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The Tibetan Plateau uplift has induced the formation of the largest sediment

source-sink system in the northeast Indian Ocean, which has become an ideal

region for investigating land-sea interaction processes. However, many questions

regarding sediment transport patterns and their controlling factors at different time

scales remain unanswered. Therefore, in the present study, a gravity core named

BoB-79, based on the southern Bay of Bengal (BoB) was selected to investigate

sediment provenance shift and its corresponding mechanism to sedimentary

environment change since the last glacial maximum (LGM). The clay mineral

compositions are analyzed and the whole core sediments reveal a feature

dominated by illite (~55%), followed by chlorite (~24%) and kaolinite (~17%), and

the content of smectite (~4%) is the lowest. A trigonometric analysis of provenance

discrimination of clay minerals showed that the Himalayas, together with the

Indian Peninsula, represent the main sources of southern BoB sediments, and the

last glacial period might have been controlled by the dominant Himalayan

provenance, with an average contribution of approximately 90%. However, as a

secondary source, the influence of the Indian Peninsula increased significantly

during the Holocene, and its mean contribution was 24%, thus, indicating that it

had a crucial effect on the evolution process of BoB. The sediment transportation

pattern changed significantly from the LGM to the Holocene: in the last glacial

period, the low sea level exposed the shelf area that caused the Ganges River

connected with the largest submarine canyon in BoB named Swatch of No Ground

(SoNG), and the Himalayan materials could be transported to the BoB directly

under a strong turbidity current, thereby forming the deep sea deposition center

with a sedimentation rate of 4.5 cm/kyr. Following Holocene, the sea level

increased significantly, and the materials from multiple rivers around the BoB

were directly imported into the continental shelf area. The intensive Indian summer

monsoon dominated the transportation process of the terrestrial materials,
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thereby forming a deposition center in the shallow water area of the continental

shelf northeast Indian Ocean; subsequently, the material flux relative to the input

to the deep sea area decreased significantly, and the sedimentation rate in the

southern BoB decreased to 1.7 cm/kyr.
KEYWORDS

last glacial maximum (LGM), sea level, Indian monsoon, dynamical process, Bay of Bengal
(BoB), sedimentary pattern
1 Introduction

Source to sink is an important study topic in modern marine

sedimentology research (Goodbred, 2003; Manville et al., 2009;

Leithold et al., 2016; Shi et al., 2021). The transportation and

sedimentation process of sediments in typical continental margins,

the formation and primary control factors of shelf sedimentary

systems, and the mechanism of the response of land-sea

interactions to climatic and environmental changes are the core

scientific issues in this research field (Allen, 2008; Yang et al., 2015;

Sebastian et al., 2023). In sediment source-sink systems, rivers play a

critical role in material transport processes, land-sea energy balance,

and biogeochemical cycles (Gao and Jia, 2004; Selvaraj and Chen,

2006; Liu et al., 2008; Shi et al., 2015). Coupling studies on river-shelf

systems have also become one of the hot topics in marine

sedimentology research (Galy and France-Lanord, 1999). Therefore,

a profound understanding of the material flux and composition

characteristics of rivers entering the sea, the transportation of

materials, material burial and circulation processes from the rivers

to the marginal sea and the global ocean, and their responses to global

climatic changes at different scales is very crucial to further elucidate

land-sea interaction mechanisms and material balance of payments.

This knowledge can also serve as appropriate reference materials for

research on global changes in different latitudes and climate zones

and further provide a theoretical basis for reconstructing past

environmental and climate evolution.

