Check for updates

OPEN ACCESS

EDITED BY Hongsheng Yang, Institute of Oceanology, Chinese Academy of Sciences (CAS), China

REVIEWED BY Yi Yang, Hainan University, China Xinran Li, Foshan University, China

*CORRESPONDENCE Chenglin Li [] lcl_xh@hotmail.com

SPECIALTY SECTION This article was submitted to Global Change and the Future Ocean, a section of the journal Frontiers in Marine Science

RECEIVED 18 November 2022 ACCEPTED 09 January 2023 PUBLISHED 02 February 2023

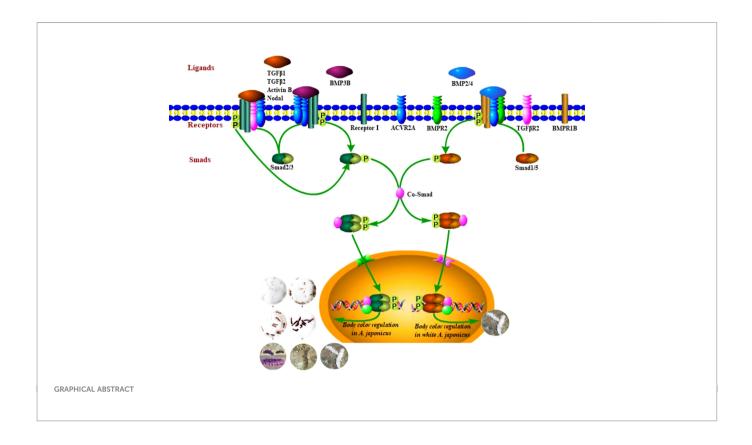
CITATION

Yao L, Zhao B, Wang Q, Jiang X, Han S, Hu W and Li C (2023) Contribution of the TGF β signaling pathway to pigmentation in sea cucumber (*Apostichopus japonicus*). *Front. Mar. Sci.* 10:1101725. doi: 10.3389/fmars.2023.1101725

COPYRIGHT

© 2023 Yao, Zhao, Wang, Jiang, Han, Hu and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Contribution of the TGFβ signaling pathway to pigmentation in sea cucumber (*Apostichopus japonicus*)


Linlin Yao¹, Bin Zhao¹, Qi Wang¹, Xuyang Jiang², Sha Han¹, Wei Hu¹ and Chenglin Li^{1*}

¹Shandong Key Laboratory of Intelligent Marine Ranch (under preparation), Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao, China, ²Department of Breeding Technology, Country Conson CSSC (Qingdao) Ocean Technology CO., Ltd, Qingdao, China

Pigmentation mediated by the transforming growth factor β (TGF β) signaling pathway is a key trait for understanding environmental adaptability and species stability. In this study, TGF β signaling pathway members and their expression patterns in different color morphs of the sea cucumber Apostichopus japonicus were evaluated. Using a bioinformatics approach, 22 protein sequences of TGF β signaling pathway members in A. japonicus were classified, including 14 that were identified for the first time in the species, including 7 ligands, 6 receptors, and 1 R-Smad. We further evaluated mRNA expression data for different color morphs and pigmentation periods. These results support the hypothesis that both subfamilies of the TGF β superfamily, i.e., the TGF β /activin/Nodal and BMP/GDF/AMH subfamilies, are involved in the regulation of pigmentation in A. japonicus. The former subfamily was complete and contributes to the different color morphs. The BMP/GDF/AMH subfamily was incomplete. BMP2/4-induced differentiation of white adipocytes was regulated by the BMP2/4-ACVR2A-Smad1 signaling pathway. These findings provide insight into the TGF β family in early chordate evolution as well as the molecular basis of color variation in an economically valuable species.

KEYWORDS

TGFβ signaling pathway, regulatory mechanism, pigmentation, *Apostichopus japonicas*, gene family divergence

1 Introduction

The sea cucumber Apostichopus japonicus is a commercially important marine species in China (Chen et al., 2022). Color variation, one of the most important characteristics of A. japonicus, plays a significant role in determining market price (Kang et al., 2011) and is an important trait for breeding. In China, this species is mainly green, and purple and white morphs are very rare and highly valuable (Bai et al., 2016). Extensive studies have shown that the growth and development of sea cucumber are affected by various environmental factors, such as temperature and salinity (Chen et al., 2007; Wang et al., 2007; Ji et al., 2008). There are significant differences in the tolerance of sea cucumbers with different body colors to environmental factors (Bao, 2008; Guo et al., 2020; Li et al., 2020). For example, purple A. japonicus has a wider temperature range and stronger salt tolerance, while the white morph has a higher temperature tolerance but narrower range of salinity tolerance than those of the green morph (Zhao et al., 2018; Zhu et al., 2013).

