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Atmospheric Research Ltd, Nelson, New Zealand, 4Coasts and Estuaries Center, National Institute of
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Early detection of marine invasive species is key for mitigating and managing

their impacts to marine ecosystems and industries. Human divers are considered

the gold standard tool for detectingmarine invasive species, especially when dive

teams are familiar with the local biodiversity. However, diver operations can be

expensive and dangerous, and are not always practical. Remote operated

vehicles (ROVs) can potentially overcome these limitations, but it is unclear

how sensitive they are compared to trained divers for detecting pests. We

assessed the sensitivity and efficiency of ROVs and divers for detecting marine

non-indigenous species (NIS), including the potential for automated detection

algorithms to reduce post-processing costs of ROV methods. We show that

ROVs can detect comparable assemblages of invasive species as divers, but with

lower detection rates (0.2 NIS min-1) than divers (0.5 NIS min-1) and covered less

seafloor than divers per unit time. While small invertebrates (e.g., skeleton shrimp

Caprella mutica) were more easily detected by divers, the invasive goby

Acentrogobius pflaumii was only detected by the ROV. We show that

implementation of computer vision algorithms can provide accurate

identification of larger biofouling organisms and reduce overall survey costs,

yet the relative costs of ROV surveys remain almost twice that of diver surveys.

We expect that as ROV technologies improve and investment in autonomous

and semi-autonomous underwater vehicles increases, much of the current

inefficiencies of ROVs will be mitigated, yet practitioners should be aware of

limitations in taxonomic resolution and the strengths of specialist diver teams.

KEYWORDS

biosecurity, invasive species, computer vision, artificial intelligence, remote
operated vehicle
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Introduction

Control or eradication of invasive species are often dependent

upon detecting populations when they are small and restricted in

distribution (Myers et al., 2000; Bax et al., 2001; Inglis et al., 2006).

To enable early detection, surveillance programmes for marine

pests often focus on the highest risk pathways, such as ports,

harbours, and marinas (Wotton and Hewitt, 2004; Lehtiniemi

et al., 2015; Tamburini et al., 2021; Hatami et al., 2022). One of

the most efficient and effective methods for visual detection and

conformation of marine Non-Indigenous Species (NIS) is the use of

divers (Peters et al., 2019), yet various health, safety, and

physiological limitations can greatly limit where and when divers

can be safely deployed. Harbour environments can be some of the

busiest, most polluted, and most dangerous environments for

deploying human divers (Barsky, 2006). Alternative methods are

required to underpin post-border surveillance in increasingly busy

and highly regulated marine spaces. Remote operated and

autonomous underwater vehicles (AUVs) (Zereik et al., 2018)

could complement or replace diver operations, yet their biases

and limitations for marine pest detection are not understood.

Underwater remote operated vehicles (ROVs) have been

available for marine surveys for over three decades (Capocci et al.,

2017). The utility of ROVs is widely recognised in a range of

scenarios, including marine science, exploration, and construction

(Zereik et al., 2018). Adaptation of unmanned aerial vehicle (UAV)

technology to ROVs has led to a large increase in the range of

affordable models that are small, mobile, and relatively easy to

operate, thereby increasing their availability to consumers and

researchers (Buscher et al., 2020). ROVs are now routinely used for

biodiversity surveys (Lam et al., 2006; Pacunski et al., 2008; Andaloro

et al., 2013; Boavida et al., 2016), including the use of incidental

imagery captured during non-scientific operations (Macreadie et al.,

2018; McLean et al., 2019). The collection and retention of imagery by

remote vehicles provides additional opportunity to be scrutinised by

multiple trained taxonomists or automatically processed by trained

algorithms (Woodall et al., 2018).

There are currently no widely accepted standards or protocols

for applying ROVs to post-border surveillance for unwanted marine

pest species, yet there are many examples of their use (Sammarco

et al., 2010; Wells, 2011; Arthur et al., 2015; Peters et al., 2019). In

fact, the use of “free-flying” ROVs (Davidson et al., 2006a; Davidson

et al., 2006b; Floerl and Coutts, 2011) and hull crawling robots

(Caccia et al., 2010; Eich et al., 2014) for vessel inspections is widely

accepted. However, there were limitations to their effectiveness,

particularly their ability to identify and obtain specimens of suspect

organisms. Significant advances have been made since these studies,

and removal capabilities are now available on many ROV platforms

(Mazzeo et al., 2022). Moreover, AUVs are increasingly capable of

the close-range imaging surveys necessary for pest detection

(Bonin-Font et al., 2016; Gutnik et al., 2022). An assessment of

the utility of ROVs for replacing or complementing biosecurity

surveys is therefore needed, especially as the benefits of autonomous

vehicles are increasingly realised.

