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Since 1950, coral abundance has declined worldwide by an estimated 60%, and

further dramatic declines are predicted. Although global reductions in carbon

emissions are essential to prevent further loss, coral reef restoration has become

imperative to maintain the ecosystem services that coral reefs provide to humans

at local scales. Yet, currently coral restoration and gardening efforts are too

expensive to scale up due to the labor-intensive nature of the methods and low

success rates. Here, we present a suite of technologies that improve coral reef

restoration and rehabilitation’s scalability, efficiency, and effectiveness. Our

modular technologies are designed to streamline in and ex situ nursery

workflows, reduce maintenance times, solve problems in transporting corals to

outplanting sites, and enable rapid outplanting on natural and artificial substrates.

These novel structures can act as coral seeding hubs, which placed strategically,

can have the capacity to enhance coral reproduction and replenish degraded

nearby reefs with larvae. They can be applied to coral restoration and reefscaping,

complemented by unique eco-friendly, low-carbon-emission structures for the

creation of architecturally and visually appealing habitats and underwater

landscapes. Our technologies integrate novel monitoring approaches that

support intelligent solutions to track genotypes, optimize and control stock

management, apply assisted evolution approaches, and adaptive management

through long-term monitoring.

KEYWORDS

restoration, maritechture, coral nursery, adaptive management, selective propagation,
blue architecture, coral seeding hubs
1 Introduction

In the last 70 years live hard coral cover on coral reefs has declined by approximately 60

percent globally, which has been accompanied by a decline in the capacity of coral reefs to

provide ecosystem services (Eddy et al., 2021). Even under moderate warming scenarios, a

further loss of 75 to 95% of extant coral reefs is predicted by the end of this century (Frieler
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et al., 2013; van Hooidonk et al., 2016; IPCC, 2022). Increases in the

frequency and severity of marine heat waves are expected to cause

significant reductions in coral productivity, calcification, and survival in

the next two decades (Klein et al., 2022). Therefore, substantial

reductions in global carbon emissions and strict commitments to the

Paris Agreement are essential to reduce a further loss (Kleypas et al.,

2021). Provided the extent of realized and projected losses, coral reef

restoration has become imperative to maintain the ecosystem services

that coral reefs provide to humans at local scales (Hein et al., 2021).

However, the biggest challenge remains implementing marine

restoration efforts at scale, which are the most expensive and

inefficient for coral reefs (Duarte et al., 2020). Currently, coral

restoration projects are generally small, measuring only 500 m2 per

project in median (Boström-Einarsson et al., 2018). One of the most

extensive coral restoration efforts to date was completed at Badi Island

in Indonesia which involved the deployment of 7,000 m2 of structures

within an area of two hectares (Williams et al., 2019). However, Razak

et al. (2022) describes a project in Indonesia creating up to 74.3 hectares

distributed over five areas in Bali; notably with the effort of 10,000

people employed to plant nearly 96,000 units of artificial reef.

Unlike the culture of other marine species targeted for aquaculture,

where productivity and yield have evolved over decades with dramatic

technological innovations over the last 50 years, coral farming is still at

the microscale due to a lack of industrial tools and difficult access to the

marine environment (Gibbs, 2021). This contributes to the high costs

associated with coral restoration, which is priced at a median of 404,147

$US ha-1 (at the base year 2010) (Bayraktarov et al., 2019), with an

uncertain success rate as few projects monitor survival long term

beyond the time frame of the project (Boström-Einarsson et al.,

2018). A recent review of patent and scientific literature data in the

field of coral restoration highlighted a disconnect between technological

innovation indicated by patent registrations, scientific findings and

actual needs of coral restoration practitioners (Roch et al., 2023). The

authors stress that research findings are often not translated into

innovative and tangible management solutions. Further, market

needs are not addressed by the majority of the technological

innovations filed. Although the demand for coral restoration is

rapidly growing, most projects are the size of a backyard, created

using custom tools and solutions often specific to each project.

Synthesizing the return-on-effort for the cost-effectiveness and

viability of restoration efforts, Suggett et al. (2019) found no apparent

change indicative of improved methodology over time. Large-scale

projects demanding the implementation and driving the innovation

needed for more industrial approaches and off-the-shelf solutions are

still absent.

