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Pigmentation mediated by the transforming growth factor b (TGFb) signaling

pathway is a key trait for understanding environmental adaptability and species

stability. In this study, TGFb signaling pathway members and their expression

patterns in different color morphs of the sea cucumber Apostichopus japonicus

were evaluated. Using a bioinformatics approach, 22 protein sequences of TGFb
signaling pathway members in A. japonicus were classified, including 14 that were

identified for the first time in the species, including 7 ligands, 6 receptors, and 1 R-

Smad. We further evaluated mRNA expression data for different color morphs and

pigmentation periods. These results support the hypothesis that both subfamilies

of the TGFb superfamily, i.e., the TGFb/activin/Nodal and BMP/GDF/AMH

subfamilies, are involved in the regulation of pigmentation in A. japonicus. The

former subfamily was complete and contributes to the different color morphs. The

BMP/GDF/AMH subfamily was incomplete. BMP2/4-induced differentiation of

white adipocytes was regulated by the BMP2/4–ACVR2A–Smad1 signaling

pathway. These findings provide insight into the TGFb family in early chordate

evolution as well as the molecular basis of color variation in an economically

valuable species.
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GRAPHICAL ABSTRACT
1 Introduction
The sea cucumber Apostichopus japonicus is a commercially

important marine species in China (Chen et al., 2022). Color

variation, one of the most important characteristics of A. japonicus,

plays a significant role in determining market price (Kang et al., 2011)

and is an important trait for breeding. In China, this species is mainly

green, and purple and white morphs are very rare and highly valuable

(Bai et al., 2016). Extensive studies have shown that the growth and

development of sea cucumber are affected by various environmental

factors, such as temperature and salinity (Chen et al., 2007; Wang

et al., 2007; Ji et al., 2008). There are significant differences in the

tolerance of sea cucumbers with different body colors to

environmental factors (Bao, 2008; Guo et al., 2020; Li et al., 2020).

For example, purple A. japonicus has a wider temperature range and

stronger salt tolerance, while the white morph has a higher

temperature tolerance but narrower range of salinity tolerance than

those of the green morph (Zhao et al., 2018; Zhu et al., 2013).

Pigmentation is a tractable and relevant trait for understanding

key issues in evolutionary biology such as adaptation, speciation and

the maintenance of balanced polymorphisms (Henning et al.,

2013).Substantial recent research has focused on the identification

of genetic pathways that determine pigmentation variation (Hubbard

et al., 2010; Henning et al., 2013). Studies of animal models have

found that the TGFb signaling pathway mediates many biological

processes, such as pigmentation, tissue and organ development, and

stress resistance (Cheng, 2008; Hubbard et al., 2010). Recent

structural, biochemical, and cellular studies have provided

significant insight into the mechanisms underlying TGFb signaling.
Frontiers in Marine Science 02
In brief, a TGFb ligand initiates signaling by binding to and bringing

together type I and type II receptor on the cell surface. This allows

receptor II to phosphorylate receptor I, which then regulates target

gene expression by the phosphorylation of Smad proteins. The

number and type of TGFb family members have been evaluated in

model organisms, ranging from worms and flies to mammals

(Massagué and Chen, 2000; Patterson and Padgett, 2000; ten Dijke

et al., 2000). Six conserved cysteine residues characteristic of the

TGFb family are encoded by 6 open reading frames in worms, 9 in

flies, and 42 in humans (Linton et al., 2001).

Although studies of the TGFb family in non-model organisms

are increasing, relatively little is known about functional changes

and divergence in expression patterns between invertebrates and

vertebrates (Lapraz et al., 2007; Weiss and Attisano, 2013; Zheng

et al., 2018). Echinoderms, which first appeared in the early

Cambrian period (Bottjer et al., 2006), occupy a critical

phylogenetic position for understanding the origin of chordates

(Lowe et al., 2015). The radiation of echinoderms was believed to

be responsible for the Mesozoic Marine Revolution (Signor and

Brett, 1984). In particular, sea cucumbers are an outstanding

representative of the phylum, as they have survived ice ages and

are considered “living fossils” (Bottjer et al., 2006). Despite the

importance of pigmentation mediated by the TGFb signaling

pathway (Cheng, 2008; Hubbard et al., 2010; Henning et al.,

2013), few studies have evaluated the TGFb signaling pathway in

sea cucumbers. Only 14 ligands (some sharing the same name), 6

receptors, and 2 R-Smads have been recorded in GenBank. In
frontiersin.org
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addition, some loci have informal names, such as Sj-BMP2/4

(accession no. PIK56114.1 and BAC53989.1), and some were not

classified in detail, e.g., putative TGFb (accession no. PIK61515.1).