Despite the potential of ROVs, current evidence suggests

surveys undertaken with them are not as efficient as surveys using
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SCUBA (Self-Contained Underwater Breathing Apparatus) divers,

particularly compared to diver collections (Peters et al., 2019).

Peters et al. (2019) detected larger numbers of NIS on vessel hulls

at reduced costs when combined samples were collected by divers

compared to visual identification by ROV (Peters et al., 2019).

Identifying small organisms (e.g.,<10 mm) from video feeds will be

dependent on proximity of the camera to surfaces of interest,

turbidity of the water, and camera resolution. However, even the

most advanced systems are unable to fulfil the requirements to

classify many groups of organisms (Horton et al., 2021). While

current remote operated imaging systems are unlikely to match

specimen-based taxonomy, ROVs provide a useful tool for

identifying a large range of macro-organisms (Beisiegel et al.,

2017), fish communities (Raoult et al., 2020), and can

complement current methods (e.g., divers) in dangerous scenarios

(e.g., high current, dangerous marine animals, in busy ports, at

depths beyond 20 m).

Critical assessments of new technologies are necessary to

ensure their sensitivity as a diagnostic tool (MacAulay et al.,

2022). There is, however, a need to overcome surveillance

bottlenecks associated with physiological limitations of human

divers, workforce limitations, and declining taxonomic expertise

(Cook and Coutts, 2017). Combined, these limitations highlight

the potential value of remote operated camera systems and trained

Artificial Intelligence (AI) detectors as a mechanism to augment

human efforts, both in the field and in the laboratory (Mohanty

et al., 2016; Jothiswaran et al., 2020). Despite the benefits of ROVs

(and increasingly AUVs) for surveillance of marine pests, for this

potential to be realised these tools must meet the three pillars for

gold standard diagnostics: high sensitivity; low cost; and speed

(MacAulay et al., 2022). The application of real-time computer

vision algorithms at broad taxonomic levels could greatly improve

the speed of ROV surveillance by reducing the need for post-

processing (Wäldchen and Mäder, 2018), but whether these tools

can meet the three pillars of gold standard diagnostics remains

relatively unknown.

To ensure ROVs are applied appropriately to post-border

marine surveillance, they must have similar detection sensitivity

as divers and achieve comparable coverage for similar costs. Here,

we assess the relative sensitivity and detection rates of visual surveys

by divers and an ROV in post-border surveillance of macro-

organisms in Aotearoa New Zealand. We note that this differs

from camera surveys by divers, which like ROV surveys, require

post-processing. We also assess the relative coverage and the

relative costs of each method across gradients of turbidity,

including potential cost savings associated with automated

computer vision algorithms for processing ROV video.
Methods

To test the sensitivity and efficiency of ROVs in a marine

surveillance context we deployed an ROV alongside SCUBA

divers at three locations in Aotearoa New Zealand subject to

targeted surveillance for NIS: Kaipara Harbour (North Island/Te

Ika-a-Maui), Nelson Harbour (South Island/Te Waiponamu), and
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Lyttelton Harbour/Whakaraupō (South Island/Te Waiponamu)

(Figure 1). The surveillance in Kaipara Harbour, Nelson

Harbour, and Lyttelton Harbour/Whakaraupō are based on a bi-

annual survey programme (National Marine High Risk Site

Surveillance (NMHRSS) programme). The established number of

NIS at each location, as determined by a mix of dedicated baseline

surveys (i.e., near full census of marine biodiversity), biannual

surveillance (e.g., NMHRSS), sporadic surveillance, and expert

verified citizen science records (Seaward et al., 2015) are reported

for each site (Figure 1). Due to the wide range of methods, in some

cases deployed biannually for > 20 years, comparing the number of

NIS detected in this study to total NIS detected at each location is

not necessarily appropriate.

The existence of a strong turbidity/visibility gradient in Kaipara

Harbour was used to assess the implications of water visibility on

survey efficiency (Figures 1A–C). We tested three broad hypotheses:

1) increasing turbidity will greatly influence survey cost per unit

area for both ROV and diving methods; 2) the sensitivity (i.e., the

ability to detect NIS accurately), detection rate (i.e., the number of

NIS detected per unit time), and the taxonomic composition of

species observations will vary between methods; and 3) survey costs

per unit area will be greater for ROV methods but development of

automated detection algorithms will improve relative

cost differences.
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Survey methods

The ROV used for this study (Boxfish™ ROV, Boxfish Research

Ltd) is relatively small (length 60 cm, height 30 cm, and width 40

cm), and is equipped with high-powered LED lights, a Sony™

RX100 (V) camera capable of recording in 4K (30 fps) and four

parallel scaling lasers. The ROV is relatively lightweight (<30 kg)

and was deployed from small vessels by a team of 2-3 people

depending on operating conditions. For example, in conditions that

allowed the vessel to be anchored or berthed at pontoons/wharfs, a

two-person team was sufficient for safe operations, but during un-

secured operations a three-person team was required to safely

operate the vessel, the ROV, and manage the ROV’s tether.