The Tibetan Plateau uplift is globally the largest sediment source-

sink system in the northeast Indian Ocean (Gaillardet and Galy, 2008;

Ding et al., 2022). The BoB is the world’s largest bay in the

northeastern Indian Ocean, and it is also one of the primary sinks

for the seaward material transport from the Himalayas and the

Tibetan Plateau, with the development of large deltas, shelves,

slopes, submarine canyons, and deep-sea fan sedimentary systems

(Curray and Moore, 1974; Curray et al., 2003). The abundant material

supply of the BoB, the formation of large rivers, the multiple

topographic types, and the typical monsoon climate make BoB the

best natural laboratory to investigate land-sea interactions. The

differences in geological background, climatic belt, biological

ecosystems, and human activities among rivers such as Krishna-

Godavari (K-G), Ganges-Brahmaputra (G-B), Mahanadi (M), and

Irrawaddy (I) rivers distributed around the BoB have led to different

compositions of the terrestrial sediments transported by these rivers

into the sea (Colin et al., 1999; Tripathy et al., 2011; Tripathy et al.,
02
2014; Joussain et al., 2016); this enables to quantitatively identify

sediment contributions from complex multisource sediments from

different provenances in the BoB. The BoB is located in a typical

Indian monsoon region with distinct dry and wet seasons. The

changes in the intensity of the Indian monsoon, especially the

summer wind, play a critical role in the physical erosion, chemical

weathering, and sediment transportation of the sediment provenance

regions (Liu et al., 2020). Because of a unique climate and dynamic

transport conditions, the distribution and contribution of marine

sediments from different provenances have remarkable spatial and

temporal differences. These differences contribute to understanding

variations in past climate and hydrodynamic environments within a

particular study area. Therefore, from a scientific perspective, it is very

critical to find appropriate alternative indicators to clarify the

temporal and spatial differences in the distribution and

contribution of materials from different provenances in the ocean,

interpret the climatic and environmental signals, and reveal their

control mechanisms.

Sediment provenance in the BoB has been suggested to be mostly

terrestrial detritus material, and the contribution of marine

autogenous organic matter, wind dust, and volcanic material are

relatively small (Weber et al., 2003; Tripathy et al., 2014; Li et al., 2018;

Li et al., 2019; Ye et al., 2022). Recent studies have shown that the

contribution of materials from Indian rivers to the BoB is >20% (Sun

et al., 2019; Sun et al., 2020); however, it remains unclear how this

material from different river sources has changed over a historical

period. To date, few studies have been conducted on this topic.

Therefore, in this study we comprehensively analyze the

characteristics of clay minerals in core BoB-79 sediments from the

southern BoB, quantitatively identifies the contribution of materials

from different river provenances, reveals the response of sediment

provenance changes to sea level fluctuations and Indian monsoon

since the last glacial maximum, further to discuss the transport

pattern and control mechanism of sediments at different times.
2 Materials and methods

2.1 Sample collection

A China-Thailand joint investigation cruise collected samples

from one gravity core, namely BoB-79 (location: 9.96°E, 87.97°N;

length: 1.67 m; water depth: 3427 m), in March 2014 (Figure 1). To
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comprehensively analyze the samples, this work collected 167 sub-

samples from the core at 1 cm interval.
2.2 AMS 14C analysis

The radiocarbon age of the shells of the planktonic foraminifera

Globorotalia menardii from nine typical layers was measured by the

Accelerator Mass Spectrometry (AMS) method. The radiocarbon age

was corrected for a local reservoir age of –60 ± 51 years (Dutta et al.,

2001) and converted to calendar age (1s errors) by using Calib Rev

7.0.4 (Reimer et al., 2013). The shells of the foraminifera were

pretreated at the Key Laboratory of Marine Geology and

Metallogeny, Ministry of Natural Resources, China, and AMS14C

analyses were performed at the Beta Analytic Laboratory, USA.
2.3 Grain size analysis

The pretreatment of the samples for grain size analysis was

performed as follows: a 15 mL H2O2 solution (30%) was added to

remove organic matter from the shells, and the samples were then bathed

in a 5 mL HCl solution (3 mol/L) for 24 h to remove calcareous cement

and shell materials. All samples were fully desalted and dispersed before
Frontiers in Marine Science 03
conducting the measurements. By using the Mastersizer 3000 instrument

(Malvern Ltd., UK; resolution, 0.01 F; measurement range, 0.02–2000

µm), sample grain sizes were assessed in the Key Laboratory of Marine

Geology and Metallogeny, Ministry of Natural Resources, China. After

repeated measurements, the experimental error was predicted to be<3%.

