Utilization (AOU) was estimated by the

difference between the measured DO and its equilibrium saturation

concentration in water with the same properties. Photosynthetically

active radiation (PAR) was assessed on the deck with a portable

illuminometer (Biospherical, QSL2101, U.S.). The surface (about 3

meters in depth) PAR values were calculated with the optical

attenuation coefficient (Kd). Water samples at different depths in
FIGURE 1

Stations for transects (A–D) in the southern branch of the Changjiang
River Estuary and the adjacent East China Sea. The background map
shows the water column depth. The location of sediment front (red
line) and plume front (blue line) of the estuary were shown according
to Li et al., 2021.
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each station were taken using a Niskin hydrophore (General

Oceanics, US).

Surface water samples were filtered through 25 mm GF/F glass

fiber filters (Whatman, U.K.). The filters were frozen in sterile sample

bags, and the water samples were stored in high-density polyethylene

bottles at -20°C. Subsequently, the filters were used to determine

parameters such as Chl-a and accessory pigments, and nutrient

concentrations were measured from the water samples.

The Chl-a concentrations were measured following the National

Standard of China for the Specification for Marine Monitoring (State

Bureau of Quality and Technical Supervision of China, 2007). Filters

were extracted with 90% acetone in a dark environment at a low

temperature for 12h. The total Chl-a content was determined by using

a chlorophyll fluorescence analyzer (Trilogy, U.S.). The nitrate (NO3
-

), nitrite (NO2
-), ammonium (NH4

+), dissolved silica (DSi), and

soluble reactive phosphorus (SRP) concentrations of the filtered

water samples were measured in the laboratory by a continuous

flow nutrient analyzer (QuAAtro, Germany). The sum of NO3
-, NO2

-

and NH4
+ constituted dissolved inorganic nitrogen (DIN).

The photosynthetic pigment composition of phytoplankton at ten

stations on transect C was analyzed by High-Performance Liquid

Chromatography (HPLC, Dionex UltiMate 3000) following Van

Heukelem and Thomas (2001). The phytoplankton community

composition was calculated using CHEMTAX (Mackey et al., 1996)

in R-Studio (4.1.3) by the calculation of the matrices of species-

specific pigments of different concentrations and ratios with the

references from earlier phytoplankton research with CHEMTAX in

the ECS (Zhu et al., 2009).
2.3 In situ measurement of photosynthetic
activity

Photosynthetic parameters of samples at all 52 sampling stations

were measured using a Phyto-PAM II (Walz, Germany). The on-site

water samples were quickly stored in a blackened bottle and placed in
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a flowing seawater environmental bath. After 20-minutes dark

adaptation, a 2mL sample was transferred to a quartz cuvette using

a pipettor, and the measuring light of Phyto-PAM II was turned on to

obtain the minimal fluorescence F0. Then, the Saturation Pulse was

turned on to obtain the maximum fluorescence Fm after dark

adaptation. (Fm-F0) is variable fluorescence. The maximum

photochemical efficiency Fv/Fm was calculated by:

Fv=Fm = (Fm −  F0)=Fm (1)

The in situ actinic light was set from 1 mmol photons m-2 s-1 and

increased by 100 mmol photons m-2 s-1 every 30s to 1300 mmol

photons m-2 s-1 to obtain the RLC parameters. Three parameters were

determined from the RLCs: initial slope (a), rETRmax, and saturation

light intensity (Ik).
2.4 Data processing and statistical analysis

Environmental data and photosynthetic parameters were

processed in Excel and R-Studio. Figures were made using Ocean

Data View and R-Studio. All comparisons were made via repeated

measures ANOVA with a Tukey–Kramer adjustment for pairwise

comparison. Also, Pearson correlations were calculated to examine

relationships between photosynthetic and physical parameters.
3 Results

3.1 Research area hydrological and
environmental parameters

All transects encompassed the previously defined zones of the CRE

(Table 1). The sediment front was located at 121.9°E–122.5°E, and the

plume front was located at approximately 122.5°E–123.5°E. Using

previously defined zones (Li et al., 2021), Zone I is where the turbid

river reaches the estuary mouth before the sediment front; Zone II is the
TABLE 1 The mean value and standard deviation of environmental factors, Chl-a concentration, and photosynthetic parameters in three zones of the
Changjiang River Estuary divided by the sediment and plume fronts (as defined by Li et al., 2021).