Accordingly, their functions and roles in morphs with different

body colors are unclear. This can be explained, in part, by poor

sampling of genomes (Sodergren et al., 2006; Cameron et al., 2015;

Hall et al., 2017; Sun et al., 2017; Zhang et al., 2017). In this study,

the types and quantities of TGFb signaling pathway members in A.

japonicus were characterized for the first time and expression

levels in different color morphs and developmental stages were

evaluated, providing an important basis for analyses of functions

of TGFb signaling in invertebrates.
2 Materials and methods

2.1 Sequence analysis

All TGFb ligand receptors and Smad protein sequences of A.

japonicus available on NCBI were obtained and compared using

BLAST (Basic Local Alignment Search Tool) (Tables 1–3). Multiple

sequence alignments were analyzed using the ClustalW Multiple

Alignment program (http://www.ebi.ac.uk/clustalw/). Separate trees

were generated based on ligand, receptor, and SMAD amino acid

sequences using the neighbor-joining (NJ) algorithm within MEGA

version 7.0. The reliability of the tree was assessed by 1000

bootstrap repetitions.
2.2 Animals

2.2.1 Sea cucumbers of different color morphs
Healthy sea cucumbers aged 2 years and weighing 120 ± 10 g were

collected from green, purple, and white cultivated populations

(Figure 1). The purple and white morphs are genetically stable and

have been bred by our research team for nearly 20 years.

2.2.2 Purple sea cucumber at different
developmental stages

9 purple sea cucumbers with a body weight of >180 g were

screened as the parent population. Artificial labor was stimulated by

drying in the shade and running water (20.5°C). Male individuals

were removed from the incubator immediately after ejaculation. All

parents were removed when the egg density was 20–30 eggs/mL.

Then, the water temperature was increased to 21.0 ± 0.2°C for

incubation. During the incubation period, the incubator was

agitated once an hour, and micro-aerated continuously for 24 h to

ensure an even distribution of fertilized eggs. Marine red yeast was fed

to early auricularia after hatching. When 10% to 20% of doliolaria

formed, a corrugated plate frame after disinfection was placed as the

attachment matrix. After the larvae were attached, they were

gradually transitioned to artificial compound feed. The feeding

amount was 0.5% to 2% of the body weight. Juveniles were

randomly selected every 3 days after the larvae developed to

pentactula and were placed in a Petri dish to observe the change in

body color. The pigmentation stage was defined at the point at which

80% of individuals were completely pigmented.
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2.3 mRNA expression of TGFb signaling
pathway genes mRNA in A. japonicas

9 body walls from each sample of different color morphs and

purple sea cucumber at different developmental stages were peeled

away carefully, flash-frozen in liquid nitrogen, and stored at −80°C for

subsequent total RNA extraction. Specific primers for BMP2/4,

ACVR2A, Smad1, TGFbR2, Smad2/3, and grb2 (a housekeeping

gene used as an internal reference) based on known A. japonicus

sequences (Table 4) were designed using Oligo 7.0. Primers were

synthesized by Invitrogen Biotechnology Co., Ltd. (Shanghai, China).

TRIzol Reagent was used to isolate total RNA from the body walls

according to the manufacturer’s instructions (Invitrogen, Waltham,

MA, USA) and contaminating genomic DNA was eliminated using

RNase-free DNase (Takara, Tokyo, Japan). The RNA samples were

reverse-transcribed using the Prime Script RT-PCR Kit (Takara,

Tokyo, Japan). Equal amounts of cDNA were used for real-time

quantitative RT-PCR using in a PikoReal 96-well RT-PCR System

(Thermo Scientific., Waltham, MA, USA). Amplification was

performed in a total volume of 10 mL, containing 5 mL of 2× SYBR

Green master Mix, 1 mL of diluted cDNA, 0.4 mL of each primer, and

3.2 mL of PCR-grade water. The PCR cycling conditions were 95°C for

5 min followed by 35 cycles of 95°C for 15 s, 60°C for 30 s, and 72°C

for 1 min, and a final elongation step at 72°C for 7 min. Each sample

was run in triplicate along with the internal control gene (grb2). The

PCR products were visualized on a UV-transilluminator after

electrophoresis on a 1.5% agarose gel containing ethidium bromide.
2.4 Statistical analysis