For data processing, the moment method was used for calculating grain

size parameters, including sorting coefficient, mean grain size, kurtosis,

and skewness (McManus, 1988).
2.4 Clay mineral analysis

X-ray diffraction (XRD) was conducted to identify clay-sized particles

(<2 µm). Subsequently, the samples were treated with 30% H2O2 to

remove organic matter and then with 1 M HCl to remove calcium

carbonate. The samples were then rinsed continuously with distilled water

until deflocculation occurred. In accordance with Stokes’ law, particles<2

µm in size were collected, sedimented, and centrifuged for determination.

XRD was performed in three cycles in the 24-h air drying and ethylene

glycol solvation condition, followed by heating for another 2 h at 490°C.

Under CuK-a radiation, the D/Max 2500 PC diffractometer was used for

obtaining XRD graphs at 100 mA intensity and 40 kV voltage. In the

present study, diffraction patterns (2q) were scanned in the range of 3°–

30° at the 0.02° step size. Clay minerals were mostly identified based on
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FIGURE 1

Location of the core BoB-79 sediment and the related reference cores BoB-24 (Ye et al., 2022), BoB-56 (Li et al., 2018), and ADM-159 (Liu et al., 2020;
Liu et al., 2021a) in the northeastern Indian Ocean. Ocean dynamic conditions driven by seasonal monsoons are presented by different color arrows, and
the active submarine valley crossing the whole BoB is shown by the black dotted line. SoNG is presented by black dotted line (Curray et al., 2003;
Chauhan and Vogelsang, 2006).
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(001) series of the basal reflection position observed from 3 XRD graphs

for kaolinite+chlorite at 0.7 nm and illite at 1 nm together with smectite at

1.7 nm. Chlorite and kaolinite were separated according to their relative

proportions based on the 0.357/0.354 nm peak ratio. By using Biscaye’s

method (Biscaye, 1965), the intensity factors for kaolinite+chlorite, illite,

and smectite were 2, 4, and 1, respectively. The error for the relative clay

material level was predicted as <10%.
3 Results

3.1 Chronology and AMS 14C age model

In the present study, the BoB-79 core age model was constructed by

linearly interpolating the 14C age data, and the entire core sediments

covered the sequential record over the last 43.5 cal ka BP (Figure 2). The

recently updated algorithm COPRA (Breitenbach et al., 2012) was used

to optimize the BoB-79 age model for interpreting age uncertainty

applied in determining proxy error estimates. The core deposition rate

of BoB-79 was relatively stable, with an average sedimentation rate of

approximately 3.8 cm/kyr; the core sedimentation rate had increased in

the last glacial period as compared to that in the Holocene (approximate

average: 4.5 cm/kyr vs. 1.7 cm/kyr).
3.2 Lithology and grain size composition

The lithology of BoB-79 core sediment showed relative

heterogeneity, with mostly gray-brown silt, while the sediment
Frontiers in Marine Science 04
tended to have a dark color from top to bottom (Figure 3).

According to the changes in sediment lithology, the entire core was

classified into upper and lower sections at 38 cm: the 0–38 cm section

was yellow-brown silt, and no apparent layering change was observed.

There were two dark interlayers distributed at 21–23 cm and 32–34

cm. The layer at 38–167 cm had gray-brown silt with a uniform

lithology and no apparent stratigraphic changes; the water content

and viscosity of the sediment in this section were lower than those in

the 0–38 cm section.

The grain size results of BoB-79 core sediments showed the

highest composition of silt, with an average of 68.5%, followed by

clay components (14.7%–41.7%); the content of sand components

was the lowest (range: 0.3%–17.2%). The variations in the

characteristics of grain size composition and parameters (sorting

coefficient, mean grain size, kurtosis, and skewness) of the core

sediment could be roughly divided into two sections with 38 cm as

the boundary. The detailed characteristics are described as follows.