Zone I Zone II Zone III

Temperature (°C) 25.6 ± 0.5 23.8 ± 0.9 24.6 ± 1.4

Salinity 2.8 ± 4.2 23.4 ± 3.1 30.6 ± 2.2

Chl-a (mg·m-3) 1.62 ± 0.45 3.10 ± 2.80 1.29 ± 0.98

DIN (mM) 104.4 ± 23.5 20.6 ± 8.6 2.07 ± 1.6

SRP (mM) 0.77 ± 0.22 0.17 ± .015 0.022 ± 0.03

DSi (mM) 109.9 ± 27.3 25.5 ± 9.2 5.09 ± 3.8

Fv/Fm 0.27 ± 0.043 0.46 ± 0.10 0.41 ± 0.09

Alpha 0.046 ± 0.011 0.090 ± 0.03 0.067 ± 0.016

rETRmax (mmol·s-1·m-2) 16.2 ± 5.7 22.2 ± 8.9 12.4 ± 3.70

Ik (mmol·s-1·m-2) 339.8 ± 73.6 246.8 ± 30.2 185.3 ± 41.2
f

*Zone I: station B1 to B9, and C1 to C11;
Zone II: station A1 to A5; B10 to 14; C13, 14; D1 to D4;
Zone III: station A6 to A9; B15 to A17; C17 to C19; D5 to D7;
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stratified river plume water between the sediment front and plume front;

and Zone III is the oceanic water offshore off the plume front.

Surface water temperature was higher in both the upper river

mouth (Zone I) and the southern part of the oceanic zone (Zone III).

The water temperature in Zone II between the two fronts was up to

~1-2°C lower than either Zone I or Zone III (Figure 2; Table 1). The

turbidity was the highest in the estuarine region (Zone I) and formed

a sharp front as it extended out to sea (Figure 2). The AOU was the

highest near the river mouth in the sediment font area and also high

near the Zhoushan Islands (up to 117 mmol/kg). Negative AOU (-76.8

mmol/kg) values were observed in Zone II (Figure 2), where Chl-a

concentration reached its peak (8.9 mg/m3, Figure 2). The high Chl-a

areas (> 4 mg/m3) were located in the Zone II. The Chl-a

concentration increased from 1.62 ± 0.45 mg/m3 in Zone I to 3.10

± 2.80 mg/m3 in Zone II and decreased to 1.29 ± 0.98 mg/m3 seaward

in Zone III.

Stratification of the water column is apparent in the transition

from Zone I to Zone II, as shown for transect C (Figure 3). In general,

the water inside the river mouth was well-mixed. Temperatures were

as much as 5°C different between surface and bottom water in the

stratified waters, and salinity was substantially higher in deeper

waters. Concentrations of DIN decreased from >125 mmol L-1

inshore in Zone I to near detection limits offshore in Zone III

(Figure 3). Concentrations of SRP also declined from Zones I to III,

initially dropping from >1.0 mmol L-1 in Zone I to 0.25 mmol L-1 in

surface waters of Zone II, and finally declining sharply at the nutrient

front to nondetectable levels in Zone III (Figure 3). Spatial and depth

trends in DSi tracked those of DIN (Figure 3). A peak in Chl-a was
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observed in the surface waters of Zone II, reaching values >4.5 mg m-3

(Figure 3). Inorganic nutrient ratios (as DIN/SRP and DIN/DSi) were

highest in Zones I and surface waters of Zone II, with lowest values

offshore in Zone III beyond the plume front (Figures 3H).
3.2 Photosynthetic parameters

In Zone I near the river mouth, the maximum quantum yield

(Fv/Fm) was low, with an average value of 0.27 (Figure 4A), and the

initial slope of the RLC (a) was also low (0.045 ± 0.011) (Figure 4B).

Accordingly, high values of Ik (339.8 ± 73.6 mmol·s-1·m-2) and

comparatively low values of rETRmax (~16.2 ± 5.7 mmol·s-1·m2)

were also observed in Zone I (Figures 4C, D). In Zone II, values of

Fv/Fm were high (0.48-0.62) and the locations of high a values

(0.090 ± 0.03) were consistent with the high Fv/Fm, as were high

values of rETRmax (22.2 ± 8.9 mmol·s-1·m-2) (Figures 4B, D). In the

oceanic water of Zone III, the Fv/Fm decreased to an average of 0.41,

but a region of high Fv/Fm (0.53) was also observed in the northeast

of the research area. The a value decreased to an average of 0.067 ±

0.016. The rETRmax also decreased to 12.4 ± 3.70 mmol·s-1·m-2 in

Zone III.

The vertical profiles of photosynthetic parameters from transect C

reveal variability with depth (Figure 5). In Zone I, all depths were

characterized by low Fv/Fm, low a, and high Ik, but there was a small

region of relatively high rETRmax (between Station C3 and C6).