Statistical analyses were performed using GraphPad Prism 5.0,

and all data were assessed using one-way ANOVA. Differences in

means between groups were assessed using Tukey’s honestly

significant difference test for post hoc multiple comparisons. All

data are expressed as the mean ± standard deviation (SD). Values

of p < 0.05 indicated a statistically significant difference.
3 Results

3.1 Phylogenetic analysis based on
ligand sequences

In a phylogenetic tree based on amino acid sequences from

multiple TGFb ligands, the ligands of the same type formed

clusters. The phylogenetic tree is shown in Figure 2 and the

corresponding sequences are shown in Table 1. According to the

phylogenetic tree, 14 known TGFb ligands from A. japonicus were

assigned to 7 classes: TGFb1, TGFb2, Nodal, Activin/Inhibin, BMP2/

4, BMP3, and GDF8 (Growth Differentiation Factor 8, alternative

name myostatin (de Caestecker, 2004)). Notably, TGFb2 of A.

japonicus was classified as TGFb2 but was also closely related to

TGFb3. The BMP2/4 cluster contained BMP2A, BMP2, BMP, and Sj-

BMP2/4 of A. japonicus. BMP3/3B of A. japonicus was classified into

BMP3. Putative activin BX1 and putative inhibin beta C chain-like of

A. japonicus were included in the Activin/Inhibin cluster.
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TABLE 1 Ligand protein sequences included in the present study.

Accession no. Protein name Species

PIK34829.1 putative TGFb1 like Apostichopus japonicus

QHG11580.1 putative TGFb1X1 Apostichopus japonicus

PIK56215.1 putative TGFb1X1 Apostichopus japonicus

XP_029964045.1 TGFb1X2 Salarias fasciatus

XP_041850924.1 TGFb1X1 Melanotaenia boesemani

XP_031614329.1 TGFb1 Oreochromis aureus

XP_033486555.1 TGFb1X1 Epinephelus lanceolatus

XP_040902844.1 TGFb1 Toxotes jaculatrix

XP_033851930.2 TGFb1X1 Acipenser ruthenus

XP_035241816.1 TGFb1X1 Anguilla anguilla

XP_026865903.2 TGFb1X2 Electrophorus electricus

XP_036440909.1 TGFb1X1 Colossoma macropomum

KAG9273341.1 TGFb1X1 Astyanax mexicanus

PIK45926.1 BMP2A Apostichopus japonicus

PIK48439.1 BMP2 Apostichopus japonicus

PIK57098.1 BMP Apostichopus japonicus

AAF19841.1 BMP2/4 Branchiostoma belcheri

QYF06707.1 BMP2/4 Holothuria scabra

PIK56114.1 Sj-BMP2/4 Apostichopus japonicus

BAC53989.1 Sj-BMP2/4 Apostichopus japonicus

AAD28038.1 BMP2/4 Lytechinus variegatus

ACA04460.1 BMP2/4 Strongylocentrotus purpuratus

ABG00199.1 BMP2/4 Paracentrotus lividus

BBC77411.1 BMP2/4 Temnopleurus reevesii

PIK37799.1 BMP3/3B Apostichopus japonicus

KAF3695343.1 BMP3 Channa argus

XP_033946079.1 BMP3 Pseudochaenichthys georgianus

XP_007425424.1 BMP3 Python bivittatus

XP_042727338.1 BMP3 Lagopus leucura

XP_021252303.1 BMP3 Numida meleagris

PIK42868.1 TGFb family member nodal Apostichopus japonicus

ACF32774.1 Nodal Heliocidaris erythrogramma

ACF32773.1 Nodal Heliocidaris tuberculata

XP_036937551.1 Nodal2 Acanthopagrus latus

XP_034426535.1 Nodal2 Hippoglossus hippoglossus

KFM00388.1 Nodal Aptenodytes forsteri

XP_035248296.1 Nodal Anguilla anguilla

RXN30610.1 Nodal Labeo rohita

QYF06711.1 GDF8 Holothuria scabra

AJQ81037.1 GDF8 Apostichopus japonicus

(Continued)
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3.2 Phylogenetic analysis of receptors

In a phylogenetic tree based on amino acid sequences frommultiple

TGFb receptors proteins, each type of receptor assembled in a cluster.