The SCUBA diving personnel used for this study have

experience in marine biosecurity surveillance across ports and

harbours throughout New Zealand (Woods et al., 2018). These

specialist scientific diving teams were regularly trained on the

identification of high-risk marine pests, were familiar with many

of the NIS present in New Zealand and maintain a high level of

knowledge of native species present throughout New Zealand.

Divers used in this study had a minimum of five years’

experience. Furthermore, more experienced divers (> 10 years’

experience) were always paired with less experienced divers.

Although the same divers were not used for every dive in every
FIGURE 1

Study locations across Aotearoa New Zealand: Kaipara Harbour; Nelson Harbour; and Whakaraupō/Lyttelton Harbour. The number of confirmed NIS
at each location are shown in brackets below the site label. The right-hand panel shows representative images of the seafloor across a gradient of
water clarity in Kaipara Harbour and the decreasing swath width of seafloor visible with increasing turbidity. (A, low visibility; B, moderate visibility;
and C, high visibility)
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region (on account of dive profile management and regional diver

availability), the experienced diver was always denoted “Diver 1”

while the less experienced diver was denoted “Diver 2”. Like ROV

surveys, dive teams used artificial lighting (e.g., high powered LED

torches) to illuminate their surroundings and aid in the

identification of organisms.

Divers had a primary objective of detecting nine target marine

pest species, five that have yet to be detected in New Zealand (the

Northern Pacific seastar Asterias amurensis, the European shore

crab Carcinus maenas, the green seaweed Caulerpa taxifolia, the

Chinese mitten crab Eriocheir sinensis, and and the Asian clam

Potamocorbula amurensis), and four established pest species (the

Asian date mussel Arcuatula senhousia, the droplet tunicate

Eudistoma elongatum, the Mediterranean fanworm Sabella

spallanzanii, and the clubbed tunicate Styela clava). However, as a

secondary objective, divers are tasked with detecting non-target NIS

know to be in New Zealand waters (e.g., the Asian paddle crab

Charybdis (Charybdis) japonica, the colonial ascidian Didemnum

vexillum, and the kelp Undaria pinnatifida) and any suspect

organisms thought to be new to New Zealand (Woods et al.,

2018). A selection of these species, and other NIS commonly

found in New Zealand are shown in Figure 2. When comparing

the species detected by each method, we separately analysed the

detection profiles for total NIS observed (i.e., primary and

secondary objectives) and the target subset of organisms (i.e., the

primary objective of nine target species and the three non-

target species).

A key aspect of the survey protocol that these programmes have

implemented for 20 years was the focus on detecting new incursions

of NIS, not enumerating densities or abundance of established NIS

(Woods et al., 2018). This strategy was implemented to ensure that

human observers did not become overwhelmed counting abundant

NIS but maintain mental capacity to observe and detect primary or

secondary target species. Therefore, we assessed the efficacy and

efficiency of divers and ROVs at detecting the presence or absence

of NIS and do not report densities or abundances. However, we

briefly report on whether NIS were identified by single specimens or

abundant populations.
Visibility dependent survey coverage

Kaipara Harbour (Figure 1) presented a strong turbidity

gradient, from the upper arms of the harbour (turbid) to the

harbour entrance (clear). We used this gradient to compare the

swath of benthos sampled by divers and the ROV at high

visibility (> 3 m secchi), moderate visibility (1.5 m secchi) and

low visibility (0.8 m secchi) (Figures 1A–C). Two sites were

investigated at each turbidity range. At each site all NIS were

noted, and the time and distance covered recorded. The width of

seafloor within clear view of the ROV and SCUBA divers was

estimated using parallel lasers to calculate the average frame

width (ROV), and half the secchi disk measurement taken at the

surface (divers). While it is not appropriate to assume that the

benthos could be accurately sampled by divers at the full length

of the secchi measurement, we considered that half the secchi
Frontiers in Marine Science 04
depth was a conservative swath width of human divers. Wharf

piles were surveyed at locations of high and low turbidity (no

wharf piles were found in regions of moderate turbidity), and the

times taken to cover these features were also recorded. All NIS

detected were enumerated, and any suspected NIS or unknown

native species were sampled by SCUBA divers. Samples were

preserved according to the taxon to which they belonged (as

identified by trained parataxonomists) and sent to specialist

taxonomists for formal identification.