Highest values of Fv/Fm were observed in the surface waters of

Zone II, and remained ~0.5 through much of the water column,
B

C D

A

FIGURE 2

The environmental parameters from the surface water (~3 m) of the Changjiang River Estuary in the summer. (A) water temperature (°C); (B) water
turbidity (NTU) with overlaid salinity (solid white line); (C) The derived Apparent Oxygen Utilization (AOU, mmol/kg); (D) The chlorophyll-a concentration
(mg/m3) with the location of the sediment and plume fronts (solid white line).
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while rETRmax in this region declined from a high of >30 mmol·s-1·m-2

in surface waters to ~20 mmol·s-1·m-2 in deeper waters (Figure 5D). In

Zone III, the Fv/Fm value was low (~0.3) in the surface, but slightly

increased in the subsurface layer. Also in this zone, values of a

decreased and those of Ik increased to values comparable to those

observed in Zone I (Figures 5C).
3.3 Phytoplankton community composition

The phytoplankton community composition, as determined from

transect C, was dominated by diatoms at all stations and zones

(Figure 6). The dinoflagellate population was a relative minor

component, but did increase from inshore to offshore.

Cryptophytes were an important component mainly at freshwater

stations C1, C3, and C5. Chlorophytes were only found at station C1

(6.04%), and Cyanobacteria were found at stations C-1 and C-19.
Frontiers in Marine Science 05
4 Discussion

4.1 Physical and environmental conditions in
the estuary

The environment in the CRE is highly dynamic and exhibits a

broad range of nutrient and light conditions and distinct

environmental spatial variation along the estuary. A persistent

sediment front exists in the CRE near 121.9°E–122.5°E in summer,

which was influenced by the mixing caused by salinity intrusion and

tidal mixing (Li and Zhang, 1998). The intense mixing and circulation

caused by the current and tide from the ocean resuspend the sediment

deposited at the bottom to return to the water body with the

upwelling near the sediment front outside the river mouth. The

Changjiang River plume extended northeastward in the summer is

one of the iconic hydrodynamic features of CRE (Chen et al., 2008).

The CTD profiles and the relatively low temperature in the CDW area
FIGURE 3

The vertical profiles of (A) temperature (°C), (B) salinity, (C) dissolved inorganic nitrogen (DIN, mmol/L), (D) Soluble reactive phosphorus (SRP, mmol/L),
(E) silicate (mmol/L), (F) chlorophyll a (Chl-a, mg/m-3), (G) DIN : SRP ratios (N:P), (H) DIN : Si ratios (N:Si) from transect C in the southern branch of the
Changjiang River Estuary and the East China Sea.
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suggested cold bottom water (~20°C) approaching the surface water

which was suggested to be the intrusion of the TWC deep water

(TWCDW), originating from the Kuroshio subsurface water

(Ichikawa and Beardsley, 2002; Zhang et al., 2014). The uplift of

TWCDW increased the exchange near the CDW front and enhanced

the convergence within the main plume.
Frontiers in Marine Science 06
Previously, using five years of summer observations in the CRE,

Li et al. (2021) showed that summer Chl-a develops in the

“sandwich” region between the sediment and the plume fronts.

That is, it develops when relieved of light limitation in the

nearshore, Zone I, and nutrient limitation offshore, in Zone III.

Here, at the stations with high Chl-a concentration (~8 mg/L) in the
B

C D

A

FIGURE 4

The photosynthetic parameters from the surface water (~3 m) of the Changjiang River Estuary in the summer with the location of the sediment and
plume fronts (solid white line). (A) Fv/Fm, (B) alpha, (C) Ik, (D) rETRmax.
FIGURE 5

The vertical profile of photosynthetic parameters at transect C in the southern branch of the Changjiang River Estuary and the East China Sea. (A) Fv/Fm;
(B) alpha (a); (C) Ik; (D) rETRmax.
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plume area, the DIN concentration decreased to 25 mmol/L or lower,

and the DIP was ~0.3 mmol/L or lower. Estimated by the ratio of

Chl-a to C (Chl/C) and the Redfield stoichiometry, such amount of

Chl-a only consumed less than 2 mmol-N/L, but may consume ~0.22

mmol-P/L (Zhang et al., 2020). This indicated that biological

consumption by phytoplankton only contributed a very small

portion of the large N (and Si) lost along the estuary, but may

contribute to a significant portion of the P lost. It is suggested that

the dilution mostly caused the high DIN and Si lost in the surface

water by the low N and Si oceanic water. However, this mixing

process brought additional P from the bottom oceanic water to the

surface while diluting the N and Si nutrients. Phosphorus is

suggested to be the limiting nutrient in this area (Li et al., 2009;

Huang et al., 2019). The intrusion of water of TWC and Kuroshio

subsurface water near the CRE is characterized as relative P-rich.

