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Vision meets algae: A novel way
for microalgae recognization and
health monitor

Shizheng Zhou1, Juntao Jiang2, Xiaohan Hong3,
Pengcheng Fu1 and Hong Yan1*

1State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University,
Haikou, China, 2College of Control Science and Engineering, Zhejiang University, Hangzhou, China,
3College of Engineering and Applied Sciences, The State University of New York at Stony Brook,
Stony Brook, NY, United States
Marine microalgae are widespread in the ocean and play a crucial role in the

ecosystem. Automatic identification and location of marine microalgae in

microscopy images would help establish marine ecological environment

monitoring and water quality evaluation system. We proposed a new dataset

for the detection of marine microalgae and a range of detection methods, the

dataset including images of different genus of algae and the same genus in

different states. We set the number of unbalanced classes in the data set and

added images of mixed water samples in the test set to simulate the actual

situation in the field. Then we trained, validated and tested the, TOOD, YOLOv5,

YOLOv8 and variants of RCNN algorithms on this dataset. The results showed

both one-stage and two-stage object detection models can achieve high mean

average precision, which proves the ability of computer vision in multi-object

detection of microalgae, and provides basic data and models for real-time

detection of microalgal cells.

KEYWORDS

marine microalgae, object detection, data annotation, microscopic imaging,
computer vision
1 Introduction

Marine microalgae are widely distributed in the ocean (Lu et al., 2021a) as part of the

“blue carbon sink” that uses solar energy and dissolves CO2 to produce oxygen as well as

carbohydrates through photosynthesis (Lu et al., 2021b). They are thus involved in the

global ocean–atmosphere carbon cycle to mitigate anthropogenic CO2 emission, which is

the leading cause of escalating climate change. Healthy and viable algal growth is critical to

the prosperity of diverse marine ecosystems in the ocean and carbon capture, utilization,

and storage. Also, species and quantities of microalgae are widely used as indicators for

marine ecological environment monitoring and water quality evaluation worldwide

(Gilbert et al., 1992; Domenighini and Giordano, 2009; Gordon and Leggat, 2010;

Parmar et al., 2016; Naughton et al., 2020; Peter et al., 2021).
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At present, the method of identifying and counting algal species

is mainly through manual observation under a microscope, which is

time-consuming and laborious and relies on their expertise, and

algal samples are very likely to die in the process of collection and

transportation, as shown in Figure 1A. The methods to monitor the

health of algal cells at the single-cell level include chlorophyll

determination, flow cytometry, and molecular biology. However,

these methods rely on complex sensors and large instruments,

which are not easily popularized in the general laboratory. It is

challenging to conduct real-time detection when sampling in the

field, as shown in Figure 1B.

In order to monitor and determine the health status of marine

microalgae in situ, hardware and software integration is needed to

enable real-time algal image acquisition, data analysis, and

implementation of machine learning algorithms to recognize and

classify the cells of marine microalgae. Microfluidic technology is a

promising approach to recognizing microalgae and monitoring the

health of microalgae at the single-cell level. It can achieve high

throughput, has good biocompatibility, provides the ability to

integrate with other methods, and requires a small sample size.

Combining microfluidic technology with microscopic imaging can

avoid the potential damage of labeled cells and enable dynamic cell

detection, as shown in Figure 2. The method would produce images

of algal cells or videos of algal flowing, just enough to provide data

for computer vision methods.

Compared to current manual microscopic identification, which

has disadvantages such as high professional level requirements,

discontinuity of classifiers, and being time-consuming, automatic

marine microalgae identification by using computer vision methods

(Coltelli et al., 2014; Promdaen et al., 2014; Giraldo-Zuluaga et al.,

2018; Reimann et al., 2020; Barsanti et al., 2021; Cao et al., 2021;

Park et al., 2021; Xu et al., 2021) can meet the needs of rapid
Frontiers in Marine Science 02
monitoring and provide convenience for researchers in marine and

environmental science. In this analysis of microalgal images,

automatic localization and identification are expected to be

achieved simultaneously, facilitating the downstream cell analysis.