The average point-to-point distance covered per unit time, by

the ROV and divers, was estimated from the difference between the

start and end Global Positioning System (GPS) coordinates and the

time it took to cover the distance. The GPS coordinates were

collected with a Lowrance™ HDS-16 chart-plotter with

horizontal accuracy < 5 m.
Sensitivity, efficiency, and taxonomic
composition of each method

ROV and SCUBA surveys were completed at all three locations

(Figure 1). The 14 sites (Kaipara, four sites; Nelson, six sites; and

Whakaraupō/Lyttelton, four sites) surveyed included a range of

natural and artificial habitats including rocky riprap/reef, soft

sediments, man-made pontoons, and wharf piles. Sites were pre-

determined and were assessed by ROV first to avoid missing

specimens collected by divers. SCUBA surveys were completed no

more than two weeks after ROV surveys. Sampling was completed

during daylight hours at each location. Sampling in Kaipara

Harbour was completed during the week 20-24 May 2019;

between 18-26 June 2019 in Nelson; and between 1-15 July 2019

in Whakaraupō/Lyttelton Harbour.

At each site, a defined area was sampled in line with the

NMHRSS programme (Seaward et al., 2015), either 50 m benthic

transect, 50 m pontoon structures, or ten wharf piles were sampled,

and the time taken for each method recorded. Divers searched the

prescribed area (e.g., linear distance travelled or prescribed number

of wharf piles) in “buddy” pairs, swimming the same route which

included observations of both overlapping and discrete habitats.

Furthermore, all NIS observed by divers or ROV were recorded.

The sensitivity of each method (i.e., the proportion of NIS, sampled

by each diver and the ROV, compared to the total NIS sampled by

all methods) and the detection rate (i.e., number of NIS sampled per

minute) were calculated for each site.

Sensitivity (Equation 1) was calculated as the total number of

NIS (number of species, not number of individuals) found at that

site by each method (Ms) compared to the total number of NIS

observed by all methods (i.e., both divers and ROV) at that site (S).

Equation 1:

Sensitivity=
MS

oS

Detection rates (Equation 2) were calculated as the total number

of NIS detected by each method (Ms) divided by the time taken to

complete the survey (Tmin). Detection rate was expressed as NIS

detected per minute.
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Equation 2:

Detection rate=
MS

Tmin

Observations of NIS were recorded in situ by divers. However,

ROV videos were processed following completion of field

campaigns by trained parataxonomists with no prior knowledge

of the observations made by the divers. In cases where NIS were

suspected, but were unable to be confirmed via specimens,

confirmation by diver collected specimens was used to confirm

presence. We note that without performing a full biodiversity

census at each site we were unable to assess the inability of both

methods to detect NIS present within a site.

Species assemblages at each location and for each method

(including separate detections from each diver) were used to

identify differences in taxonomic profiles detected by each

method. The influence of substrata, method, and region on NIS

composition was examined. We analysed the total richness of NIS

detected by both methods as well as the subset of primary target

species to ensure that additional capability to review ROV video did

not bias the detection of additional species compared to divers.
Frontiers in Marine Science 05
Relative survey costs and AI augmented
post-processing

We assessed the relative efficiencies and efficacy of diver and

ROV methods, including the costs of manual footage review

compared to artificial intelligence (AI) augmented processing of

ROV video. This was done by summing the time required to cover 1

hectare (ha) of seafloor and multiplying this by the number of

people required for operations. Four people were required to

complete diving operations, while three people were required for

ROV operations. ROV surveys required post-processing of video to

analyse the presence of NIS and this time was added to the total

time costs of ROV surveys. Video processing time was added to the

survey cost at the same ratio as the footage collected (i.e., one hour

of benthic video = one hour post-processing). We note that

equipment (e.g., ROV, dive gear, vessels) and consumables (e.g.,

fuel) was not factored into calculations of costs. We focus on the

personnel costs of completing surveys after investing in the

appropriate equipment.

To demonstrate the applicability of AI detectors we trained and

tested a computer vision algorithm against expert marine
FIGURE 2

Non-indigenous species (NIS) commonly found in New Zealand ports and harbours. Slides include: Sabella spallanzanii (A); Styela clava (B); Undaria
pinnatifida (C); Charybdis (japonica) japonica (D); Eudistoma elongata (E); Acentrogobius pflaumii (F), Caprella mutica (G); Ciona intestinalis (H); and
Clavellina laepadiformis. (I) Photos taken by Crispin Middleton (A, B, D, E), Chris Woods (F–I) and Leigh Tait (C).
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biosecurity specialists. Here, we examined the potential for

computer vision algorithms to recognise and discriminate a key

unwanted, yet widely present invasive species of tubeworm, Sabella

spallanzanii, including testing against a similar native tubeworm

Pseudobranchiomma grandis (both Family Sabellidae; Figure 3). S.

spallanzanii has been shown to be damaging to ecosystem services

and marine industries (Soliman and Inglis, 2018; Atalah et al., 2019;

Douglas et al., 2020; Tait et al., 2020). Halting regional spread of

species such as S. spallanzanii is a key goal of regional and central

government agencies across New Zealand and Australia

(Cunningham et al., 2019; McDonald et al., 2020).