The phylogenetic tree is shown in Figure 3 and corresponding sequences
Frontiers in Marine Science 05
are shown in Table 2. According to the phylogenetic tree, six TGFb
receptors from A. japonicus were classified into six classes: TGFbR2
[transforming growth factor beta receptor 2, alternative name TbR2
(Hart et al., 2002)], TGFbR3 (transforming growth factor beta receptor

3, alternative name TbR3), BMPR1B [bone morphogenetic protein
TABLE 1 Continued

Accession no. Protein name Species

XP_013394669.1 GDF8 Lingula anatina

XP_014253049.1 GDF8 Cimex lectularius

XP_046672106.1 GDF8 Homalodisca vitripennis

RWS12911.1 GDF8 Dinothrombium tinctorium

XP_023223240.1 GDF8 Centruroides sculpturatus

QYF06710.1 inhibin Holothuria scabra

PIK34215.1
putative inhibin beta C chain-
like

Apostichopus japonicus

QYF06712.1 activin Holothuria scabra

PIK48233.1 putative activin B X1 Apostichopus japonicus

XP_037927328.1 INHbB Teleopsis dalmanni

XP_022218905.1 INHbA Drosophila obscura

XP_017154392.1 INHbA Drosophila miranda

XP_002028363.1 INHbA Drosophila persimilis

XP_033236864.1 INHbA Drosophila pseudoobscura

QYF06713.1 TGFb2 Holothuria scabra

PIK61515.1 putative TGFb2 Apostichopus japonicus

XP_022090565.1 TGFb2 Acanthaster planci

XP_038073348.1 TGFb2 Patiria miniata

BCB62973.1 TGFb Patiria pectinifera

XP_041467929.1 TGFb2 Lytechinus variegatus

XP_030855505.1 TGFb2 Strongylocentrotus purpuratus

QAV52899.1 TGFb Mesocentrotus nudus

XP_041951915.1 TGFb3 Alosa sapidissima

XP_042562890.1 TGFb3 Clupea harengus

XP_039597176.1 TGFb3 Polypterus senegalus

XP_028678165.1 TGFb3 Erpetoichthys calabaricus

XP_042593951.1 TGFb2 Cyprinus carpio

KAA0709699.1 TGFb2 Triplophysa tibetana

XP_039388520.1 TGFb2X2 Mauremys reevesii

XP_037751639.1 TGFb2 Chelonia mydas

XP_005307005.1 TGFb2 Chrysemys picta bellii

XP_003800184.1 TGFb2X2 Otolemur garnettii

XP_008825028.1 TGFb2 Nannospalax galili

CAA40672.1 TGFb2 Mus musculus

XP_021016320.1 TGFb2X2 Mus caroli
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TABLE 2 Receptor protein sequences included in the present study.

Accession no. Protein name Species

XP_026886611.2 TbR2 Electrophorus electricus

TSK92904.1 TbR2 Bagarius yarrelli

XP_017324951.1 TbR2 Ictalurus punctatus

XP_026802727.2 TbR2 Pangasianodon hypophthalmus

PIK56848.1 putative TbR2 Apostichopus japonicus

XP_033116886.1 TbR2 Anneissia japonica

XP_030828751.1 TbR2 Strongylocentrotus purpuratus

XP_038058105.1 TbR2 Patiria miniata

XP_033624779.1 TbR2 Asterias rubens

PIK56867.1 putative TbR3 Apostichopus japonicus

CAC5417350.1 TbR3 Mytilus coruscus

CAG2237547.1 TbR3 Mytilus edulis

XP_038129033.1 TbR3 Cyprinodon tularosa

XP_040482976.1 TbR3X2 Ursus maritimus

XP_036901372.1 TbR3X1 Sturnira hondurensis

XP_025893663.1 TbR3 Nothoprocta perdicaria

XP_005238531.1 TbR3X1 Falco peregrinus

XP_040466106.1 TbR3X2 Falco naumanni

PIK46054.1 putative BMPR2 Apostichopus japonicus

XP_033099609.1 BMPR2 Anneissia japonica

XP_790983.2 BMPR2 Strongylocentrotus purpuratus

XP_041459768.1 BMPR2 Lytechinus variegatus

XP_033624844.1 BMPR2 Asterias rubens

XP_038058132.1 BMPR2 Patiria miniata

XP_022088502.1 BMPR2 Acanthaster planci

PIK52453.1 putative ACVR2AX2 Apostichopus japonicus

XP_030828527.1 ACVR2A Strongylocentrotus purpuratus

XP_041458652.1 ACVR2A Lytechinus variegatus

XP_038079379.1 ACVR2AX1 Patiria miniata

XP_033624296.1 ACVR2A Asterias rubens

XP_042301709.1 ACVR2AX2 Sceloporus undulatus

XP_032880604.1 ACVR2AX2 Amblyraja radiata

XP_043550051.1 ACVR2AX1 Chiloscyllium plagiosum

XP_041056629.1 ACVR2A Carcharodon carcharias

XP_022103314.1 ACVR1X4 Acanthaster planci

XP_033113857.1 ACVR1X4 Anneissia japonica

PIK59495.1 putative ACVR1 Apostichopus japonicus

NXL14502.1 ACVR1 Setophaga kirtlandii

NWI57693.1 ACVR1 Calyptomena viridis

NXY49840.1 ACVR1 Ceuthmochares aereus

(Continued)
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TABLE 2 Continued