As the joint tasks of classification and localization, object detection

can provide the basis for algae identification based on image

information combined with biomorphological features.

Object detection is the task of precisely estimating the concepts

and locations of objects in each image (Felzenszwalb et al., 2010;

Zhao et al., 2019). Traditional object detectors (Viola and Jones,

2001a; Viola and Jones, 2001b; Dalal and Triggs, 2005; Felzenszwalb

et al., 2008) based on sophisticated handcrafted features used to be

mainstream methods before the popularity of deep learning.

Thanks to the capability of learning robust and high-level feature

representations of images, convolutional neural networks (CNNs)

have been widely used in object detection. Two-stage detectors

(Girshick, 2015; Girshick et al., 2015; He et al., 2015; Ren et al., 2017;

Cai and Vasconcelos, 2018; Sun et al., 2020; Zhang et al., 2020a)

achieved object region selection and detection in two steps while

one-stage detectors (Liu et al., 2016; Redmon et al., 2016; Lin et al.,

2017; Redmon and Farhadi, 2017; Redmon and Farhadi, 2018;

Bochkovskiy et al., 2020; Law and Deng, 2020; Feng et al., 2021; Ge

et al., 2021; Jocher, 2021) gave the class probabilities and position

coordinate values of objects directly. Recently, some transformer-

based methods (Carion et al., 2020) were proposed, showing their

strong ability in object detection. Commonly used object datasets

include Microsoft COCO (Lin et al., 2014) and Pascal VOC

(Everingham et al., 2010).

Some existing related works on microalgal microscopy images

applied such a deep learning-based method. Cao et al. (2021) used

MobileNet (Howard et al., 2017) and SPP (He et al., 2015) to

improve YOLOv3 while Park et al. (2021) trained the YOLOv3
A B

FIGURE 1

Detection and identification of microalgal cells. (A) Algal samples awaiting identification. Manual identification of algal water samples is time-
consuming and laborious. (B) Algal water samples are collected in the field. The collected algal samples generally need to be fixed and concentrated,
stored in cold storage, and then transported to scientific research institutions.
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model with Darknet53 backbone (Redmon and Farhadi, 2018). Cao

acquired microalgal images using a Nikon Ts2-FL/TS2 fluorescence

microscope and then used the data augmentation methods to obtain

many images (Cao et al., 2021). The microalgal species in this

dataset include Prorocentrum lima and Karenia mikimotoi. Park

et al. (Redmon and Farhadi, 2018) collected 1,114 algal images with

3,663 objects collected by a microscope (Eclipse Ni, NIKON, Japan).

These images were split into 10, 20, or 30 genera to compare the

model’s performance with different numbers of objects

for classification.

In this study, we have taken samples of six genera of microalgae

commonly found in the ocean (Pinnularia, Chlorella, Platymonas,

Dunaliella salina, Isochrysis, and Symbiodinium) and created an

image dataset for them. We also collected the images of

Symbiodinium in different physiological states known as normal,

bleaching, and translating, and an image set mixing all microalgal

genera described above. We provided many details about this

dataset, such as producing process, the original resolution, and

the total number of images and objects. Since we will subsequently

apply this dataset to the competition, the number of images

containing Pinnularia was intentionally set lower than the others

to examine how well the participants handled the sample imbalance

problem in the dataset. In addition, we added an image set of mixed

samples to the test set, which was designed better to fit the algal

samples in the field environment.