Pigmentation is a tractable and relevant trait for understanding key issues in evolutionary biology such as adaptation, speciation and the maintenance of balanced polymorphisms (Henning et al., 2013).Substantial recent research has focused on the identification of genetic pathways that determine pigmentation variation (Hubbard et al., 2010; Henning et al., 2013). Studies of animal models have found that the TGF β signaling pathway mediates many biological processes, such as pigmentation, tissue and organ development, and stress resistance (Cheng, 2008; Hubbard et al., 2010). Recent structural, biochemical, and cellular studies have provided significant insight into the mechanisms underlying TGF β signaling. In brief, a TGF β ligand initiates signaling by binding to and bringing together type I and type II receptor on the cell surface. This allows receptor II to phosphorylate receptor I, which then regulates target gene expression by the phosphorylation of Smad proteins. The number and type of TGF β family members have been evaluated in model organisms, ranging from worms and flies to mammals (Massagué and Chen, 2000; Patterson and Padgett, 2000; ten Dijke et al., 2000). Six conserved cysteine residues characteristic of the TGF β family are encoded by 6 open reading frames in worms, 9 in flies, and 42 in humans (Linton et al., 2001).

Although studies of the TGF β family in non-model organisms are increasing, relatively little is known about functional changes and divergence in expression patterns between invertebrates and vertebrates (Lapraz et al., 2007; Weiss and Attisano, 2013; Zheng et al., 2018). Echinoderms, which first appeared in the early Cambrian period (Bottjer et al., 2006), occupy a critical phylogenetic position for understanding the origin of chordates (Lowe et al., 2015). The radiation of echinoderms was believed to be responsible for the Mesozoic Marine Revolution (Signor and Brett, 1984). In particular, sea cucumbers are an outstanding representative of the phylum, as they have survived ice ages and are considered "living fossils" (Bottjer et al., 2006). Despite the importance of pigmentation mediated by the TGF β signaling pathway (Cheng, 2008; Hubbard et al., 2010; Henning et al., 2013), few studies have evaluated the TGF β signaling pathway in sea cucumbers. Only 14 ligands (some sharing the same name), 6 receptors, and 2 R-Smads have been recorded in GenBank. In

addition, some loci have informal names, such as Sj-BMP2/4 (accession no. PIK56114.1 and BAC53989.1), and some were not classified in detail, e.g., putative TGF β (accession no. PIK61515.1). Accordingly, their functions and roles in morphs with different body colors are unclear. This can be explained, in part, by poor sampling of genomes (Sodergren et al., 2006; Cameron et al., 2015; Hall et al., 2017; Sun et al., 2017; Zhang et al., 2017). In this study, the types and quantities of TGF β signaling pathway members in *A. japonicus* were characterized for the first time and expression levels in different color morphs and developmental stages were evaluated, providing an important basis for analyses of functions of TGF β signaling in invertebrates.

2 Materials and methods

2.1 Sequence analysis

All TGF β ligand receptors and Smad protein sequences of *A. japonicus* available on NCBI were obtained and compared using BLAST (Basic Local Alignment Search Tool) (Tables 1–3). Multiple sequence alignments were analyzed using the ClustalW Multiple Alignment program (http://www.ebi.ac.uk/clustalw/). Separate trees were generated based on ligand, receptor, and SMAD amino acid sequences using the neighbor-joining (NJ) algorithm within MEGA version 7.0. The reliability of the tree was assessed by 1000 bootstrap repetitions.

2.2 Animals

2.2.1 Sea cucumbers of different color morphs

Healthy sea cucumbers aged 2 years and weighing 120 ± 10 g were collected from green, purple, and white cultivated populations (Figure 1). The purple and white morphs are genetically stable and have been bred by our research team for nearly 20 years.

2.2.2 Purple sea cucumber at different developmental stages

9 purple sea cucumbers with a body weight of >180 g were screened as the parent population. Artificial labor was stimulated by drying in the shade and running water (20.5°C). Male individuals were removed from the incubator immediately after ejaculation. All parents were removed when the egg density was 20-30 eggs/mL. Then, the water temperature was increased to 21.0 ± 0.2 °C for incubation. During the incubation period, the incubator was agitated once an hour, and micro-aerated continuously for 24 h to ensure an even distribution of fertilized eggs. Marine red yeast was fed to early auricularia after hatching. When 10% to 20% of doliolaria formed, a corrugated plate frame after disinfection was placed as the attachment matrix. After the larvae were attached, they were gradually transitioned to artificial compound feed. The feeding amount was 0.5% to 2% of the body weight. Juveniles were randomly selected every 3 days after the larvae developed to pentactula and were placed in a Petri dish to observe the change in body color. The pigmentation stage was defined at the point at which 80% of individuals were completely pigmented.