Accession no. Protein name Species

NXB24442.1 ACVR1 Rhagologus leucostigma

NP_001383423.1 ACVR1 Gallus gallus

KFP78435.1 ACVR1 Apaloderma vittatum

XP_032435030.1 BMPR1BX3 Xiphophorus hellerii

XP_005795012.2 BMPR1B Xiphophorus maculatus

XP_027890208.1 BMPR1BX3 Xiphophorus couchianus

PIK51009.1 putative BMPR1B Apostichopus japonicus

XP_797469.4 BMPR1B Strongylocentrotus purpuratus

XP_041485680.1 BMPR1B Lytechinus variegatus

XP_033644308.1 BMPR1B Asterias rubens

XP_038060789.1 BMPR1B Patiria miniata

XP_022089444.1 BMPR1B Acanthaster planci
F
rontiers in Marine Science
 07
TABLE 3 Smad protein sequences included in the present study.

Accession no. full name Species

XP_041459990.1 Smad4X1 Lytechinus variegatus

XP_030827838.1 Smad4X1 Strongylocentrotus purpuratus

XP_033109387.1 Smad4X2 Anneissia japonica

XP_033646664.1 Smad4X1 Asterias rubens

XP_022081844.1 Smad4X1 Acanthaster planci

XP_038058605.1 Smad4X1 Patiria miniata

XP_032649614.1 Smad4 Chelonoidis abingdonii

XP_035384718.1 Smad4 Electrophorus electricus

XP_030421567.1 Smad4X1 Gopherus evgoodei

XP_035314530.1 Smad4X1 Cricetulus griseus

XP_016004267.1 Smad4X1 Rousettus aegyptiacus

XP_030885493.1 Smad4 Leptonychotes weddellii

XP_033127281.1 Smad6 Anneissia japonica

ADW95340.1 Smad6 Paracentrotus lividus

XP_798238.2 Smad6 Strongylocentrotus purpuratus

XP_022083936.1 Smad6 Acanthaster planci

XP_038077875.1 Smad6 Patiria miniata

XP_026878186.2 Smad6b Electrophorus electricus

XP_015996485.2 Smad6X1 Rousettus aegyptiacus

XP_003500538.2 Smad6X1 Cricetulus griseus

XP_032621963.1 Smad6 Chelonoidis abingdonii

XP_030434864.1 Smad6 Gopherus evgoodei

XP_016003943.1 Smad7X1 Rousettus aegyptiacus

XP_007644509.3 Smad7X1 Cricetulus griseus

XP_032637417.1 Smad7X1 Chelonoidis abingdonii

(Continued)
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TABLE 3 Continued