While restoration via transplantation on natural substrate is the

most commonly practiced strategy, one-fifth of all projects create or

add substratum such as artificial reefs (Boström-Einarsson et al.,

2020). Artificial structures may be used for the augmentation of the

reefscape to increase suitable substrates for coral transplantation,

foster fish abundance via habitat creation, or tourist experiences

(Boström-Einarsson et al., 2018). Working on ecosystems that are

already suffering from carbon emission driven climate change and

pollution, restoration efforts should aim to use environmentally

friendly materials, avoid or minimize the use of plastic and target a

low carbon footprint. Previously failed initiatives using old car tires
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for artificial reef construction, which had to be recovered at great

expense (Sherman and Spieler, 2006), underscore the need to carefully

select the materials used in reef restoration.

To reach ecologically meaningful scales in coral restoration, new

solutions are needed to maximize efficiency in particular for marine

operations. A significant bottleneck are the dive operations needed for

outplanting and in situ coral bottleneck. For example, adhesion of a

single coral during transplantation via epoxy takes up to ten minutes

(Chamberland et al., 2017), adhesion with cement requires over five

minutes per coral (Unsworth et al., 2021). One of the fastest methods

for fragment attachment are the Coral clips, nails equipped with a

metal clip to fixate the outplant, which require approximately one

minute per coral (Suggett et al., 2020).

To reduce marine operations, coral aquaculture has been proposed

as an ecological and economically viable solution for scalable reef

restoration (CoralVita, 2019). To date coral aquaculture facilities are

small-scale and frequently use conventional techniques such as tiles or

plugs on plastic egg crates (Yanong, 2008; Craggs et al., 2019; Humanes

et al., 2021). These types of facility require regular manual cleaning

making maintenance of corals in nursery systems very labor-intensive.

Although land-based systems are more easily accessible and, therefore,

easier to maintain than in situ coral nurseries (O’Neil, 2015), the

workforce has been identified as the main challenge across different

coral gardening methods (Hein et al., 2021). While integrating

volunteers or citizen scientists can in part compensate for high

workforce requirements in smaller projects (Hesley et al., 2017),

commercial endeavors at scale would not be able to rely on this

approach. Hence, more innovative and advanced technologies are

required to streamline workflows and reduce labor-intensity to reach

meaningful industrial scales of production.

Here we describe the first-ever modular suite of coral restoration

technologies, invented specifically to simplify and increase the

efficiency of critical workflows, from coral husbandary, substrate

creation and outplanting. Each coral restoration technology

described is inter-compatible, and can be used alone or in

combination, targeting flexibility, scalability and cost effectiveness.

We provide a solution for rapid reefscaping using quickly deployable

artificial structures. Rethinking coral restoration efforts from an

industrial scale perspective, the presented technologies are the first

engineered solution with the potential to enable large scale

farming operations.
2 Materials and equipment

The designs described here are registered under the trademark

Maritechture™ and patented to ensure they are consistently

engineered and to facilitate economies of scale at the point of

production, thereby reducing the cost of each element.
2.1 Screwable coral tiles

Maritechture™ screwable coral tiles have an internal thread that

allows quick and tool free attachment to several other products

outlined below in the following. Tiles are made from cement and
frontiersin.org
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shapes can be modified to cater for different propagation pathways,

e.g. fragmentation, microfragmentation (Forsman et al., 2015) and

recruitment (Figures 1E, B, C). We chose a hexagon shape for

propagation of larger fragments, which allow easy screwing

(Figure 1D). For propagation via micro-fragmentation, where a

larger flatter surface is preferable, we developed a flatter hexagonal

shape to promote the overgrowth of the surface (Figure 1B). For

sexual propagation via larvae settlement, we developed a shape with

multiple cavities to promote settlement. An RFID (radio frequency

identification) chip can be embedded within the cement tiles, enabling

long-term labelling of individual tiles (Figure 1F) and allowing for the

identification and tracking of origin, performance and survival

throughout restoration or enhancement efforts.
2.2 Coral crates

Maritechture™ coral crates (Figure 2) are racks of durable, UV-

resistant ABS plastic that allow coral tiles to be attached via threaded
Frontiers in Marine Science 03
pins erected vertically from linear extrusions (Figures 1A, B). The

design allows multiple tiles to be attached per frame, arranged in a

uniform and equally spaced pattern. The crates are stackable and click

into each other, creating a 10 cm gap between each level. Each row is

pre-labelled, and the crates can be equipped with RFID tags or QR

codes for organization of tiles. In their current design, each unit

measures 50 x 50 x 15.5 cm and can hold up to 56 fragments. The

crates have holes in their legs for horizontal connection of multiple

crates, allowing, for example, the quick set-up of in situ nurseries.
2.3 Coral outplanting/nursery devices