2.3 mRNA expression of TGF β signaling pathway genes mRNA in *A. japonicas*

9 body walls from each sample of different color morphs and purple sea cucumber at different developmental stages were peeled away carefully, flash-frozen in liquid nitrogen, and stored at -80°C for subsequent total RNA extraction. Specific primers for BMP2/4, ACVR2A, Smad1, TGFBR2, Smad2/3, and grb2 (a housekeeping gene used as an internal reference) based on known A. japonicus sequences (Table 4) were designed using Oligo 7.0. Primers were synthesized by Invitrogen Biotechnology Co., Ltd. (Shanghai, China). TRIzol Reagent was used to isolate total RNA from the body walls according to the manufacturer's instructions (Invitrogen, Waltham, MA, USA) and contaminating genomic DNA was eliminated using RNase-free DNase (Takara, Tokyo, Japan). The RNA samples were reverse-transcribed using the Prime Script RT-PCR Kit (Takara, Tokyo, Japan). Equal amounts of cDNA were used for real-time quantitative RT-PCR using in a PikoReal 96-well RT-PCR System (Thermo Scientific., Waltham, MA, USA). Amplification was performed in a total volume of 10 µL, containing 5 µL of 2× SYBR Green master Mix, 1 µL of diluted cDNA, 0.4 µL of each primer, and $3.2\,\mu L$ of PCR-grade water. The PCR cycling conditions were 95°C for 5 min followed by 35 cycles of 95°C for 15 s, 60°C for 30 s, and 72°C for 1 min, and a final elongation step at 72°C for 7 min. Each sample was run in triplicate along with the internal control gene (grb2). The PCR products were visualized on a UV-transilluminator after electrophoresis on a 1.5% agarose gel containing ethidium bromide.

2.4 Statistical analysis

Statistical analyses were performed using GraphPad Prism 5.0, and all data were assessed using one-way ANOVA. Differences in means between groups were assessed using Tukey's honestly significant difference test for *post hoc* multiple comparisons. All data are expressed as the mean \pm standard deviation (SD). Values of p < 0.05 indicated a statistically significant difference.

3 Results

3.1 Phylogenetic analysis based on ligand sequences

In a phylogenetic tree based on amino acid sequences from multiple TGF β ligands, the ligands of the same type formed clusters. The phylogenetic tree is shown in Figure 2 and the corresponding sequences are shown in Table 1. According to the phylogenetic tree, 14 known TGF β ligands from *A. japonicus* were assigned to 7 classes: TGF β 1, TGF β 2, Nodal, Activin/Inhibin, BMP2/4, BMP3, and GDF8 (Growth Differentiation Factor 8, alternative name myostatin (de Caestecker, 2004)). Notably, TGF β 2 of *A. japonicus* was classified as TGF β 2 but was also closely related to TGF β 3. The BMP2/4 cluster contained BMP2A, BMP2, BMP, and Sj-BMP2/4 of *A. japonicus*. BMP3/3B of *A. japonicus* was classified into BMP3. Putative activin BX1 and putative inhibin beta C chain-like of *A. japonicus* were included in the Activin/Inhibin cluster.

TABLE 1 Ligand protein sequences included in the present study.

Accession no.	Protein name	Species	
PIK34829.1	putative TGFβ1 like	Apostichopus japonicus	
QHG11580.1	putative TGFβ1X1	Apostichopus japonicus	
PIK56215.1	putative TGFβ1X1	Apostichopus japonicus	
XP_029964045.1	TGFβ1X2	Salarias fasciatus	
XP_041850924.1	TGFβ1X1	Melanotaenia boesemani	
XP_031614329.1	TGFβ1	Oreochromis aureus	
XP_033486555.1	TGFβ1X1	Epinephelus lanceolatus	
XP_040902844.1	TGFβ1	Toxotes jaculatrix	
XP_033851930.2	TGFβ1X1	Acipenser ruthenus	
XP_035241816.1	TGFβ1X1	Anguilla anguilla	
XP_026865903.2	TGFβ1X2	Electrophorus electricus	
XP_036440909.1	TGFβ1X1	Colossoma macropomum	
KAG9273341.1	TGFβ1X1	Astyanax mexicanus	
PIK45926.1	BMP2A	Apostichopus japonicus	
PIK48439.1	BMP2	Apostichopus japonicus	
PIK57098.1	ВМР	Apostichopus japonicus	
AAF19841.1	BMP2/4	Branchiostoma belcheri	
QYF06707.1	BMP2/4	Holothuria scabra	
PIK56114.1	Sj-BMP2/4	Apostichopus japonicus	
BAC53989.1	Sj-BMP2/4	Apostichopus japonicus	
AAD28038.1	BMP2/4	Lytechinus variegatus	
ACA04460.1	BMP2/4	Strongylocentrotus purpuratus	
ABG00199.1	BMP2/4	Paracentrotus lividus	
BBC77411.1	BMP2/4	Temnopleurus reevesii	
PIK37799.1	BMP3/3B	Apostichopus japonicus	
KAF3695343.1	BMP3	Channa argus	
XP_033946079.1	BMP3	Pseudochaenichthys georgianus	
XP_007425424.1	BMP3	Python bivittatus	
XP_042727338.1	BMP3	Lagopus leucura	
XP_021252303.1	BMP3	Numida meleagris	
PIK42868.1	TGFβ family member nodal	Apostichopus japonicus	
ACF32774.1	Nodal	Heliocidaris erythrogramma	
ACF32773.1	Nodal	Heliocidaris tuberculata	
XP_036937551.1	Nodal2	Acanthopagrus latus	
XP_034426535.1	Nodal2	Hippoglossus hippoglossus	
KFM00388.1	Nodal	Aptenodytes forsteri	
XP_035248296.1	Nodal	Anguilla anguilla	
RXN30610.1	Nodal	Labeo rohita	
QYF06711.1	GDF8	Holothuria scabra	
AJQ81037.1	GDF8	Apostichopus japonicus	

(Continued)