This supply of P input from the intrusion water partially released the

P stress, enhancing phytoplankton growth and primary production

in the frontal areas (Shi et al., 2014; Zhou et al., 2019). The mixing

process also resulted in relative low N:P ratio (72) at the Chl-a peak

at station C13, comparing the high N:P ratio in the upper estuary

and the oceanic water. Therefore, phytoplankton cells, dominated

by diatoms, meet the relative cold and N:P-balanced water with a

consistent N supply from the river, and an extra P supply from the

upwelling bottom water. An uplifted thermocline in the summer

also increased light availability to the phytoplankton (Zhang et al.,

2020). Phytoplankton blooms triggered by coastal upwelling around

the CRE have been extensively reported (Wang et al., 2017; Xu et al.,

2019). This study revealed the physiological status of the active cells.

When favorable environmental conditions enhanced the

photosynthetic activities, a bloom developed in the frontal area.

Along the estuary, the Chl-a peaks were observed in the surface

water of the plume area between the two fronts, consistent with trends

reported by Li et al. (2021). The Chl-a peaks were developed in the

stratified water off the sediment front, and declined coincided with

nutrient depletion, indicating the balance of light and nutrients

between the river water and the oceanic water of the East China

Sea. After the surface nutrients were depleted in Zone III,
Frontiers in Marine Science 07
stratification prevented nutrient supply from the bottom water,

resulting in low phytoplankton biomass.
4.2 The photosynthetic coefficients in the
estuary and environmental stressors

The Fv/Fm is one of the most commonly used fluorescence

parameters to assess the physiological status or as an indicator of the

stressor (Tan et al., 2019). Here, the phytoplankton assemblages were

grouped in stress, transitional, and blooming conditions, based on the

value of the Fv/Fm, as low (<0.3), moderate (0.3-0.5), and high (>0.5),

respectively. Phytoplankton cells were stressed in Zone I, the high

turbidity zone in the estuary, but were not stressed in Zone II, where the

Chl-a peak was observed. Then, the phytoplankton cells again were

stressed in the oceanic water. Although the phytoplankton may be

under stress in different parts of the estuarine, the causes of the stress

varied based on the variety of environmental conditions in the estuary.

The extra supply of P from the bottom water partially released the

P stress in the Zone II, indicated by the highest Fv/Fm value, and

enhanced the phytoplankton growth and primary production in the

frontal areas. The favorable environmental condition enhanced

photosynthetic activities, and high biomass was developed in the

frontal area. The high Fv/Fm value in the middle and bottom layers of

stations C12 and C14 indicated that the phytoplankton were relatively

healthy and active throughout the water column.

In the Zone III, the surface P was depleted, and stratification

prevented P supply from the bottom water. The high N:P ratio

suggested P limitation resulted in low Fv/Fm. Cyanobacteria were

present at a relatively high proportion in the phytoplankton

community at station C19. Small-size cyanobacteria (e.g.,

picocyanobacteria) can adapt to the oligotrophic water with greater

efficiency to utilize nutrients with a relatively low Fv/Fm (Hirata et al.,

2011; Hodoki et al., 2011), and are known to be abundant in the

oligotrophic water off the ECS (Xu et al., 2019). In offshore water, high

light irradiance and UV radiation may also damage the PS II system

and reduce the photosynthetic activities’ performance. The Chl-a

maximum was located in the subsurface layer to avoid

photoinhibition and balance the availability of light and P in the

deeper water.
5 Conclusion

This study provided a spatial perspective of the phytoplankton

photosynthetic physiology along the salinity gradient of the CRE.

There was also a good agreement between the physiological status and

phytoplankton biomass accumulated at the different sections of the

CRE, adding further understanding of the relationships between

suspended sediment and nutrients and phytoplankton biomass

accumulation. The photosynthetic efficiency (Fv/Fm) ranged from

low to moderate in the turbid upper estuary before the sediment front,

highest between the sediment and plume front, and low in the

nutrient limiting ocean water, respectively. In the estuary, the

photosynthetically inactive cells were under stress from light,

nutrients, salinity, resuspension particles, the decline of blooms,

and high turbulence. The P supply from the offshore high-
FIGURE 6

The phytoplankton community composition and Chlorophyll a
concentration (solid black line) in the surface water of Changjiang
River Estuary in summer along the transect C, according to high-
performance liquid chromatography (HPLC) and CHEMTAX analysis.
Phytoplankton species include Diatoms, Prasinophytes, Crytophytes,
Prymnesiophytes, Dinoflagellates, Cyanobacteria, Chrysophytes, And
Chlorophytes.
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phosphate bottom water is critical to active the phytoplankton cells

and stimulate the blooms in the front area of the CDW, which

supports the primary production in this area.
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