The modular tile system allows for easy attachment and removal

of propagated corals by screwing and provides great flexibility for

different types of coral gardening and outplanting. Maritechture™

Reef Nails (patent pending) are threaded nuts that, when combined

with a standard stainless-steel concrete/masonry nail, can be easily

embedded in solid reef substrates and expose a thread that matches
frontiersin.or
FIGURE 1

Maritechture™ Screwable coral tiles (patent pending, U.S. Patent Application No. 17/767,251Filed April 7, 2022). (A) Different shapes to cater to different
propagation pathways. (B) Microframentation tile. (C) Recruitment tile. (D) Fragment tile. (E) Coral tiles attached to the coral crate. (F) Trackable tiles are
RFID microchipped and can be identified using a conventional chip reader, which can be operated underwater. White bar indicates 1 cm in width.
FIGURE 2

Maritechture™ Coral crate (patent pending, 63/187,218 and 29/783,128, “Coral farm crate and methods of use thereof” May 11, 2021). (A) Stackable coral
crate. White bar indicates 10 cm in width. (B) Coral tiles on coral frame. (C) Easy and safe transport of corals.
g
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the coral tiles (Figures 3A, B). The nut fits tightly around the nail to

avoid rotation but can be secured with additional adhesives if needed.

Maritechture™ Reef Wall Plugs (patent pending) have the same

function but are attached with a steel screw similar to a standard wall

dowel (Figures 3C, D). They allow for quick and solid attachment of

coral tiles to surfaces with predrilled holes, such as artificial structures.

To equip existing coral gardening infrastructures with our

technology, we have developed several solutions (patents pending):

Maritechture™ Clips for PVC pipe nurseries [e.g., coral tree

nursery© (Nedimyer et al., 2011)(Figure 3E)], Maritechture™

adapters for steel rod/metal frame nurseries (e.g. Williams et al.,

2019) that can be fastened with cable ties (Figure 3F), Maritechture™

adapters for aluminum frame/grid nurseries (e.g. Suggett et al., 2019)

that can be fastened with cable ties (Figure 3G), and adapters for rope

nurseries (e.g. Levy et al., 2010) that can be twisted into the rope and

expose two sides for tile attachment (Figure 3H).
2.4 Coral pods

To provide a stable artificial substrate for coral outplants where

this is lacking, we developed Maritechture™ Coral Pods, which are

limestone structures consisting of two plates that can be assembled at

90-degree angles to form a quattro pod (four-legged stand) like

structure (Figure 4). Drilled holes along the top edge allow coral

fragments to be attached with cable ties or Maritechture™ Reef Wall

Plugs (Figure 3C). Additional holes in the center of the segments

provide an ideal place for massive corals to be attached using our tile

system. The shape and size (with individual panels approximately

145 cm long, 47 cm high, and 3 cm thick) aim to minimize waste

during production and allow ergonomic handling, so the weight of

each limestone segment is limited to approximately 20 kg (Figure 4C).

The design provides stability in low to medium-energy environments.

However, these dimensions and design (including number of stacked

plates) can be adjusted depending on the available limestone slab sizes

and the intended use.
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3 Method description

Our modular infrastructure for coral restoration and reefscape

enhancement has been designed to streamline various elements of the

coral gardening process from husbandry to outplanting (Figure 5)

and facilitate data logging and monitoring.
3.1 Donor

With our technologies, corals may originate from sustainable

harvesting (Rinkevich, 1995; Barton et al., 2017), fragments of hope

(Garrison and Ward, 2012), coral relocation sites (Kenny et al., 2012),

or nursery/growth operations (Rinkevich and Shafir, 2000; Barton

et al., 2017). Propagation can be asexual by fragmentation (Rinkevich,

1995) or sexual by cultured (Petersen and Tollrian, 2001) or wild-

caught larvae (Doropoulos et al., 2019) (Figure 5). Regardless of

origin, it is critical to collect as much metadata as possible on the

corals to inform husbandry conditions and to direct downstream

applications (Baums et al., 2011). This includes the GPS coordinates

of the sample location in the case of wild-sourced corals or the origin

of the donor/parental lineages in the case of husbandry. The sampling

date, size, species, depth, temperature, light conditions, etc., should

also be provided. These data should be recorded and stored in a

central database (Figure 5) to inform performance assessments and

optimize future deployments.
3.2 Screwable coral tiles

Transplanting fragments or seeding larvae using trackable

Maritechture™ Coral Tiles allows metadata to be associated with

individuals via RFID tags. This information can guide culturing

conditions during husbandry, for example, regarding light levels.