We hope to discover minimal differences between cells from a

computer vision perspective and understand life’s heterogeneity,

randomness, and synergy at the single-cell level. We gave a brief

description of the dataset information and the annotation process.
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Additionally, we trained some classical or state-of-the-art object

detection methods as baselines on the training set and got a test

result on the test set. Researchers are welcome to develop their own

marine microalgal object detection algorithms on this dataset and

compare their results with these baselines. We sincerely hope that

this dataset of microscopy images for marine microalga detection

will boost related research on marine biology and help establish

future real-time monitoring and water quality evaluation system of

the marine environment.
2 Materials and methods

This section specifically describes the workflow of building this

dataset. The workflow of the dataset production includes data

(water samples containing different genera of microalgae)

collection, microscopic imaging, image annotation, annotation

proofreading, and splitting of the dataset into the training set and

the test set, as shown in Figure 3. In addition, we also described the

training environment and relevant evaluation metrics of the object

detection models.
2.1 Data collection

Microalgal samples collected in this study are common genera

in seawater, including Platymonas, Isochrysis, Chlorella, D. salina,

Pinnularia, and Symbiodinium, as shown in Figure 4. The

microscopic magnification of these cell images is 40×. The algal
FIGURE 2

Microscopic imaging combined with computer vision and microfluidic technology is used for real-time detection and health monitor of algae. (1)
Syringe pump; (2) microfluidic chip; (3) CMOS microscope; (4) light source; (5) computer.
FIGURE 3

The workflow of producing the dataset for marine microalgae detection.
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samples were taken from collected fresh seawater and then cultured

in the medium.
Fron
• Platymonas is a genus of green algae in the family

Chlamydomonadaceae, whose cell length is approximately

12 µm, and the algal body is flat and compressed. The cells

are broadly ovate in front view, with a broad front end and a

concave front of the top.

• Isochrysis, also known as golden algae, is a kind of algae

whose active cells are 4.4–7.1 µm long and 2.7–4.4 µm wide,

with a dark red, oval eye spot located in the center of the

cell, occasionally near the front of the cell.

• Chlorella is a kind of spherical unicellular algae with a

diameter of 3–8 µm, and without flagella.

• D. salina is a type of halophile green unicellular microalgae

that is mainly found in hypersaline environments whose

algal body is oval or pear-shaped, 18–28 µm long, and 9.5–

14 µm wide. Without a cell wall, the front of the cell is

generally concave, and there is a cup-shaped chromophore

in the algae.

• Pinnularia is a unicellular planktonic diatom with a

siliceous cell wall. The cells are spindle-shaped, with an

enlarged central part and acuminate at both ends, 12–23 µm

long and 2–3 µm wide. Two yellow-brown pigment bodies

flank the nucleus in the center of the cell.
The algal genera mentioned above were collected from the

Bohai Sea (Shangdong, China), isolated and purified by Fengyun

Algae Co., Ltd., and cultured in an f/2 medium.
• Symbiodinium, also known as Zooxanthella, is a kind of

algae establishing intracellular symbioses with organisms

such as corals, anemones, jellyfish, nudibranchs, Ciliophora,

Foraminifera, zoanthids, and sponges (Gordon and Leggat,

2010). It enters host cells by phagocytosis, persists as

intracellular symbionts, multiplies, and disperses into the

environment.
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Symbiodinium used to produce this dataset was kindly donated

by a scholar and isolated from the Scleractinia coral Galaxea

fascicularis in West Island (18°14′16′′, 109°21′54′′, Sanya,

Hainan, China). There were two culture mediums for

Symbiodinium. The first culture medium was standard f/2

artificial seawater medium and the other in another 1-L shaker’s

flask was stressed by heat shock at 40°C for approximately 2 h to

make the cells bleached.

Observed with a microscope, it was seen that the cells of normal

Symbiodinium were yellowish brown, while the cells of bleached

Symbiodinium were white, and the color of the translating cell was

in between. There are minor differences in shape, size, and structure

between the three groups of Symbiodinium cells.
2.2 Image acquisition and annotation

Image acquisition and processing are based on an inverted

microscopic imaging platform. In our work, a high-definition

camera (DS-FI3, Nikon, Japan) with a viewing field of 7.18×5.32

mm and a 5.9-megapixel complementary metal-oxide-

semiconductor (CMOS) image sensor are attached to the inverted

microscope. It can capture images with a resolution of up to

2,880×2,048 pixels and transfer them via a USB 3.0 port. The

exposure time is set to 1 µs. More than 967 images of Platymonas,

Isochrysis, Chlorella, D. salina, Pinnularia, and Symbiodinium have

been captured individually by using a 40× microscope objective

(CFI PlanFluor, NA = 0.45).