We explored the potential for automatic NIS detection in survey

videos (collected with the Boxfish™ ROV), using AI to identify a NIS

already present in New Zealand. We trained a YOLOv3 AI model to

detect the non-indigenous tubeworm, S. spallanzanii and the indigenous

tubeworm P. grandis. This classifier was chosen because of its suitability

for object detection, and in particular its utility for real-time detection.

YOLOv3 (You Only Look Once version 3), is a real-time object

detection algorithm that identifies specific targeted objects in videos (as a

post-process). During training, YOLOv3 iteratively learns the features

required to accurately identify its target and, after each iteration, discards

any information that does not improve the accuracy. To train the YOLOv3
Frontiers in Marine Science 06
model we used a small dataset of approximately 100 individual images of

non-indigenous tubeworm S. spallanzanii. For testing, we used

independent ROV video that had not been used for training.

From our selected ROV survey video, we fed a set of 100 frames

(set A) into the trained detector. When the detector predicted the

presence of the target (S. spallanzanii) anywhere within the frame, it

drew a coloured box around (annotated) each instance of the detected

target and saved the set of 100 annotated frames (set B) for later

analysis. Set A was given to one of two experts to manually count and

record the number of individual S. spallanzanii that were visible in each

frame. Set B was given to the second expert to count and record any AI-

annotated detections in each frame. We then carried out a comparison

between the instances of S. spallanzaniimanually counted in set A and

those automatically detected in set B. While the trained detector

algorithm included both indigenous and non-indigenous tubeworms,

only the invasive S. spallanzanii was present in the test video.
Data analysis

Variation in sensitivity and detection rates between methods

(including between divers) were analysed using one-way ANOVA,
FIGURE 3

Example frames of video-based detectors and detections of the indigenous sabelllid tubeworm Pseudobranchiomma grandis (A) and the non-
indigenous Sabella spallanzanii (B).
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including post-hoc Tukey tests. Diagnostic plots were used to check

for outliers and homoscedasticity before Tukey tests were

performed. Statistical tests were done in R Studio (RStudio

Team, 2020).

Composition of NIS was analysed using principal coordinate

analysis (PCA) and permutational ANOVA (PERMANOVA) using

the R ‘vegan’ package (Oksanen, 2007). We chose multivariate

analysis to retain species specific information and identify subtle

biases in the detection profiles of each method. To test for and

visualise these responses we overlayed the contribution of

individual species using redundancy analyses to the total species

profile of each replicate (i.e., a single site by one method). The

Jaccard index was used for calculating dissimilarity indices for the

presence-absence data. The combined effects of method (Diver 1,

Diver 2, or ROV) survey substrata (rocky reef/riprap, soft sediment,

or pontoons), and location (Kaipara Harbour, Nelson Harbour, and

Lyttelton Harbour/Whakaraupō) on the composition of NIS

detections were analysed using PCA and PERMANOVA. PCA

plots included vectors representing the contribution of NIS to

detection profiles and frames surrounding treatment groups.

Agreement between computer vision detection algorithms and

expert observations were analysed with linear regressions. To test the

deviation of the regression slope from one (i.e., perfect agreement) the

difference between computer vision detections and experts’ detections

were compared to expert detections. Significant deviation of the

regression slope from zero was used to assess the over- or under-

detection of S. spallanzanii by the computer detector.
Results

Visibility dependent survey coverage

Under decreasing water clarity, the area of seafloor or surface

area of structures surveyed per unit time by divers or ROV

decreased dramatically (Table 1). This was determined by the

area of seafloor/structure visible under a gradient of turbidity,

where decreasing water clarity affected the proximity of the ROV

to the benthos/structure and therefore the area of benthos clearly

visible per linear metre of benthos/structure covered or the number

of piles covered per unit time. Since it was necessary for SCUBA

divers to dive as buddy pairs for safety reasons, the area of benthos/

structure sampled was doubled, but the area surveyed by a single

diver and the ROV was comparable.
Frontiers in Marine Science 07
Sensitivity, detection rate and taxonomic
composition of each method

Combined, visual surveys with ROVs and divers detected 35%

of all known NIS present in Kaipara Harbour, 14% of all NIS known

from Nelson Harbour, and 15% of all known NIS from

Whakaraupō/Lyttelton Harbour. ROV alone detected 28% of all

known NIS present in Kaipara Harbour, 8% of all NIS known from

Nelson Harbour, and 10% of all known NIS from Whakaraupō/

Lyttelton Harbour. The sensitivity of detection was similar for each

method, with no statistical difference in the proportion of the total

NIS detected by each method (Figure 4A). However, detection rates

(e.g., the number of unique NIS sampled per unit time) of NIS were

significantly greater for divers compared to the ROV (Figure 4B;

Table 2). Tukey post-hoc tests revealed no significant differences in

detection rates between Diver 1 and Diver 2, or between Diver 2 and

ROV, but Diver 1 had higher detection rates than ROV (Table 2).