Embedding the RFID tag into the transplant or seeding substrate

allows for permanent long-term identification and efficient stock
FIGURE 3

Devices for different outplanting/nursery types. (A, B) Maritechture™ Reef nails for outplanting on natural substrate (patent pending) (C, D)7 Reef wall
plug for outplanting on coral pods, harbor walls, etc. (patent pending) (E-H). Tools to equip existing nurseries. (E) Clip for PCV pipe nurseries. (F) Adapter
for steel/bar nurseries. (G) Adapter for aluminum frame/grid nurseries. (H) Adapter for rope nurseries. White bar indicates 5 mm in width.
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management (Schmidt-Roach et al., 2020). It will enable monitoring

and tracking of individual colony performance, stress susceptibility,

health and survival during culture and beyond, all of which can be

related back to colony origin and history. If individuals die, the tiles

can be cleaned and reused.

Tagged tiles are equipped with passive integrated transponders

(PIT) based on radio frequency identification (RFID) with low-

frequency operation (134.2 kHz) and 64-bit identification. The tags

can be read with any PIT reader compatible with the ISO 11785

standard. When used in conjunction with inventory management

software, this solution allows corals to be tracked as they are

propagated or moved between tanks ex situ or sites/structures in

situ to automatically update records. This enables real-time

automated stock management to coordinate aquaculture and

allocate harvestable colonies to outplanting efforts. We are

currently prototyping software customized for this purpose.

For fragmentation, we use various standard cutting techniques

such as bone cutters or a Gryphon Diamond Band Saw (AquaSaw).

Adhesion of coral fragments to tiles or plugs is performed using

various methods, including epoxy (e.g. Hein et al., 2020) or ultraviolet

(UV)-curable oligomer-based adhesives (Takeuchi et al., 2019), or

commercially available gel-based cyanoacrylate adhesives. It is

important that the fragment’s tissue has grown over the tiles prior

to outplanting, as the adhesion of the adhesive often wears off over

time. It has been shown that coral fragments from branching species

attached upside down grew significantly wider and faster over the tiles

than corals attached right side up (Tagliafico et al., 2018), and we

recommend this technique to promote rapid tile overgrowth.

The shape of the tile can be adjusted to the propagation pathway

(Figure 1). For fast-growing, branching species, we recommend small

hexagonal tiles (Figure 1E). For slow-growing, massive species,

we recommend larger tiles that allow the use of standard

microfragmentation protocols (Figure 1B) (Forsman et al., 2015).

For recruitment, we recommend structured tiles with small cavities,

which have been shown to promote larval settlement (Nozawa et al.,

2011; Randall et al., 2021).
3.3 Coral crates

Attachment of the tiles to the Maritechture™ Coral Crates

supports the strategic organization of corals. The crates allow coral

genotypes to be organized in rows divided into seven tiles per bar

(labelled A-H on the crate) (Figure 2A). Secure attachment by the
Frontiers in Marine Science 05
screw system avoids friction and damage to the colonies (Video 1).

The coral crate units facilitate easy handling in air and underwater

and simplifies cleaning during aquaculture because of their smaller

surface area compared to commonly used egg crate grids. The crates

can also be tagged with RFID technology, allowing for automated

inventory management. For transportation, the units can be safely

stacked and transported directly to the outplanting site underwater.

In addition, the horizontal connection of multiple crates and

attachment to the seafloor enables the rapid establishment of in situ

nurseries, e.g. for temporary storage.
3.4 Coral outplanting/nursing devices

We have developed several solutions for outplanting (Figure 3).

The advantage of our modular, screwable tile system is that coral

crops can be quickly interchanged between crates and different

structures or outplanted directly onto a natural or artificial

substrate. We have developed adapters for the most common types

of coral nursery structures including PVC pipes, metal rods, metal

grids and ropes (Boström-Einarsson et al., 2020). This allows existing

structures to be quickly modified and outfitted to accommodate

our technologies.