The LabelMe software, a commonly used graphical image

annotation tool, was used to annotate the total dataset manually.

The labeling results of different genera can be seen in Figure 5. After

the annotation for the first time, another researcher proofread them

using LabelMe. The original labeling results were saved as files in

JSON format and were converted into txt files in YOLO annotation

format for the convenience of implementing object detection

algorithms. The original images were in TIFF format and were

converted into PNG format.
FIGURE 4

The images of six genera of algae under a 40× microscope lens, including three physiological states of Symbiodinium. In this figure, all algae images
are at a scale of 10 µm.
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2.3 Dataset splitting

The total number of images in the dataset is 967 and all the

objects in these images were annotated. The total number of

annotated things is 3,915. The annotated dataset contains 150

microscopic images of each of the five genera of algae

(Platymonas, Isochrysis, Chlorella, D. salina, and Symbiodinium),

40 images of Pinnularia, and 197 images of mixed samples. We

divided the dataset, which included only a single class of objects per

image, into a training set and a test set at a ratio of 0.7. We

supplemented the test set with an image set that included multiple

classes of objects per image. The total training set contained 537

images and the test set contained 430 images with an image

resolution of 2,880 × 2,048, as shown in Figure 6A. The total

number of microalgae objects in the training set and the test set was

2,085 and 1,830, respectively. The exact number of objects in

different classes in the training and test sets is shown in Figure 6B.

Samples collected in the field often contain multiple types of

microalgae; thus, we made all the mixed sample images in the test

set more consistent with the actual detection conditions. In

addition, the size of our test set is close to that of the training set.

This is because image acquisition and labeling are time-consuming,

and we hope that by training a deep learning model that performs

well on a relatively small training set, we can significantly reduce the

time and labor costs for researchers.

We make this dataset public with the following access address:

https://github.com/Heyimace/Marine-MicroalgaeDetection-

Dataset. The previous version of the dataset was used in the

competition for IEEE UV2022 at https://tianchi.aliyun.com/

competition/entrance/532036/introduction. The license of this

dataset is GPL-3.0.
2.4 Implementation details

We trained and tested our dataset’s classical and state-of-the-art

object detection models. We hope that these experiments can also
Frontiers in Marine Science 05
offer researchers some hints for continuing research. All

experiments were done on NVIDIA GeForce RTX 3090 platforms

with 24 GB RAM. The deep learning framework used is PyTorch

(Paszke et al., 2017; Paszke et al., 2019). The training set in our

dataset was split into two sets for training and validation. The new
A

B

FIGURE 6

Number of images and labeled objects. (A) Number of images of
various classes of algal cells in the test and training sets. (B) Number
of annotated objects in the test set and training set for various
classes of algal cells.
FIGURE 5

Examples of the labeling results for microalgal objects by using LabelMe software in the training set.
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training set contains 430 images, and the validation set contains

107 images.

For Faster RCNN (Ren et al., 2017), Casacade R-CNN (Cai and

Vasconcelos, 2018), Dynamic RCNN (Zhang et al., 2020b), and

TOOD (Feng et al., 2021) models, we trained, validated, and tested

models based on the mmdetection toolbox (Chen et al., 2019). We

only used Random Flip with 0.5 probability for augmentation in the

training process and Multi-Scale Flipping and Random Flipping for

augmentation in the testing process. The sizes of input images in

training, validation, and testing are 800 × 800. The stochastic

gradient descent (SGD) optimizer was used in experiments. The

learning rate was 0.01, the momentum was 0.9, and the weight

decay is 0.0005. The total training epochs are 100.

For YOLOv5 and YOLOv8 models, we trained, validated, and

tested models based on Ultralytics’s framework (Jocher et al., 2023).

The total training epochs are 100 and the training batch size is 16.