The composition of NIS assemblages as detected by each method

and at each site were presented in two-dimensional space as Principal

Coordinate Analyses (PCA). To visualise the overlap in detection

profiles we present duplicate plots highlighting the differences

between each method (Figures 5A, B), various substrates

(Figures 5C, D), and regions (Figures 5E, F). Principal coordinate

plots showed high overlap in the detection profiles between all methods

for the full suite of NIS detected (Figure 5A) and the subset of targeted

high-risk species (Figure 5B), although ROV detections captured only a

subset of the overall NIS profile observed by divers (Figure 5A). Unlike

survey methods, NIS profiles were distinct across substrate types

(Figures 5C, D), and across regions (Figures 5E, F). PERMANOVA

analysis showed that the species profiles detected by each method were

not significantly different, but the species profiles differed significantly

between substrata (Table 3).

Species poorly detected by the ROV were relatively small

organisms, including the skeleton shrimp Caprella mutica and the

hydroid, Ectopleura crocea (Table S1). Furthermore, the ROV did

not identify any of the Asian paddle crab (Charybdis (Charybdis)

japonica) in Kaipara harbour which were observed by divers at the

same location in sampling 24 hours apart (Table S1). However, the

invasive goby Acentrogobius pflaumii was only detected by the ROV

and not by divers at the same location one week later (Table S1). It is

worth noting that while mobile organisms such as the crab

Charybdis (japonica) japonica may have simply moved over 24

hours, the tendency of Acentrogobius pflaumii to hide in burrows

means it may simply go un-noticed if disturbed.
TABLE 1 Estimated area of seafloor and the number of wharf piles sampled by divers and ROV in a 10-minute period.

Area (m2) or number of piles surveyed in 10 minutes

Seafloor Piles

Low
visibility

Moderate
visibility

High
visibility

Low
visibility

High
visibility

Divers (x2) 50 m2 93.4 m2 187.5 m2 10 16.4

Single diver 25 m2 46.7 m2 93.75 m2 5 8.2

ROV (x1) 21 m2 39 m2 78 m2 1.1 3.3
fro
Area or number of piles also separated by water visibility at the time of inspection, low visibility (0.8 m secchi), moderate visibility (1.5 m secchi), and high visibility (3 m secchi).
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Relative survey costs and AI augmented
post-processing

The relative costs of diving and ROV assessments in terms of

the number of people hours required to cover one hectare (ha) of

seafloor showed that ROV methods were 1.8 times more expensive

than divers and 2.4 times more expensive than divers if manual

imagery review was required (Table 4). Both ROV and diver

searches in low visibility environments (0.8 m secchi) were almost

four times more expensive than searches in clear water (> 3 m

secchi). The level of visibility had little impact on the relative

expenses of ROV and diver-based methods (Table 4).

Computer vision algorithms had no misidentification of non-

indigenous tube worms as indigenous and vice versa. The independent

test ROV survey video had high numbers of the non-indigenous

tubeworms at various distances from the camera, providing a relatively

challenging task for automated algorithms and experienced observers.

Computer vision algorithms showed high agreement with expert-based
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video observations for the enumeration of the non-indigenous S.

spallanzanii (Figure 6). There was, however, a trend of false negatives

by the automated detector. Linear regression of the differential between

detection by experts and the detector and the total number of specimens

observed by experts showed a significant negative trend (t = -9.7, p<

0.001), indicating that increasing numbers of specimens lead to

increasing ratios of false negatives by the detector. Higher agreement at

lower densities shows that automated detectors provide fewer instances

of false positives when presented with low numbers of Sabella

spallanzanii. Overall, there were only three instances where computer

vision detections exceeded expert detections by a single specimen.
Discussion

Comparisons between scientific SCUBA divers and ROV

revealed that divers were more efficient than ROVs in detecting

NIS in certain surveillance situations, although there was no
A B

FIGURE 4

Comparison of SCUBA divers and ROV for NIS detection. Graph (A) shows the proportion of NIS detected at each site (detection efficacy) and graph
(B) shows the detection rate per minute for each method (detection efficiency). Results of Tukey test comparisons shown by letters (a, b), with
separate letters indicating statistically significant differences.
TABLE 2 Variation in sensitivity and detection rates between methods (including between divers) as analysed using one-way ANOVA, and post-hoc
Tukey tests.