TABLE 1 Continued

Accession no.	Protein name	Species	
XP_013394669.1	GDF8	Lingula anatina	
XP_014253049.1	GDF8	Cimex lectularius	
XP_046672106.1	GDF8	Homalodisca vitripennis	
RW\$12911.1	GDF8	Dinothrombium tinctorium	
XP_023223240.1	GDF8	Centruroides sculpturatus	
QYF06710.1	inhibin	Holothuria scabra	
PIK34215.1	putative inhibin beta C chain- like	Apostichopus japonicus	
QYF06712.1	activin	Holothuria scabra	
PIK48233.1	putative activin B X1	Apostichopus japonicus	
XP_037927328.1	ΙΝΗβΒ	Teleopsis dalmanni	
XP_022218905.1	ΙΝΗβΑ	Drosophila obscura	
XP_017154392.1	ΙΝΗβΑ	Drosophila miranda	
XP_002028363.1	ΙΝΗβΑ	Drosophila persimilis	
XP_033236864.1	ΙΝΗβΑ	Drosophila pseudoobscura	
QYF06713.1	TGFβ2	Holothuria scabra	
PIK61515.1	putative TGFβ2	Apostichopus japonicus	
XP_022090565.1	TGFβ2	Acanthaster planci	
XP_038073348.1	TGFβ2	Patiria miniata	
BCB62973.1	TGFβ	Patiria pectinifera	
XP_041467929.1	TGFβ2	Lytechinus variegatus	
XP_030855505.1	TGFβ2	Strongylocentrotus purpuratus	
QAV52899.1	TGFβ	Mesocentrotus nudus	
XP_041951915.1	TGFβ3	Alosa sapidissima	
XP_042562890.1	TGFβ3	Clupea harengus	
XP_039597176.1	TGFβ3	Polypterus senegalus	
XP_028678165.1	TGFβ3	Erpetoichthys calabaricus	
XP_042593951.1	TGFβ2	Cyprinus carpio	
KAA0709699.1	TGFβ2	Triplophysa tibetana	
XP_039388520.1	TGFβ2X2	Mauremys reevesii	
XP_037751639.1	TGFβ2	Chelonia mydas	
XP_005307005.1	TGFβ2	Chrysemys picta bellii	
XP_003800184.1	TGFβ2X2	Otolemur garnettii	
XP_008825028.1	TGFβ2	Nannospalax galili	
CAA40672.1	TGFβ2	Mus musculus	
XP_021016320.1	TGFβ2X2	Mus caroli	

3.2 Phylogenetic analysis of receptors

In a phylogenetic tree based on amino acid sequences from multiple TGF β receptors proteins, each type of receptor assembled in a cluster. The phylogenetic tree is shown in Figure 3 and corresponding sequences

are shown in Table 2. According to the phylogenetic tree, six TGF β receptors from *A. japonicus* were classified into six classes: TGF β R2 [transforming growth factor beta receptor 2, alternative name T β R2 (Hart et al., 2002)], TGF β R3 (transforming growth factor beta receptor 3, alternative name T β R3), BMPR1B [bone morphogenetic protein

TABLE 2 Receptor protein sequences included in the present study.

Accession no.	Protein name	Species	
XP_026886611.2	ΤβR2	Electrophorus electricus	
TSK92904.1	ΤβR2	Bagarius yarrelli	
XP_017324951.1	ΤβR2	Ictalurus punctatus	
XP_026802727.2	ΤβR2	Pangasianodon hypophthalmus	
PIK56848.1	putative TβR2	Apostichopus japonicus	
XP_033116886.1	ΤβR2	Anneissia japonica	
XP_030828751.1	ΤβR2	Strongylocentrotus purpuratus	
XP_038058105.1	ΤβR2	Patiria miniata	
XP_033624779.1	ΤβR2	Asterias rubens	
PIK56867.1	putative TβR3	Apostichopus japonicus	
CAC5417350.1	ΤβR3	Mytilus coruscus	
CAG2237547.1	ΤβR3	Mytilus edulis	
XP_038129033.1	ΤβR3	Cyprinodon tularosa	
XP_040482976.1	ΤβR3X2	Ursus maritimus	
XP_036901372.1	ΤβR3X1	Sturnira hondurensis	
XP_025893663.1	ΤβR3	Nothoprocta perdicaria	
XP_005238531.1	ΤβR3X1	Falco peregrinus	
XP_040466106.1	ΤβR3X2	Falco naumanni	
PIK46054.1	putative BMPR2	Apostichopus japonicus	
XP_033099609.1	BMPR2	Anneissia japonica	
XP_790983.2	BMPR2	Strongylocentrotus purpuratus	
XP_041459768.1	BMPR2	Lytechinus variegatus	
XP_033624844.1	BMPR2	Asterias rubens	
XP_038058132.1	BMPR2	Patiria miniata	
XP_022088502.1	BMPR2	Acanthaster planci	
PIK52453.1	putative ACVR2AX2	Apostichopus japonicus	
XP_030828527.1	ACVR2A	Strongylocentrotus purpuratus	
XP_041458652.1	ACVR2A	Lytechinus variegatus	
XP_038079379.1	ACVR2AX1	Patiria miniata	
XP_033624296.1	ACVR2A	Asterias rubens	
XP_042301709.1	ACVR2AX2	Sceloporus undulatus	
XP_032880604.1	ACVR2AX2	Amblyraja radiata	
XP_043550051.1	ACVR2AX1	Chiloscyllium plagiosum	
XP_041056629.1	ACVR2A	Carcharodon carcharias	
XP_022103314.1	ACVR1X4	Acanthaster planci	
XP_033113857.1	ACVR1X4	Anneissia japonica	
PIK59495.1	putative ACVR1	Apostichopus japonicus	
NXL14502.1	ACVR1	Setophaga kirtlandii	
NWI57693.1	ACVR1	Calyptomena viridis	
NXY49840.1	ACVR1	Ceuthmochares aereus	