Our Maritechture™ Reef Nails attach quickly (within seconds) to

suitable reef substrate and create a solid bond that promotes

attachment of the fragments to the reef substrate. A single dive

buddy team can outplant over 50 fragments from a coral crate onto

reef substrate in 30 minutes. For artificial structures that can be drilled

with holes prior to deployment, we developed Maritechture™ Reef

Wall Plugs. Similar in function to a conventional dowel, these allow

for a solid connection of our tiles to artificial substrates such as

Maritechture™ Reef Pods, jetty walls, floating villas or bridge piers.
3.5 Coral pods

We developed Maritechture™ Coral Pods as an environmentally

friendly underwater landscaping tool to enhance reef landscapes and

provide new substrate for coral outplanting and nursing where this is

lacking. With our methods, we envision their use for the creation of

artistically planned and curated underwater landscapes, whereby the

structures can be arranged in geometric patterns for visual and

orientation purposes. The units can be stacked flat on top of one

another to minimize space requirements and ease transport and
FIGURE 4

Maritechture™ Coral pods (patent pending, U.S. Patent Application No. 62/954,435| Filed December 28, 2019). (A) Illustration of coral pod design. White
bar indicates 20 cm in width. (B) Diver placing coral pod underwater. (C) Coral pod with coral fragments in situ. (D) Arrangement of coral pods.
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logistics costs. On-site, the coral pods can be quickly assembled either

on board a vessel or underwater. The corals can be attached with

Maritechture™ Reef Wall Plugs or cable ties.

In their current design, each assembled structure can

accommodate up to 16 coral fragments. Given an area of 1.5 m2 for

coral growth per structure, we recommend a density of one structure

per 3 m2. With 14-16 corals per structure, this results in an

outplanting density of approximately five corals per square meter,

which may increase further with spontaneous natural recruitment,

given that the material is highly suitable for coral settlement. By

mounting the structures onboard a vessel, corals can be quickly

attached before the pods are placed in the water, reducing dive

time. In this way, a team of six can deploy up to 30 structures per
Frontiers in Marine Science 06
dive, with four team members assembling the structures, stocking

them with coral and lowering them with a crane, while two divers

receive and position the structures on the seabed at the deployment

depth. On rotation, a six-person construction team can place 90

structures in four hours, with each team member performing only a

single dive. This allows for up to 250 square meters of reef landscape

to be created in half a day.
4 Discussion

Coral restoration efforts are still limited by a lack of industrial-scale

commercially available tools to facilitate cost-effective operations at
FIGURE 5

Schematic workflow illustration of an adaptive management approach.
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scale. Although there is no one-size-fits-all solution for coral

restoration, our modular technologies provide flexibility to create

new or to adapt to and upgrade and improve existing infrastructure

and techniques. Our technologies address aquaculture, coral gardening,

substrate creation, outplanting and monitoring workflows, providing

the first holistic, modular toolset for coral restoration and reef

expansion, and enabling an adaptive management approach. Previous

technologies only targeted individual applications or workflows and

often have limited scalability.

For substrate creation, Reef Balls™ (Sherman et al., 2002) or similar

derivations, are likely the most widely distributed commercial solution

for reef habitat creation and coastal protection. Attachment of corals to

these structures is usually achieved using epoxy, which is time intensive

and carries risks of toxicity. Although not commercially distributed as

off-the-shelf-product, Mars Reef Stars offer a standardized design for

metal frames that can be interconnected to restore damaged reefs

(Williams et al., 2019). These structures are usually custom made at

each location from steel rods coated with epoxy and sand, and corals are

then attached via cable ties. The Maritechture™ Coral Pods presented

here are similar in functionality to Mars Reef Stars, however, due to their

innate weight they do not require interconnection. Further, unlike steel,

limestone is an environmentally friendly material known to enhance

coral recruitment (Schmidt-Roach et al., 2008). Hence the structures are

self-seeding and with their relatively large surface (approximately 2.5

m2) quickly develop a natural reef-like patina on their surface. Per

square meter, our Maritechture™ Coral Pods have an estimated carbon

footprint of about 80 times less than Mars Reef Stars and over 800 times

less than a standard Reef Ball (Table 1). Constructed from natural

limestone, our structures are reef-like and do not alter the water

chemistry. Further, they have no plastic coatings that may break

down to micro-plastic over time.
4.1 Towards coral restoration at scale

To increase scalability and overcome time intensive adhesion

during outplanting, Suggett et al. (2020) developed Coral Clips®, a

fast solution to outplant fragments or tiles via a metal clip attached to

a nail hammered into the reef. Similar in function to the

Maritechture™ Coral Nails presented here, these work well on hard

substrate and allow strategic placement of fragments during
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outplanting. While Coral Clips® are ideal to reattach so-called