ANOVA Sensitivity Efficiency

F2,47 P F2,47 P

Between treatments 0.29 0.75 8.7 0.001

Tukey Post-hoc q P q P

ROV vs Diver 1 – – 3.9 0.02

ROV vs Diver 2 – – 2.9 0.1

Diver 1 vs Diver 2 – – 1.0 0.8
Post-hoc tests only presented for significant one-way ANOVA. Significant results (e.g., p< 0.05) highlighted in bold italics.
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significant difference in sensitivity of invasive species detection for

the full suite of NIS detected, and the subset of targeted high risk

species. This differs slightly to previous findings that show both the

sensitivity and efficiency of marine vessel inspections are higher for
Frontiers in Marine Science 09
diver-based collections compared to camera-based ROV surveys

(Peters et al., 2019). However, we show that video based ROV

surveys compare well to visual diver surveys for the detection of NIS

across a range of natural and artificial habitats.
A B

D

E F

C

FIGURE 5

NIS assemblage composition detected at each replicate study site for each method (identified as coloured dots) as visualised in two-dimensional
space. The spread of the points reflects the difference in the composition of species found at each site, with the contribution of each species to this
spread indicated by the radiating vectors. The coloured polygons show the spread of detections encompassed within different factors (e.g., methods
(A, B), habitats (C, D), and regions (E, F). Highly overlapping polygons reveal similar detection of species profiles, while non-overlapping polygons
show unique species profiles. Principal Coordinate Analysis (PCA) plots are generated for the total NIS assemblage (A, D, E), and for a subset of the
“targeted species” (B, D, F). For the total assemblage and the subset, each panel retains the same data, but changes in the presentation of the factors
(i.e., method, habitat and region) to visualise overlap and separation of the NIS assemblages detected.
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Direct comparisons between diver-operated video and remote-

operated video for benthic species richness metrics have revealed

strong agreement (Biovida et al., 2015). Additionally, assessment of

the comparability of ROVs and human snorkelers for identifying

fish communities showed that ROVs detected greater abundance

and diversity of fish (Raoult et al., 2020). Here we report the

detection of an invasive fish Acentrogobius pflaumii by a small

ROV, while divers were unable to detect this fish due to its ability to

conceal itself in burrows. It is likely that at this low visibility site, A.

pflaumii are sensitive to approaching divers and the noise of air

exhalation and retreat into burrows before divers can detect them,

whereas the quieter ROV can approach close enough without

disturbing them.

Video-, or image-based analysis will always fall short of the

taxonomic resolution outcomes from physical samples (Peters et al.,

2019), however, collections of specimens are not always possible,

and in many circumstances good quality imagery can provide high-

level taxonomic information (Marshall and Evenhuis, 2015).

Furthermore, machine learning algorithms are increasingly viable

options for detecting organisms (Gaston and O’Neill, 2004;

Wäldchen and Mäder, 2018) and we show that implementation

of automated detection algorithms can substantially reduce costs

associated with manual footage review in a marine biosecurity

surveillance context. Care must be taken in the application of

imagery alone for identification of NIS (Krell and Marshall,

2017), but the ubiquity of imagery-based techniques in marine

systems necessitates that we optimise these products for a range of

applications. Here we show that the use of automated detection

algorithms in post-processing of video imagery can reduce the total

costs of ROV surveys, but overall remote operated surveys were

unable to match the efficiencies of dive teams. While it is no surprise

that water visibility dramatically increased the cost of surveillance
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per unit area, the relative costs to diving and ROV surveys were

the same.

Despite current inefficiencies of ROVs, further advancements in

these technologies have the potential to approach the efficiencies of

divers. Small ROVs are increasingly equipped with high-resolution

cameras (e.g., 4k video) and lightweight manipulators (for sample

collection). These platforms are also able to apply acoustic imaging

systems (Kim and Yu, 2016), stereocamera systems (Negahdaripour

and Firoozfam, 2006), and sampling systems (Mazzeo et al., 2022)

that can provide further confirmation of NIS or improve operations

under challenging conditions. Furthermore, with the application of

underwater positioning systems, and real-time (or near real-time)

detection algorithms, development of increasingly autonomous

surveillance or analysis can pave the way for automated detection

and geolocation of NIS at efficiencies far greater than any current

method (Williams et al., 2016). This will also reduce capacity

limitations and enable a greater variety of agencies and personnel

to perform surveillance activities.

While we stress the power of experienced and trained

biosecurity SCUBA divers for marine post-border surveillance, we

acknowledge the physical, physiological and workforce limitations

of these methods and provide support for the application of ROVs

under specific scenarios too dangerous or challenging for divers.