In the bottom section (38–167 cm): the content of sand

components was 0.27%–11.07%, with an average of 5.35%. The

contents of silt sand components and clay components were

56.30%–84.14% and 14.70%–41.66%, respectively, with an average

of 69.39% and 25.26%, respectively. The particle size range was 6.52–

7.77F, with an average of 6.98F. The sorting coefficient was 1.32–

1.93, and the sorting performance was poor. The range of the skewed

state was –1.56 to 1.16; the sediments at this stage were mainly

negatively skewed, and the positively biased sediments appeared only

in individual layers. The peak state was 1.77–2.56, with a wide range

of peak states. Apparent fluctuations were noted in each particle

size parameter.
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The AMS14C age model of the core BoB-79 and the calculated average sedimentation rate since the last glacial period; error bars represent the
uncertainty of each dating point.
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The top section (0–38 cm): The content of sand grade

components was 3.03%–17.21%, with an average of 11.92%. The

contents of silt sand components and clay components were 56.30%–

68.98% and 22.22%–31.56%, respectively, with an average of 61.39%

and 26.69%, respectively. The particle size range was 6.42–7.21F, with

an average of 6.72F. The sorting coefficient was 1.57–2.51, and the

sorting performance was poor to very poor. The skewed state was –

1.28 to –0.39, all of which were negatively skewed. The peak state was

2.11–2.60, which indicated a wide range of peak state width. Each

particle size parameter was stable within the range of their respective

maximum/minimum values after consistent increase/decrease at

this stage.
3.3 Clay mineral composition

Four main clay minerals in BoB-79 core sediments, together with

changes of illite chemical weathering index and illite crystallinity, are

shown in Figure 4. Illite showed the highest content (range: 43%–65%,

mean: 55%), followed by chlorite (range: 15.14%–32.57%, mean:

24%); kaolinite and smectite exhibited lower contents, with an

average content of 17% and 5% and ranges of 14%–22% and 0–

16%, respectively.

Regarding the trend in clay mineral change, two stratum units

could also be identified with the boundary of 38 cm. Illite and chlorite

had higher content in the bottom stratum unit (38–167 cm) and

showed fluctuations in the relatively high-value zone; the average

value in this section was 56% and 25%, respectively. However, the

changing trend of these two components at this stratum unit roughly

manifested as a “mirror” form, the increase of illite was often

accompanied by a decrease in chlorite content. The contents of

kaolinite and smectite ware low and stable in this section, with the

average content of 17% and 3%, respectively. In the top stratum unit
Frontiers in Marine Science 05
(0–38 cm), both illite and chlorite showed a decreasing trend, with

new averages of 48% and 22%, respectively. Kaolinite and smectite

remained high after a rapid increase at 20 cm, the average content of

kaolinite and smectite was 20% and 10% in this section, respectively.

The chemical weathering index of illite ranged between 0.31 and

0.95, and the fluctuation change in the bottom stratum unit showed a

decrease trend upward. The crystallinity of illite was 0.23–0.48, and

there was no apparent change in the whole core sediment.
4 Discussion

4.1 Sediment provenance discrimination
based on clay mineral proxy

As an important component of fine fraction sediments, clay

minerals are extensively present in marine sediments, and they

show a high sensitivity to marine geological processes and

sedimentary environments (Dou et al., 2010; Liu et al., 2012; Qiao

et al., 2015; Shi et al., 2015). Because clay minerals are embedded in

fine particulate matter, they can be transported in the ocean with

suspended bodies over long distances and remain unaltered before

entering the sea; this aspect makes the combined characteristics of

clay minerals an effective indicator for identifying material sources

and tracking sediment transport processes in marine sedimentology

research (Xu et al., 2014; Shi et al., 2015; Sun et al., 2020). Previous

studies have shown that clay mineral assemblages in sediments from

rivers entering the sea around the northern Indian Ocean (Khan et al.,

2019) show significant differences; this feature can be used to identify

the sediment material source in the BoB (Sun et al., 2020). Therefore,

we constructed an illite-smectite-(chlorite+kaolinite) end

trigonogram to identify the sediment source in the southern BoB

since the LGM by comparing the clay mineral composition of the
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FIGURE 3

Vertical distribution of sediment grain size parameter and sediment lithology from the core BoB-79; the red dotted line represents the boundary of the
two stratum units, black triangles show the AMS14C data point.
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BoB-79 core sediment and the surrounding potential source regions

(Figure 5); this method has been successfully used for source

discrimination in the Indo-Pacific intersection regions (Shi et al.,

2015; Ye et al., 2022).