Accession no. full name Species

XP_030423387.1 Smad7X1 Gopherus evgoodei

XP_033124235.1 Smad3 Anneissia japonica

XP_041460773.1 Smad3 Lytechinus variegatus

XP_033624249.1 Smad3X1 Asterias rubens

XP_022083075.1 Smad3X2 Acanthaster planci

XP_038076479.1 Smad3X1 Patiria miniata

XP_006749953.1 Smad3 Leptonychotes weddellii

XP_026860560.1 Smad3a Electrophorus electricus

XP_015996478.1 Smad3 Rousettus aegyptiacus

XP_007639432.2 Smad3X1 Cricetulus griseus

XP_028706267.1 Smad3X1 Macaca mulatta

XP_030434068.1 Smad3X1 Gopherus evgoodei

XP_032620241.1 Smad3 Chelonoidis abingdonii

XP_035391548.1 Smad2X1 Electrophorus electricus

XP_032654336.1 Smad2X1 Chelonoidis abingdonii

XP_003501086.1 Smad2X1 Cricetulus griseus

XP_006738743.2 Smad2 Leptonychotes weddellii

XP_028693529.1 Smad2X2 Macaca mulatta

XP_036085916.1 Smad2X1 Rousettus aegyptiacus

PIK47643.1
mothers against
decapentaplegic-like protein 1

Apostichopus japonicus

XP_032620791.1 Smad1X2 Chelonoidis abingdonii

XP_030420831.1 Smad1X2 Gopherus evgoodei

XP_036089426.1 Smad1X1 Rousettus aegyptiacus

XP_030895811.1 Smad1 Leptonychotes weddellii

XP_026859416.1 Smad5 Electrophorus electricus

XP_032631983.1 Smad5 Chelonoidis abingdonii

XP_030428443.1 Smad5 Gopherus evgoodei

XP_003503786.1 Smad5 Cricetulus griseus

XP_014996357.1 Smad5X1 Macaca mulatta

XP_015993196.1 Smad5 Rousettus aegyptiacus

XP_022079499.1 Smad5X2 Acanthaster planci

XP_033632185.1 Smad5 Asterias rubens

XP_038055290.1 Smad5 Patiria miniata

XP_041455371.1 Smad5 Lytechinus variegatus

XP_030836187.1 Smad5 Strongylocentrotus purpuratus

ACU12852.1 Smad1 Paracentrotus lividus

PIK47644.1 Smad1 Apostichopus japonicus
F
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TABLE 4 Oligonucleotide primers for A. japonicus.

Gene Accession no. Primer sequence

BMP2/4 AB057451.1
Forward 5’- CCAAAAGGCAGAAAAGCA -3’

Reverse 5’- ACCCACAATGGCAAAGTC -3’

ACVR2A BSL78_25911
Forward 5’- ACAGAGAAGCGTGGTGAAG -3’

Reverse 5’- GGTAGTCATAGAGGGAGCCA -3’

Smad1 BSL78_15508
Forward 5’- ATTCTCCTTTACCAGTCCAGTT -3’

Reverse 5’- AGCCTTCTCCAGTTCTTCC -3’

TbR2 BSL78_06251
Forward 5’- GAGCCGAAAGAAGACAGAAC -3’

Reverse 5’- TATCGTAGAGGGAAGGACTCA -3’

Smad 2/3 BSL78_11878
Forward 5’- GCTACCGCCTCCATCTTT -3’

Reverse 5’- CCTCCATACTGTTGTCATTGG -3’

grb2 C112121_gl_il
Forward 5’- ATCTTTCACATATTGCGAGCCAG -3’

Reverse 5’- ATGACCATTCCGATGCCCTAA -3’
F
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FIGURE 2

Phylogenetic analysis of the 14 ligands proteins compared to other species.
B CA

FIGURE 1

Green, purple and white A. japonicus.
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receptor type 1B, alternative name ALK6, FecB (Li et al., 2021)], BMPR2

(bone morphogenetic protein receptor type 2), ACVR1 [activin receptor

type 1, alternative name ACTR1, ALK2 (Lee et al., 2017)], and ACVR2A

[activin receptor type 2A, alternative name ACTR2A (Bondulich

et al., 2017)].
3.3 Phylogenetic analysis of Smads

In a phylogenetic tree based on amino acid sequences of multiple

Smads, the each type of Smad assembled in a cluster. The phylogenetic

tree is shown in Figure 4 and the corresponding sequences are shown in

Table 3. According to the phylogenetic tree, two kinds of known R-

Smads from A. japonicus were classified into one class, the Smad1 class.

Notably, they were closely related to Smad5.
Frontiers in Marine Science 10
3.4 mRNA levels of TGFb signaling pathway
genes in A. japonicus color morphs

Three different color morphs of A. japonicus are shown in

Figure 1. mRNA levels of TGFb signaling pathway genes in A.

japonicus with different colors are shown in Figure 5. Compared to

levels in green A. japonicus, the mRNA expression levels of all TGFb
signaling pathway genes were much higher in purple A. japonicus,

with significant differences in TGFbR2 and Smad2/3 levels between

morphs (p < 0.05). The mRNA expression levels of BMP2/4,

ACVR2A, Smad1, and TGFbR2 of the purple individuals were

significantly lower than those in the white morph (p < 0.05), with

no difference in Smad 2/3 (p > 0.05).
FIGURE 5

Relative mRNA levels of TGFb signaling pathway genes in A. japonicus of different body colors. Means followed by different lower-case letters are
significantly different at P<0.05.
FIGURE 3

Phylogenetic analysis of the 6 receptors proteins compared to
other species.
FIGURE 4

Phylogenetic analysis of the 2 Smads proteins compared to other species.
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3.5 mRNA levels of TGFb signaling pathway
genes during pigmentation in A. japonicus

The pigmentation process in purple sea cucumber was divided

into four stages: A, B, C, and D (Figure 6). mRNA levels of TGFb
signaling pathway genes at each stage are shown in Figure 7. BMP2/4

and Smad2/3 levels did not differ among pigmentation stages in A.

japonicus (p > 0.05). Compared to levels at stage A, the mRNA

expression of ACVR2A was lower at stage C and higher at stage D.