(Continued)

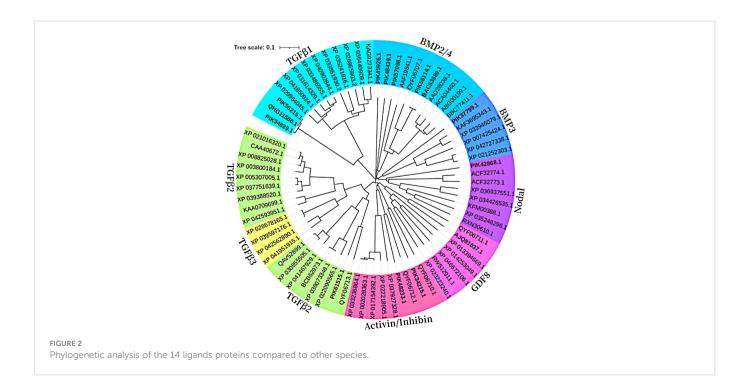
TABLE 2 Continued

Accession no.	Protein name	Species	
NXB24442.1	ACVR1	Rhagologus leucostigma	
NP_001383423.1	ACVR1	Gallus gallus	
KFP78435.1	ACVR1	Apaloderma vittatum	
XP_032435030.1	BMPR1BX3	Xiphophorus hellerii	
XP_005795012.2	BMPR1B	Xiphophorus maculatus	
XP_027890208.1	BMPR1BX3	Xiphophorus couchianus	
PIK51009.1	putative BMPR1B	Apostichopus japonicus	
XP_797469.4	BMPR1B	Strongylocentrotus purpuratus	
XP_041485680.1	BMPR1B	Lytechinus variegatus	
XP_033644308.1	BMPR1B	Asterias rubens	
XP_038060789.1	BMPR1B Patiria miniata		
XP_022089444.1	BMPR1B	Acanthaster planci	

TABLE 3 Smad protein sequences included in the present study.

Accession no.	full name	Species	
XP_041459990.1	Smad4X1	Lytechinus variegatus	
XP_030827838.1	Smad4X1	Strongylocentrotus purpuratus	
XP_033109387.1	Smad4X2	Anneissia japonica	
XP_033646664.1	Smad4X1	Asterias rubens	
XP_022081844.1	Smad4X1	Acanthaster planci	
XP_038058605.1	Smad4X1	Patiria miniata	
XP_032649614.1	Smad4	Chelonoidis abingdonii	
XP_035384718.1	Smad4	Electrophorus electricus	
XP_030421567.1	Smad4X1	Gopherus evgoodei	
XP_035314530.1	Smad4X1	Cricetulus griseus	
XP_016004267.1	Smad4X1	Rousettus aegyptiacus	
XP_030885493.1	Smad4	Leptonychotes weddellii	
XP_033127281.1	Smad6	Anneissia japonica	
ADW95340.1	Smad6	Paracentrotus lividus	
XP_798238.2	Smad6	Strongylocentrotus purpuratus	
XP_022083936.1	Smad6	Acanthaster planci	
XP_038077875.1	Smad6	Patiria miniata	
XP_026878186.2	Smad6b	Electrophorus electricus	
XP_015996485.2	Smad6X1	Rousettus aegyptiacus	
XP_003500538.2	Smad6X1	Cricetulus griseus	
XP_032621963.1	Smad6	Chelonoidis abingdonii	
XP_030434864.1	Smad6	Gopherus evgoodei	
XP_016003943.1	Smad7X1	Rousettus aegyptiacus	
XP_007644509.3	Smad7X1	Cricetulus griseus	
XP_032637417.1	Smad7X1	Chelonoidis abingdonii	

(Continued)