As shown in Figure 5, the coverage areas of the last glacial and

Holocene phases were significantly separated, thus, indicating the

different sediment sources of these two stages. The BoB-79 sediments

had very low smectite content during the last glacial phase, while illite

was the dominant mineral. As noted from the trigonogram, the clay

mineral assemblage at this time almost completely settled in the
Frontiers in Marine Science 06
Ganges-Brahmaputra River range, thus, indicating that the sediment

source at this time was a single source dominated by the Himalayan

materials. After entering the Holocene, the BoB-79 core sediments

were still closest to the Ganges-Brahmaputra sediment drop, but the

smectite content increased significantly during this period.

Subsequently, the clay mineral settlement moved toward the

Godavari-Krishna and Irrawaddy rivers and were closer to the

Indo-Peninsular rivers; hence, we believe that the Indian Peninsula

as a secondary source area had a substantial effect on the BoB-79 core

sediments at this stage. It should be noted that the sediment clay
 

A B

FIGURE 5

Provenance identification of the sediment from the core BoB-79 based on clay mineral composition. Two stages (25.2–11.7 cal ka BP and 11.7–0 cal ka
BP) sediment clay mineral results from the core BoB-79 are compared with the tentative sediment provenance regions of Brahmaputra River (Datta and
Subramanian, 1997), Ganga tributaries from the Himalayan region (Sarin et al., 1989), Ganga tributaries from the Deccan Plateau (Sarin et al., 1989),
Krishna-Godavari Rivers (Phillips et al., 2014), Mahanadi River (Phillips et al., 2014), and Irrawaddy River (Rodolfo, 1969). The gray shades represent
sediments from the Himalayas (B) and the Indian Peninsula (A), respectively.
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FIGURE 4

Vertical distribution of clay mineral composition, illite chemical index, and illite crystallinity from the core BoB-79; the red dotted line represents the
boundary of the two stratum units, black triangles show the AMS14C data point.
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mineral drop points in both stages were distant from the Irrawaddy

River material, thus, suggesting that the material contribution from

this river into the sea on the eastern side of the BoB could be

negligible. Gravity core sediments, namely BoB-24 and BoB-56, in

the central BoB also showed significant changes in the last glacial and

Holocene material sources (Li et al., 2018; Ye et al., 2022); however,

the timing of this transition was not consistent, which mainly reflects

the difference in the deposition process of the different spatial

locations, southern core sediment presented an earlier response to

sea level rising than that in the central BoB. The core sediment

investigated in the present study was located in the southern BoB,

which belongs to the distal sink of the terrestrial material, and its

deposition environment is relatively stable; this finding indicates the

sedimentary pattern of the southern BoB and its primary

controlling mechanism.

From the above source identification results, we selected the

Himalayan and Indian peninsula source areas as the two main end

elements of BoB-79 core sediments, with Ganges-Brahmaputra rivers

and Krishna-Godavari rivers being the representatives, respectively,

using clay minerals to combine smectite and illite+kaolinite levels.

The relative contribution ratio of the two source areas was calculated

according to the following equilibrium equation:

5Xi + 58Yi = Si (1)

85Xi + 39Y = IKi (2)

In the formula, Xi and Yi represent the contribution ratios of

Himalayan and Indian source areas to the BoB-79 sediment,

respectively. Si and IKi represent smectite and illite+kaolinite

percentage contents in sample i, respectively, and the coefficients on

the left of the equation represent the mean corresponding clay

mineral combination contents of these two source areas,

respectively (Sarin et al., 1989; Phillips et al., 2014).