The mRNA expression levels of Smad1 and TGFbR2 were

significantly higher at stages B and C than at stage A. As time

progressed, the expression level of TGFbR2 began to decrease, with

lower levels at stage D than at stages B and C.
4 Discussion

The TGFb superfamily consists of over 50 structurally related

ligands and can be divided into two subfamilies based on sequence

similarity and the specific signaling pathways they activate: the TGFb/
activin/Nodal subfamily and BMP/GDF/AMH (anti-Mullerian

hormone) subfamily (Shi and Massagué, 2003; Massagué, 2012;
Frontiers in Marine Science 11
Miyazono et al., 2018). These have been described in a large number

of studies of TGFb superfamily ligand, receptor, and R-Smad

interactions in various species (Piek et al., 1999; Attisano and Wrana,

2002; de Caestecker, 2004; Schilling et al., 2008; Romano et al., 2012) and

were detected in the sea cucumber genome (Tables 1–3) . Ligand–

receptor–R-Smad interactions in A. japonicuswere inferred, as shown in

Table 5, and putative TGFb-mediated signaling pathways in A.

japonicus are shown in Graphical Abstract. In the first subfamily,

ligands (TGFb1, TGFb2, Activin B, Inhibin, and Nodal), Receptor II

(TGFbR2 and ACVR2A/ACTR2A), and R-Smads (Smad2, 3) were

found in A. japonicus. In the second subfamily, ligands (BMP2,

BMP4, BMP3, and BMP3B), Receptor I (BMPR1B/ALK6), Receptor II

(ACVR2A/ACTR2A and BMPR2), and R-Smad (Smad1, 5 and Smad2,

3) were found in A. japonicus.

The TGFb signaling pathway is considered a good marker for the

evolution of animal genomes (Long, 2019). Three TGFb isoforms are

known in mammals (Derynck et al., 1985; Van Obberghen-Schilling

et al., 1987; ten Dijke et al., 1988; Miller et al., 1989a; Miller et al., 1989b)

and in birds (TGFb2, b3, and b4) (Jakowlew et al., 1988a; Jakowlew et al.,

1988c; Jakowlew et al., 1988b; Jakowlew et al., 1990), two in amphibians

(TGFb2 and TGFb5) (Kondaiah et al., 1990; Rebbert et al., 1990), and

four in fish (TGFb1, b2, b3 and b6) (Funkenstein et al., 2010). In the
B

C D

A

FIGURE 6

Pigmentation stages of purple A. japonicus.
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present study, two TGFb ligand isoforms (TGFb1 and TGFb2) were
identified in A. japonicus (Figure 2). A BLAST search against GenBank

entries (putative TGFb1 like, PIK34829.1, putative TGFb1X1,
PIK56215.1, and putative TGFb1X1, QHG11580.1) revealed high

amino acid sequence homology with TGFb1 (Figure 2 and Table 1). It

is worth noting that although TGFb2 was classified as TGFb2, it was
closely related to TGFb3 (Figure 2 and Table 1). Activin is the dimer of b-
subunits, activin A (bA-bA), activin B (bB-bB), and activin AB (bA-bB).
Inhibin A, B, C are dimers composed of an a-subunit associated with bA,
bB, and bC (Burger, 1988; Mellor et al., 2000; Ushiro et al., 2006).

Accordingly, the putative activin BX1 and putative inhibin beta C

chain-like of A. japonicus clustered in the Activin/Inhibin cluster on

the phylogenetic tree and showed a relatively low identity (Figure 2 and

Table 1). The TGFb family member nodal of A. japonicus were assigned

to the Nodal cluster (Figure 2 and Table 1). In summary, sea cucumber

possessed the complete TGFb/activin/Nodal ligand subfamily.

Although no typical receptor I was found in the TGFb/activin/
Nodal subfamily (Table 5), significant differences in the mRNA

expression levels of TGFbR2, ACVR2A, and Smad2/3 were detected

in sea cucumbers with different body colors (Figure 5). Expression

levels of TGFbR2 during different pigmentation stages of purple A.
Frontiers in Marine Science 12
japonicus were significantly higher than those during the

unpigmented period; however, the expression levels of Smad2/3 did

not differ significantly (p > 0.05) (Figure 7). This indicates that

TGFbR2 is involved in the regulation of the coloration process of

A. japonicus; however, its specific regulatory mechanism is still

unclear. TGFbR2 and Smad2/3 also differ significantly between

peripheral blood lymphocytes of patients with systemic lupus

erythematosus and a normal control group (Sun et al., 2013). When

ACVR2A function is reduced in melanocytes, gray hair develops

(Han et al., 2012). These findings are consistent with the higher

expression of ACVR2A in the white morph than in the other color

morphs of A. japonicus. More broadly, there are ethnic differences in

TGFb signaling in African American and Caucasian skin (Fantasia

et al., 2013). Taken together, these studies support the hypothesis that

the TGFb/activin/Nodal subfamily is involved in the regulation of

body color of A. japonicas.