fragments of hope (lose fragments broken of larger colonies for

example during storms), growing and attaching coral directly to

their outplanting substrate via our Maritechture™ Coral Tiles

minimizes the stress that may occur during detachment of corals

after an intermediate gardening phase. Further, our tiles have the

advantage of enabling long-term monitoring.

To avoid the need for dive operations at all during outplanting,

Chamberland et al. (2017) proposed ceramic tetrapod structures

seeded with coral recruits to be deployed from vessels into reefs.

Although this permits the economic deployment of a large number of

structures, tests need to be conducted to understand survival rates

compared to recruitment tiles strategically placed using the Coral

Clips® or Maritechture™ Reef Nail technology. Doropoulos et al.

(2019) went a step further to propose industrial-scale harvesting of

larvae via large vessels for relocation, whereby the mass of harvesting

of coral larval slicks can be deported to foreign reefs to overcome the

low survivorship of settlers. However, large scale pilot studies are still

to be conducted.

Our Maritechture™ technologies provide the basis to enable the

automation of coral reef restoration workflows in the future. Coral

aquaculture can achieve higher production rates by optimizing

conditions for increased growth, e.g. by adjusting light or

temperature, or by co-culturing of beneficial biota and reducing

algae growth (Craggs et al., 2019). However, optimal husbandry

conditions can be species-specific (Merck et al., 2022). The

organized placement of coral colonies on the coral crates allows

quick and strategic performance assessments to ensure individuals are

fostered under ideal conditions. Having coral fragments in fixed

positions in the tanks may eventually facilitate AI-driven automated

phenotyping, for example, via repeated structure from motion

photometry using robotic solutions. Similar techniques are already

in place in terrestrial systems to increase production rates and

promote selective breeding (Humplıḱ et al., 2015; Chawade et al.,

2019). High-throughput phenotyping could enable big data analytics,

which could dramatically increase production rates and the

effectiveness of coral nursery efforts. Considering the current rise of

applied use of robotic systems in fish farming (Wang et al., 2021) or

even more distant sectors as part of the industry (Javaid et al., 2021),

automatization of workflows is likely to play a significant role in

reducing associated labor costs and achieving scale.
TABLE 1 Carbon footprint of different coral support structures. Greenhouse gases produced associated with construction is estimated based on
Hammond and Jones (2008).

Type

Material
Approx.
weight kg

KgCO2 emis-
sion/kg

kgCO2

emission
per unit

Area in
m2

kgCO2/m
2

emission Reference

Maritechture™
Coral pod

Limestone

40 0.017 0.68 1.5 0.5 This study

Mars Reef Star
Steel rod (excluding
epoxy) 8 1.71 13.68 0.34 40.6 (Williams et al., 2019)

Reef Ball
Cement (Portland)

1364 0.83 1132.12 2.63 430.5
www.reefball.org/
technicalspecs
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4.2 A tool for stakeholder engagement,
outreach, and education

The ability to create detailed records and to trace performances

over time using our trackable Maritechture™ Coral Tile technology

enables unique information tools for stakeholder engagement.

Creating cloud-based inventories and data records can not only

guide coral restoration practitioners during their daily efforts, but it

can also be used to inform stakeholders (e.g. governments or private

entities investing into these efforts) about the success. Measuring and

publishing performance can promote transparency and assist

moderate expectations of the success of restoration efforts. Trust

has been shown to significantly strengthen willingness to pay for

restoration (Metcalf et al., 2015; Bakaki and Bernauer, 2016). In

addition to building trust, communicating success as well as

challenges on websites or social media may motivate public

engagement and foster awareness. Projects could use this

mechanism to transport positive messages of hope, which are

important to gain public acceptance for government-funded

restoration projects (Le et al., 2022).
4.3 Integrating selective propagation

For selective propagation efforts, it is vital to create detailed

records to trace performances over time to permit adaptive

management (Schmidt-Roach et al., 2020) and identify possible

tradeoffs associated with the selected traits. Different pathways for

thermal heat selection have been identified (Baums et al., 2019;