The results revealed that the source of sediment in the BoB has been

in the process of constant alteration after the last glacial period (Figure 6).

The contribution of the Himalayan source area in the last glacial period

was approximately 90%; this contribution significantly reduced in the

Holocene period, with an average contribution of 76%. Correspondingly,

the average contribution of the Indian source region in the last glacial

period was approximately 10%, and it exhibited a clear increasing trend

after entering the Holocene period, with an average contribution of 24%.

Modern sediment source discrimination in the BoB also shows that

Indian source material is mainly deposited on the west side of the BoB,

and its main transport force is the seasonal monsoon flow (Li et al., 2017;

Sun et al., 2019; Sun et al., 2020), the results of this study show that the

inflow ofmaterials from rivers such as the Godavari-Krishna River can be

transported over long distances to the south, which plays an important

role in the formation and evolution of turbidity fans in the BoB.
4.2 Sedimentary pattern of the BoB
after the LGM

Significant changes in the global climate after the LGM are clearly

recorded in northern Indian Ocean sediments, where monsoon

intensity, land-sea interactions, and ocean productivity show good
Frontiers in Marine Science 07
remote correlations with high latitudes (Andersen et al., 2006;

Rasmussen et al., 2006; Liu et al., 2021b). Based on the

identification results of clay minerals, the BoB-79 core sediment in

the southern BoB was a single Himalayan source during the last

glacial period, and its contribution was approximately 90%. The

Holocene period witnessed a mixed source of Himalayan and

Indian source areas, among which the Himalayan source area was

the primary source area that contributed approximately 80%, with the

Indian peninsula acting as a secondary source area and contributing

approximately 20%. From the last glacial period to the Holocene

period, significant changes occurred in the sea level, leading to

changes in the marine sedimentary environment in the southern

BoB; moreover, significant changes in climatic conditions from the

last glacial period to the Holocene period have led to changes in

sediment transport forces and ultimately patterns of sediment

formation (Liu et al., 2021a; Ye et al., 2022; Sebastian et al., 2023).

During the last glacial period, the sea levels decreased, especially

in the LGM period, the sea level was approximately 120 m lower than

the present level (Fairbanks, 1989; Chappell, 2002; Cutler et al., 2003;

Arz et al., 2007) (Figure 6). The northern shelf of the BoB is exposed,

the estuary extends seaward, and the northern SoNG receives

sediments transported into the sea from the Ganges-Brahmaputra

rivers (Curray et al., 2003; Li et al., 2019). A sufficient supply of

sediments causes strong turbidity in the active submarine canyon, and

massive sediments from the Himalayas are delivered to the deep sea

through turbidity; moreover, the overflow waterway is deposited on

the surface of the BoB during transportation (Kuehl et al., 1989;

Curray et al., 2003). Turbidity and its overflow were the main drivers

of the transport of terrestrial detritus material to the BoB during this

period. The BoB-79 core is located in the eastern part of the SoNG,

and it is affected by turbidity overflow. The channel-levee system

formed by turbidity current along the seafloor has continuously

transported sediments from rivers and the shelf to the deep sea

over geological history, forming the characteristic deep-sea turbidite

layers (Weber and Reilly, 2018; Fauquembergue et al., 2019; Li et al.,

2021). The last glacial stage had a high sedimentation rate (mean: 4.5

cm/kyr), and the ratio of smectite to illite in this stage was stabilized in

the low range of vibration, thus, indicating the control of materials

from the Himalayan source area. The quantitative calculation results

also showed that the Himalayan source area contributed more than

90% during this period (Figure 6), and the deposition center was

formed in the BoB (Figure 7). Because of the lack of huge submarine

canyons in the Indian peninsula, the estuary of the river is

disconnected from the BoB, and sediments cannot be transported

to the sea in large quantities; moreover, a very small amount of

material entering the sea mainly relies on the transport of surface

circulation. The flux of the river is also significantly smaller than that

of the Ganges-Brahmaputra rivers; thus, even if few sediments are

delivered to the deep waters of the BoB, their source signal is masked

by the Himalayan material.