The second subfamily involved BMP/GDF/AMH. BMP is the largest

subfamily of TGFb ligands. In the current study, two BMPs, BMP2/4 and

BMP3, were found. The BMPs (PIK57098.1) of A. japonicus were

classified as BMP2/4. Sj-BMP2/4 was recorded in GenBank with two

different accession numbers (PIK56114.1 and BAC53989.1). A Blast
FIGURE 7

Relative mRNA levels of TGFb signaling pathway genes during different pigmentation stages of purple A. japonicus. Means followed by different lower-
case letters are significantly different at P<0.05.
TABLE 5 TGFb superfamily ligand-receptor-Smad specificity.

Subfamily Ligand Receptor I Receptor II R-Smad

TGFb/activin/Nodal

TGFb1 no records TGFbR2 Smad2, 3

TGFb2 no records TGFbR2 Smad2, 3

Activin B no records ACVR2A/ACTR2A Smad2, 3

Inhibin No type I receptor ACVR2A no specific R-Smads

Nodal no records ACVR2A/ACTR2A Smad2, 3

BMP/GDF/AMH

BMP2 BMPR1B/ALK6
ACVR2A/ACTR2A and
BMPR2

Smad1, 5

BMP4 BMPR1B/ALK6
ACVR2A/ACTR2A and
BMPR2

Smad1, 5

BMP3 No type I receptor no records no records

BMP3B no records ACVR2A/ACTR2A Smad2, 3
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analysis showed that the two proteins were highly homologous (query

cover: 100%, identity: 99.29%). A. japonicus and Stichopus japonicus are

two different names for the same species (Chang et al., 2009).

Accordingly, Sj-BMP2/4 corresponds to BMP2/4 of A. japonicus. In

this study, the mRNA expression of BMP2/4 did not differ among

pigmentation stages of purple A. japonicus (Figure 7). However, BMP2/4

expression was significantly higher in the white morph than in the green

and purple morphs (Figure 5), suggesting that BMP2/4 is closely related

to formation of the white body color. Numerous studies have shown that

BMP2 and BMP4 can induce stem cells to differentiate into adipocytes

and to differentiate into white adipocytes (Ahrens et al., 1993;Wang et al.,

1993; Sottile and Seuwen, 2000; Bowers and Lane, 2007; Gomes et al.,

2012). White sea cucumbers are uniformly white on the dorsal and

ventral sides, while purple and green sea cucumbers have obvious color

differences, i.e., the dorsal side is darker than the ventral side (Figures 1,

6). The specificity of BMP2/4 was receptor I (BMPR1B)–receptor II

(ACVR2A and BMPR2)–R-Smad (Smad1,5). In A. japonicus, their

expression levels in white sea cucumber were significantly higher than

those in the purple and green sea cucumbers (Figure 5). These results

suggest that the BMP2/4-induced differentiation of white adipocytes inA.

japonicus is regulated by this signaling pathway. Functional tests,

including gain- or loss-of-function assays, using exogenous BMPs or

BMP antagonists are necessary to validate the roles of this pathway in A.

japonicus. In the GDF gene family, only GDF8 was detected in A.

japonicus (Figure 2 and Table 1). There was no record of AMH in sea

cucumber. Accordingly, the BMP/GDF/AMH ligand subfamily in sea

cucumber is incomplete.
5 Conclusions

In summary, 14 TGFb signaling pathway members were identified

in A. japonicus for the first time, including 7 ligands, 6 receptors, and 1

R-Smad. Detailed phylogenetic and gene expression analyses support

the hypothesis (Graphical Abstract) that both subfamilies of the TGFb
superfamily were involved in the regulation of pigmentation in different

color morphs of A. japonicus. The TGFb/activin/Nodal subfamily was

complete and contributed to the regulation of different color morphs.

The BMP/GDF/AMH subfamily was incomplete, and the BMP2/4-

induced differentiation of white adipocytes was regulated by the BMP2/

4–ACVR2A–Smad1 signaling pathway.
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