Such conditions include regions where dangerous marine animals

are present, conditions of high tidal flushing, depths beyond c. 20 m

depth, environments with especially high or erratic vessel traffic,

and conditions where pollutants have the potential to affect human

divers. We expect that remote operated and autonomous systems

will soon become the standard for marine surveillance and

establishing their limitations against gold standard methods will

help identify current limitations and efficiency bottlenecks.

Improvements in the swath-width of remote imaging systems
TABLE 3 PERMANOVA analysis of the influence of method (diver or ROV), survey substrata and region on the invasive species profiles for the entire
suite of NIS detected (Total) and for the target subset (Subset).

Df Sum of squares R2 F p

Total Subset Total Subset Total Subset Total Subset Total Subset

Method 2 2 0.3 0.29 0.02 0.02 0.9 0.9 0.6 0.5

Substrata 3 3 4.4 4.4 0.4 0.4 8.9 8.9 0.001 0.001

Region 2 2 1.9 1.9 0.2 0.2 5.6 5.6 0.001 0.001

Residual 34 34 5.7 5.7 0.46 0.5

Total 41 41 12.3 12.3 1 1
fron
Significant results (e.g., p< 0.05) highlighted in bold italics.
TABLE 4 Number of person hours required to cover 1 hectare (ha) of seafloor for ROV and divers expressed across varying degrees of turbidity.

Person hours per ha

Visibility

Low Moderate High

Diver 133.3 71.4 35.5

ROV with AI 238 128.2 61.7

ROV manual 317.5 170.9 82.3
Visibility categories (high, moderate, low) refer to broad water visibilities as determined by secchi depth high (> 3 m secchi = high visibility; 1.5 m secchi = moderate visibility; 0.8 m secchi = low visibility).
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provides a tangible path forward for immediate gains in efficiency of

these systems.
Conclusion

As autonomous technologies increasingly become available for

close range visual imaging, we must ensure that these technologies

can be integrated seamlessly into existing monitoring or

surveillance programmes. Part of this integration undoubtedly

involves transition from human annotation to computer-vision

recognition algorithms which will enable data-processing/analysis

to keep pace with the exponential increase in data collection (Beyan

and Browman, 2020). To ensure continuity of existing programmes,

biases and limitations of existing or emerging technologies must be

identified and quantified. We identify some limitations of camera-

based ROV imaging compared to human divers and we present

critical parameters required for autonomous or remote operated

systems in turbid coastal environments.

Currently ROVs are unable to achieve the same efficiency as

dive teams, but such systems may represent a stopgap while close-

range visual imaging AUVs gain improved capabilities for

navigating complex coastal environments (Gutnik et al., 2022).

AUVs will eventually eclipse both methods in cost effectiveness

and efficiency and greatly improve surveillance and monitoring of

benthic marine ecosystems. We show that camera-based robotic

surveys and integration of computer-vision algorithms can

complement human-based surveillance programmes and could

integrate additional emerging surveillance technologies (e.g.,

eDNA; Bowers et al., 2021) to provide platforms with both

imaging and sampling capabilities (Yamahara et al., 2019).
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Frontiers in Marine Science 11
Author contributions

LT and GI conceived the research. LT, LR, KS, LO, CW, and HL

contributed to field and lab data collection, preparation, and

analysis. JB contributed to the development of computer vision

algorithms and analysis. LT, JB, HL, CW, KS, and GI contributed to

manuscript preparation and review. All authors contributed to the

article and approved the submitted version.

Funding

This research was supported by the New Zealand Government’s

Strategic Science Investment Fund (SSIF; COBS2102, COBS2202,

CEBS2302) to the National Institute of Water and Atmospheric

Research (NIWA) and the Ministry for Primary Industries Marine

High Risk Site Surveillance programme (SOW18048). Additionally,

field logistics in Kaipara Harbour were supported by Auckland

Council and Northland Regional Council.

Acknowledgments

We acknowledge the assistance of several technical staff in the field

campaigns, including Megan Carter, Jon Stead, Matt Smith, Dane

Buckthought, Richie Hughes, and Ann Parkinson. We also thank

Roberta D’Archino, Dennis Gordon, and Mike Page for taxonomic

identification of diver sampled organisms. We also thank Auckland

Council staff and associated students (Samantha Happy, Melanie

Vaughan, Hayley Nessia, and Kyle Hilliam) for field support during

the Kaipara field sampling, and MPI (Abraham Growcott) for

contributing via the NMHRSS programme (SOW18048).
Conflict of interest

All authors were employed by National Institute of Water and

Atmospheric Research Ltd.
FIGURE 6

Expert and AI detection frequencies per frame. Linear regression and 95% CI. Dotted line shows perfect agreement. Note points “jittered” (by x = ±
0.2) to visualize the number of individual observations (n = 100).
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SUPPLEMENTARY TABLE 1
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