TABLE 3 Continued

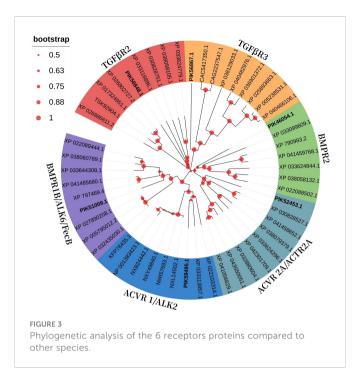
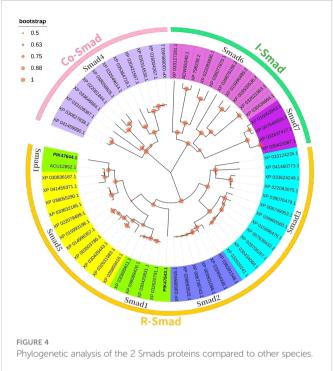
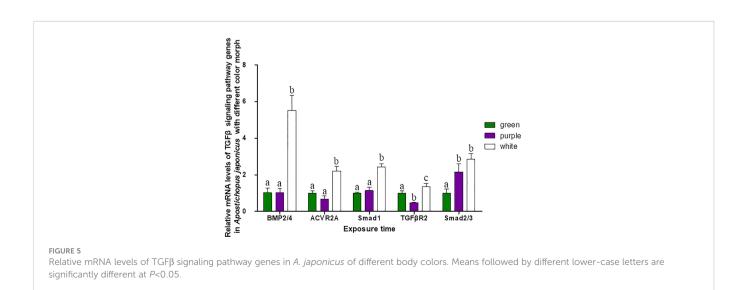

Accession no.	full name	Species	
XP_030423387.1	Smad7X1	Gopherus evgoodei	
XP_033124235.1	Smad3	Anneissia japonica	
XP_041460773.1	Smad3	Lytechinus variegatus	
XP_033624249.1	Smad3X1	Asterias rubens	
XP_022083075.1	Smad3X2	Acanthaster planci	
XP_038076479.1	Smad3X1	Patiria miniata	
XP_006749953.1	Smad3	Leptonychotes weddellii	
XP_026860560.1	Smad3a	Electrophorus electricus	
XP_015996478.1	Smad3	Rousettus aegyptiacus	
XP_007639432.2	Smad3X1	Cricetulus griseus	
XP_028706267.1	Smad3X1	Macaca mulatta	
XP_030434068.1	Smad3X1	Gopherus evgoodei	
XP_032620241.1	Smad3	Chelonoidis abingdonii	
XP_035391548.1	Smad2X1	Electrophorus electricus	
XP_032654336.1	Smad2X1	Chelonoidis abingdonii	
XP_003501086.1	Smad2X1	Cricetulus griseus	
XP_006738743.2	Smad2	Leptonychotes weddellii	
XP_028693529.1	Smad2X2	Macaca mulatta	
XP_036085916.1	Smad2X1	Rousettus aegyptiacus	
PIK47643.1	mothers against decapentaplegic-like protein 1	Apostichopus japonicus	
XP_032620791.1	Smad1X2	Chelonoidis abingdonii	
XP_030420831.1	Smad1X2	Gopherus evgoodei	
XP_036089426.1	Smad1X1	Rousettus aegyptiacus	
XP_030895811.1	Smad1	Leptonychotes weddellii	
XP_026859416.1	Smad5	Electrophorus electricus	
XP_032631983.1	Smad5	Chelonoidis abingdonii	
XP_030428443.1	Smad5	Gopherus evgoodei	
XP_003503786.1	Smad5	Cricetulus griseus	
XP_014996357.1	Smad5X1	Macaca mulatta	
XP_015993196.1	Smad5	Rousettus aegyptiacus	
XP_022079499.1	Smad5X2	Acanthaster planci	
XP_033632185.1	Smad5	Asterias rubens	
XP_038055290.1	Smad5	Patiria miniata	
XP_041455371.1	Smad5	Lytechinus variegatus	
XP_030836187.1	Smad5	Strongylocentrotus purpuratus	
ACU12852.1	Smad1	Paracentrotus lividus	
PIK47644.1	Smad1	Apostichopus japonicus	

TABLE 4 Oligonucleotide primers for A. japonicus.

Gene	Accession no.	Primer sequence		
BMP2/4		Forward	5'- CCAAAAGGCAGAAAAGCA -3'	
DIVIP2/4	AB057451.1	Reverse	5'- ACCCACAATGGCAAAGTC -3'	
ACVR2A	DCI 70, 25011	Forward	5'- ACAGAGAAGCGTGGTGAAG -3'	
ACVKZA	BSL78_25911	Reverse	5'- GGTAGTCATAGAGGGAGCCA -3'	
- 1-	BSL78_15508	Forward	5'- ATTCTCCTTTACCAGTCCAGTT -3'	
Smad1		Reverse	5'- AGCCTTCTCCAGTTCTTCC -3'	
ΤβR2	BSL78_06251	Forward	5'- GAGCCGAAAGAAGACAGAAC -3'	
		Reverse	5'- TATCGTAGAGGGAAGGACTCA -3'	
Smad 2/3	BSL78_11878	Forward	5'- GCTACCGCCTCCATCTTT -3'	
		Reverse	5'- CCTCCATACTGTTGTCATTGG -3'	
grb2	C112121_gl_il	Forward	5'- ATCTTTCACATATTGCGAGCCAG -3'	
		Reverse	5'- ATGACCATTCCGATGCCCTAA -3'	



receptor type 1B, alternative name ALK6, FecB (Li et al., 2021)], BMPR2 (bone morphogenetic protein receptor type 2), ACVR1 [activin receptor type 1, alternative name ACTR1, ALK2 (Lee et al., 2017)], and ACVR2A [activin receptor type 2A, alternative name ACTR2A (Bondulich et al., 2017)].