The maximum detection in validation and testing is 300. The initial

learning rate is 0.01, the final OneCycleLR learning rate is 0.0001,

the momentum is 0.937, and mosaic augmentation is used. The

fraction of image HSV-Hue augmentation is 0.015, the fraction of

image HSV-Saturation augmentation is 0.7, and the fraction of

image HSV-Value augmentation is 0.4. The fractions for image

translation and scaling are 0.1 and 0.5, respectively. The probability

of an image flipping horizontally is 0.5.
2.5 Evaluation metrics

Intersection over union (IoU) is a common metric in object

detection. It refers to the intersection ratio between the bounding box

predicted by the model and the ground truth, which is defined as:

IoU(A, B) = A∩B
A∪B (1)

where A and B represent the area of the bounding box and

ground truth predicted by the model, respectively, and the detection

is considered correct when the IoU is more significant than a

certain threshold.

TP means True Positive prediction, TN means True Negative

prediction, FP means False Positive prediction, and FN means False

Negative prediction. Then, the performance of the model can be

evaluated by Precision (P), Recall (R), and Average Precision (AP),

as in:
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Precision = TP
TP+FP (2)

Recall = TP
TP+FN (3)

AP is the area under the precision–recall curve. The mean

average precision (mAP) is calculated by finding the AP for each

class and then the average over all classes:

mAP = 1
No

N

i=1
APi (4)

The evaluation metric in validation is mAP(0.50:0.95) to select

the best model, and we gave the mAP(0.50:0.95) as well as mAP

(0.50) results on the test set. The mAP(0.50:0.95) represents the

average mAP over different IoU thresholds (from 0.5 to 0.95 in steps

of 0.05) and the mAP(0.50) represents the average mAP over 0.5.
3 Results

Object detection is a computer vision task that involves locating

and identifying objects in an image or video. Two main object

detection methods exist: single- and two-stage object detection

algorithms. One-stage object detection methods perform object

classification and bounding-box regression directly without using

pre-generated region proposals. Two-stage object detection

methods first generate region proposals using a separate network

or algorithm, such as selective search or region proposal network

(RPN), and then classify and refine each proposal using another

network. In this study, we trained one-stage object detection

algorithms including YOLOv5, YOLOv8, and TOOD, and two-

stage object detection algorithms including Faster-RCNN, Cascade-

RCNN, and Dynamic-RCNN.

The detection results based on mmdetection on the test set are

shown in Table 1. The evaluation metrics of the one-stage object

detection algorithms are higher than the two-stage object detection

algorithms. The indices of mAP (IoU = 0.5) of the Faster-RCNN

series are only approximately 0.692 to 0.756. The Cascade-RCNN

series, which uses cascade regression as a resampling mechanism to

increase the IoU value of the proposal stage by stage so that the

proposals resampled by the previous stage can adapt to the next

stage with a higher threshold, have a higher detection accuracy.

However, Cascade-RCNN with a larger backbone has a lower
TABLE 1 Results of different object detection methods on this dataset.

Method Backbone mAP@0.5 mAP@0.5:0.95

Faster-RCNN (Ren et al., 2017) ResNet50 (He et al., 2016) 0.692 0.341

Faster-RCNN ResNet101 (He et al., 2016) 0.756 0.407

Cascade-RCNN (Cai and Vasconcelos, 2018) ResNet50 0.812 0.484

Cascade-RCNN ResNet101 0.797 0.481

Dynamic-RCNN (Zhang et al., 2020b) ResNet50 0.804 0.478

TOOD (Feng et al., 2021) ResNet50 0.842 0.539

TOOD ResNet101 0.950 0.571
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detection accuracy than the one with a smaller backbone. This may

be because the larger model causes overfitting more easily.

Dynamic-RCNN, which continuously adaptively increases the

positive sample threshold and adaptively modifies the SmoothL1

Loss parameter, also achieves better results than Faster-RCNN.