Parkinson et al., 2019; Schmidt-Roach et al., 2020; Voolstra et al.,

2020; Suggett et al., 2022). However, when comparing individuals

from different environments, it should be considered that these may

be phenotypically acclimated to different conditions, which may alter

their performance in acute thermal stress assessments. Common-

garden nurseries ex or in situ offer the advantage that individuals can

be acclimated to similar conditions prior to testing, which may reduce

acclimation biases during performance assessments. Although

different strategies for selective breeding of corals for assisted

evolution have been suggested (van Oppen et al., 2015; van Oppen

et al., 2017) and partially tested (Humanes et al., 2021), the long-term

effect and success of these strategies still remain uncertain. Our

trackable tile system via RFID technology supports long-term

monitoring efforts and permits informed adjustment of selective

propagation strategies. In addition to RFID identification, the

embedded stainless-steel nail in our reef nail solution can be

detected using a metal detector similar to CoralClips® (Suggett

et al., 2020).

Strategic outplanting can further increase genetic diversity and

stress resilience, as restored corals have been observed to be

reproductively active (Diraviya Raj et al., 2015). Coral pods and reef

nails can be used to create coral seeding hubs (CSH), where different

genotypes of conspecifics are planted in clusters strategically placed in

the reef to promote reproduction and increase genetic diversity in the

offspring (Schmidt-Roach et al., 2020). A portion of these transplants

can be sourced from selected, higher stress resistant colonies to
Frontiers in Marine Science 08
increase the frequency of favorable alleles in the population while

maximizing genetic diversity (Schmidt-Roach et al., 2020). However,

not all genotypes should be selected for increased single stress

performance, and genetic diversity should be maximized to account

for unforeseen stressors such as disease (Moriarty et al., 2020).
4.4 Towards a blue architecture and
landscaping approach in coral restoration

In contrast to present coastal developments that rarely extend beyond

the shoreline, we advocate for a “blue architecture” and landscaping

approach that extends landscaping of coastal developments into the sea.

Community-conscious coastal developments that integrate the marine

environment may secure natural capital (Cziesielski et al., 2021). Schmidt-

Roach et al. (2020) stressed the mutual benefit of integrating coral

restoration efforts in coastal developments to rehabilitate natural

habitats and foster and secure blue natural capital as part of

development assets. In addition to conventional restoration operations,

the elements, tools and processes presented here allow easy and quick

beautifications of jetty walls and other coastal structures with corals,

turning these into meaningful resources to grow corals for restoration and

to create or restore fully functional habitats.

A blue architecture and landscaping approach to coral restoration

requires the contribution of a multidisciplinary team including marine

ecologists, engineers, architects and artists, forming a community of

practice that extends well beyond the competencies applied in

conventional coral restoration projects. Applying a landscaping

approach, our techniques allow the creation of scientifically and

artistically curated underwater habitats resembling land-based

botanical gardens. Architecture that extends into the sea connects

coastal residents with their natural marine resources, engages citizens

with restoration, raises awareness, promotes responsible stewardship,

and boosts local economies. This may especially be of interest for

ecotourism projects providing a dual benefit of attracting visitors and

increasing resilience hence securing investments (Schmidt-Roach et al.,

2020). Visionary plans for floating cities to address sea-level rise and

overpopulation have become more concrete (Bolonkin, 2011; Wang,

2019) and offer unique opportunities for integrating marine landscape

designs into marine urban projects. Massive tropical floating cities such

as Oxagon envisioned by NEOM (https://www.neom.com/en-us/

regions/oxagon) or Oceanix by BIG (https://big.dk/#projects-sfc)

could be easily adjusted to harbor coral farming using the

technologies presented here.

In conclusion, our platform aims to provide simple, eco-friendly

and flexible infrastructure that caters towards a variety of different

coral restoration and reefscaping efforts with a view of rendering coral

restoration more cost-effective, scalable and sustainable. This is

achieved by reducing workflow times as outlined above and ease of

handling. Integrating novel monitoring tools, our approach delivers

an intelligent solution to optimize and control stock management and

enables adaptive management. The modularity of the tools aims to

allow greater flexibility as different components can be added in the

future to increase efficiency and effectiveness. We aim to make the

above-described solutions available as the first modular off-the-shelf
frontiersin.org
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coral restoration technology, targeting production at scale to drive

down costs, and to make them universally available.
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