3.3 Phylogenetic analysis of Smads

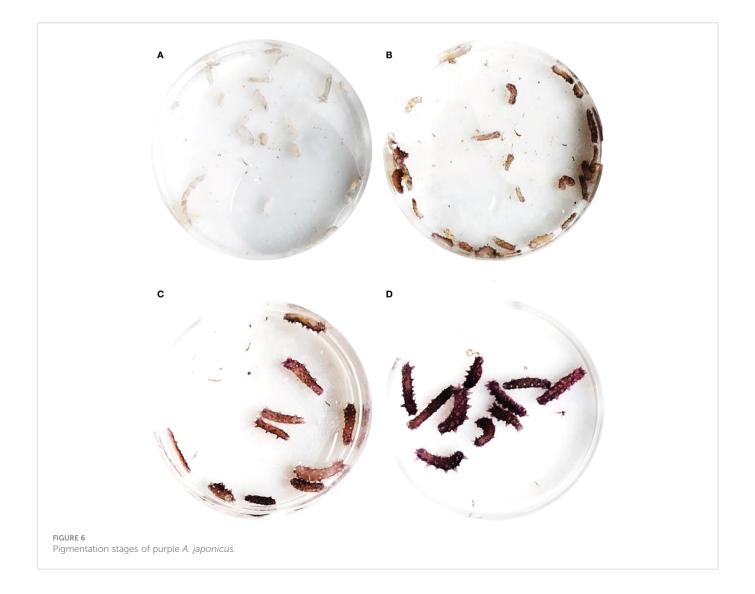
In a phylogenetic tree based on amino acid sequences of multiple Smads, the each type of Smad assembled in a cluster. The phylogenetic tree is shown in Figure 4 and the corresponding sequences are shown in Table 3. According to the phylogenetic tree, two kinds of known R-Smads from *A. japonicus* were classified into one class, the Smad1 class. Notably, they were closely related to Smad5.

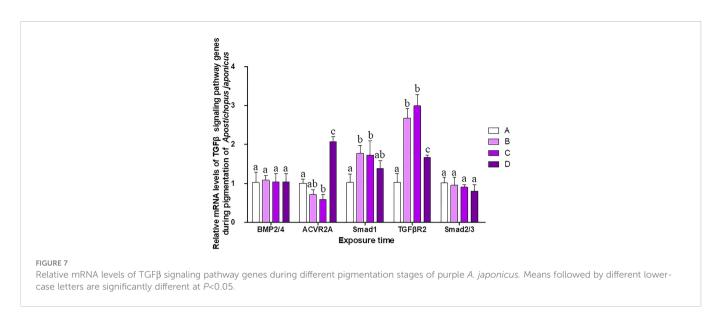
3.4 mRNA levels of TGF β signaling pathway genes in *A. japonicus* color morphs

Three different color morphs of *A. japonicus* are shown in Figure 1. mRNA levels of TGF β signaling pathway genes in *A. japonicus* with different colors are shown in Figure 5. Compared to levels in green *A. japonicus*, the mRNA expression levels of all TGF β signaling pathway genes were much higher in purple *A. japonicus*, with significant differences in TGF β R2 and Smad2/3 levels between morphs (p < 0.05). The mRNA expression levels of BMP2/4, ACVR2A, Smad1, and TGF β R2 of the purple individuals were significantly lower than those in the white morph (p < 0.05), with no difference in Smad 2/3 (p > 0.05).

Frontiers in Marine Science

3.5 mRNA levels of TGF β signaling pathway genes during pigmentation in *A. japonicus*


The pigmentation process in purple sea cucumber was divided into four stages: A, B, C, and D (Figure 6). mRNA levels of TGF β signaling pathway genes at each stage are shown in Figure 7. BMP2/4 and Smad2/3 levels did not differ among pigmentation stages in *A. japonicus* (p > 0.05). Compared to levels at stage A, the mRNA expression of ACVR2A was lower at stage C and higher at stage D. The mRNA expression levels of Smad1 and TGF β R2 were significantly higher at stages B and C than at stage A. As time progressed, the expression level of TGF β R2 began to decrease, with lower levels at stage D than at stages B and C.


4 Discussion

The TGF β superfamily consists of over 50 structurally related ligands and can be divided into two subfamilies based on sequence similarity and the specific signaling pathways they activate: the TGF β / activin/Nodal subfamily and BMP/GDF/AMH (anti-Mullerian hormone) subfamily (Shi and Massagué, 2003; Massagué, 2012;

Miyazono et al., 2018). These have been described in a large number of studies of TGFβ superfamily ligand, receptor, and R-Smad interactions in various species (Piek et al., 1999; Attisano and Wrana, 2002; de Caestecker, 2004; Schilling et al., 2008; Romano et al., 2012) and were detected in the sea cucumber genome (Tables 1–3). Ligandreceptor–R-Smad interactions in *A. japonicus* were inferred, as shown in Table 5, and putative TGFβ-mediated signaling pathways in *A. japonicus* are shown in Graphical Abstract. In the first subfamily, ligands (TGFβ1, TGFβ2, Activin B, Inhibin, and Nodal), Receptor II (TGFβR2 and ACVR2A/ACTR2A), and R-Smads (Smad2, 3) were found in *A. japonicus*. In the second subfamily, ligands (BMP2, BMP4, BMP3, and BMP3B), Receptor I (BMPR1B/ALK6), Receptor II (ACVR2A/ACTR2A and BMPR2), and R-Smad (Smad1, 5 and Smad2, 3) were found in *A. japonicus*.