TOOD, a one-stage detection method that uses Task-aligned head

and Task Alignment Learning to solve the problem of classification

and positioning misalignment, achieves better results than two-

stage methods.

We also trained YOLOv5 and YOLOv8 models, two of the most

advanced one-stage object detection algorithms, and explored the

detection performance of models with different model sizes. The

detection results of YOLOv5 and YOLOv8 on the test set are shown

in Table 2, and the visualizations of detection results on the test set

are shown in Figure 7. The detection results of YOLOv8m for

different classes is shown in Table 3 and Figure 8. The mean mAP

(IoU = 0.5:0.95) of YOLO series is higher than the other algorithms,

which indicates that its prediction boxes can locate and match

objects more precisely at progressively higher IoU thresholds.

YOLOv8 replaces the C3 structure of YOLOv5 with the C2f

structure and adjusts the number of channels for different scale

models. It separates the classification and detection heads, and

changes from Anchor-Based to Anchor-Free, using the

TaskAlignedAssigner positive sample distribution strategy and

introducing Distribution Focal Loss. Compared to YOLOv5,
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YOLOv8 models lead to some improvement in our dataset. We

can also find that larger models do not perform better than smaller

models. In addition to the characteristics of the dataset image itself,

this may also be related to the small amount of data.
4 Conclusion

In this paper, we apply algorithms in computer vision to the

multiple object detection and physiological state assessment of

marine microalgae. We introduced a new dataset for marine

microalgae detection in microscopy images and the building

process, including data collection, microscopic imaging, image

annotation, proofreading, and splitting. This dataset contains

microalgal images of six genera, namely, Pinnularia, Chlorella,

Platymonas, D. salina, Isochrysis, and Symbiodinium. Moreover,

we also collected the images of Symbiodinium in different

physiological states, namely, normal, bleaching, and translating,

which can be an indicator of the situation of coral and its water

environment. The dataset contains 967 images, among which 537

are in the training set and 430 are in the test set.

We trained and tested a number of classical or state-of-the-art

models in our dataset, including one-stage object detection

algorithms and two-stage object detection algorithms. Among

these algorithms, YOLOv5 and YOLOv8 were able to perform the
TABLE 2 Results of YOLOv5 and YOLOv8 models on this dataset.

Method Precision Recall mAP@0.5 mAP@0.5:0.95

YOLOv5s (Jocher, 2020) 0.839 0.754 0.832 0.569

YOLOv5m (Jocher, 2020) 0.763 0.775 0.785 0.533

YOLOv8s (Jocher et al., 2023) 0.825 0.758 0.833 0.579

YOLOv8s (Jocher et al., 2023) 0.792 0.764 0.826 0.571
FIGURE 7

The visualization of the detection results of the YOLOv5m, YOLOv5l, YOLOv8m, and YOLOv8l models on the test set.
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task with high accuracy for the classification and localization of

microalgal cells. The main challenges of this task can be concluded

as follows:
Fron
• High-resolution images and tiny objects

• Small training set size that is close to the test set
tiers in Marine Science 08
• Multiple species in some images in the test set

• Sample imbalance in the training set
For future research, we will make a larger dataset as the next

version and continue to develop stronger baselines for the

microalgal detection tasks.
TABLE 3 Detection results of YOLOv8m for different classes on this dataset.

Class Precision Recall mAP@0.5 mAP@0.5:0.95

Dunaliella salina 0.729 0.903 0.919 0.541

Platymonas 0.981 0.995 0.995 0.820

Isochrysis 0.766 0.977 0.907 0.596

Chlorella 0.970 0.863 0.955 0.609

Pinnularia 0.940 0.605 0.881 0.497

Normal Symbiodinium 0.388 0.481 0.505 0.408

Translating Symbiodinium 0.865 0.989 0.966 0.778

Bleaching Symbiodinium 0.697 0.300 0.483 0.328
A B

C

FIGURE 8

Test results of the YOLOv8m model. (A) Precision–recall curve. (B) F1–confidence curve. (C) The confusion matrix of YOLOv8m for different classes
on the test set.
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