After entering the Holocene period, there was a rapid increase in

sea levels to above –60 m, and the northern shelf was gradually

submerged by seawater (Contreras-Rosales et al., 2014). The direct

link between the SoNG and the Ganges-Brahmaputra rivers was cut

off (Curray and Moore, 1971), and more sediments were captured by

the shelf, thus, forming a deposition center in the shelf area (Figure 7).
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The sedimentary environment during this period also caused

insufficient sediment supply to the BoB, thereby weakening the

turbidity activity. Turbidity and its overflow occurred only in the

northern and central BoB, thus, making it difficult to affect the

southern BoB where the BoB-79 core is located (Curray et al., 2003;

Weber et al., 2003; Weber and Reilly, 2018); this also became a
Frontiers in Marine Science 08
watershed for changes in the sediment source area of the study area.

Consequently, clay mineral provenance was identified. Holocene

sediments remained closest to Ganges-Brahmaputra sediment drop,

but smectite content increased significantly during this period. As

shown in Figure 5, the clay mineral plots moved toward the rivers of

the Indian Peninsula. The intensity of the early Holocene Indian
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summer monsoon was significantly enhanced, and the climate was

warmer and wetter than that in the LGM (Liu et al., 2021a). The

remarkably elevated smectite content in the Holocene period may be

caused by changes in the climate environment (Cao et al., 2015).

However, the chemical index of illite decreased during this period,

and the crystallinity of illite improved (Figure 4); this finding was

inconsistent with the trend of climate shifting toward warm and moist

conditions, thus, indicating that the increase in smectite in BoB-79

during the Holocene period reflects a change in sediment provenance.

The significant increase in the sorting coefficient during the Holocene

period (Figure 3) also indicates that the sediments at this stage were

likely to be frommixed sources. Based on the qualitative identification

of clay minerals, the secondary source area after entering the

Holocene period should be the Indian Peninsula material. In the

Holocene phase, because of the absence of turbidity activity in the

BoB, the monsoon-driven surface circulation system was the

predominant movement factor for sediment transport in the

southern BoB; this obviously greatly reduced the supply of the

Himalayan material to the study area, as confirmed by the

significant decline in the deposition rate during the Holocene

period. The results of quantitative calculations revealed that the

relative contribution of the Indian source areas increased

significantly by more than 20% during the Holocene period

(Figure 6), mainly because of the reduction in the material supply

from the Himalayas.
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5 Conclusions

In the present study, clay mineral characteristics from BoB-79

sediments in the southern BoB were comprehensively analyzed, and

the source identification of the fine-grained sediment was performed

using the illite-smectite-(chlorite+kaolinite) end trigonogram. The

Himalayas and the Indian peninsula represent the two major sediment

sources in southern waters from the BoB, among which the last glacial

stage was controlled by a single Himalayan source; the influence of the

Indian source area as a secondary source increased significantly in the

Holocene period. Based on the quantification results, the Himalayan

source area in last glacial stage had a mean contribution of 90%, while

that in the Holocene stage was 76%. Correspondingly, the average

contribution of the Indian source area during the last glacial phase was

10% and 24%, respectively, during the Holocene period.

Controlled by sea level elevation, the transportation of sediments

within our study area changed remarkably from last glacial to the

Holocene period. The low sea level and frequent turbidity flow

activity during the last glacial period were the main driving forces

for the transportation of the terrestrial detritus material to the BoB,

mainly transporting erosion products from the Himalayas to the

study area with the sedimentation rate as high as 4.5 cm/kyr. After

entering the Holocene period, the sea level increased significantly, the

turbidity activity weakened and these conditions no longer affected

the southern BoB, while the surface circulation system driven by the
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Indian summer monsoon became the predominant factor of sediment

delivery to the BoB. The material supply in the Himalayan source area

decreased significantly, the sedimentation rate decreased to 1.7 cm/

kyr, and the relative material contribution from the Indian peninsula

as the secondary source area increased.
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