The TGF β signaling pathway is considered a good marker for the evolution of animal genomes (Long, 2019). Three TGF β isoforms are known in mammals (Derynck et al., 1985; Van Obberghen-Schilling et al., 1987; ten Dijke et al., 1988; Miller et al., 1989a; Miller et al., 1989b) and in birds (TGF β 2, β 3, and β 4) (Jakowlew et al., 1988a; Jakowlew et al., 1988c; Jakowlew et al., 1988b; Jakowlew et al., 1990), two in amphibians (TGF β 2 and TGF β 5) (Kondaiah et al., 1990; Rebbert et al., 1990), and four in fish (TGF β 1, β 2, β 3 and β 6) (Funkenstein et al., 2010). In the

present study, two TGF β ligand isoforms (TGF β 1 and TGF β 2) were identified in A. japonicus (Figure 2). A BLAST search against GenBank entries (putative TGF β 1 like, PIK34829.1, putative TGF β 1X1, PIK56215.1, and putative TGFβ1X1, QHG11580.1) revealed high amino acid sequence homology with TGF β 1 (Figure 2 and Table 1). It is worth noting that although TGFB2 was classified as TGFB2, it was closely related to TGF β 3 (Figure 2 and Table 1). Activin is the dimer of β subunits, activin A (β_A - β_A), activin B (β_B - β_B), and activin AB (β_A - β_B). Inhibin A, B, C are dimers composed of an α -subunit associated with β_{A} . $\beta_{B, and}$ β_{C} (Burger, 1988; Mellor et al., 2000; Ushiro et al., 2006). Accordingly, the putative activin BX1 and putative inhibin beta C chain-like of A. japonicus clustered in the Activin/Inhibin cluster on the phylogenetic tree and showed a relatively low identity (Figure 2 and Table 1). The TGF β family member nodal of *A. japonicus* were assigned to the Nodal cluster (Figure 2 and Table 1). In summary, sea cucumber possessed the complete TGFB/activin/Nodal ligand subfamily.

Although no typical receptor I was found in the TGF β /activin/ Nodal subfamily (Table 5), significant differences in the mRNA expression levels of TGF β R2, ACVR2A, and Smad2/3 were detected in sea cucumbers with different body colors (Figure 5). Expression levels of TGF β R2 during different pigmentation stages of purple *A*. japonicus were significantly higher than those during the unpigmented period; however, the expression levels of Smad2/3 did not differ significantly (p > 0.05) (Figure 7). This indicates that TGF β R2 is involved in the regulation of the coloration process of A. japonicus; however, its specific regulatory mechanism is still unclear. TGFBR2 and Smad2/3 also differ significantly between peripheral blood lymphocytes of patients with systemic lupus erythematosus and a normal control group (Sun et al., 2013). When ACVR2A function is reduced in melanocytes, gray hair develops (Han et al., 2012). These findings are consistent with the higher expression of ACVR2A in the white morph than in the other color morphs of A. japonicus. More broadly, there are ethnic differences in TGFβ signaling in African American and Caucasian skin (Fantasia et al., 2013). Taken together, these studies support the hypothesis that the TGFB/activin/Nodal subfamily is involved in the regulation of body color of A. japonicas.

The second subfamily involved BMP/GDF/AMH. BMP is the largest subfamily of TGF β ligands. In the current study, two BMPs, BMP2/4 and BMP3, were found. The BMPs (PIK57098.1) of *A. japonicus* were classified as BMP2/4. Sj-BMP2/4 was recorded in GenBank with two different accession numbers (PIK56114.1 and BAC53989.1). A Blast

TABLE 5	TGFβ	superfamily	ligand-recepto	or-Smad specificity.
---------	------	-------------	----------------	----------------------

Subfamily	Ligand	Receptor I	Receptor II	R-Smad
	TGFβ1	no records	TGFβR2	Smad2, 3
	TGFβ2	no records	TGFβR2	Smad2, 3
TGFβ/activin/Nodal	Activin B	no records	ACVR2A/ACTR2A	Smad2, 3
	Inhibin	No type I receptor	ACVR2A	no specific R-Smads
	Nodal	no records	ACVR2A/ACTR2A	Smad2, 3
BMP/GDF/AMH	BMP2	BMPR1B/ALK6	ACVR2A/ACTR2A and BMPR2	Smad1, 5
	BMP4	BMPR1B/ALK6	ACVR2A/ACTR2A and BMPR2	Smad1, 5
	BMP3	No type I receptor	no records	no records
	BMP3B	no records	ACVR2A/ACTR2A	Smad2, 3

analysis showed that the two proteins were highly homologous (query cover: 100%, identity: 99.29%). A. japonicus and Stichopus japonicus are two different names for the same species (Chang et al., 2009). Accordingly, Sj-BMP2/4 corresponds to BMP2/4 of A. japonicus. In this study, the mRNA expression of BMP2/4 did not differ among pigmentation stages of purple A. japonicus (Figure 7). However, BMP2/4 expression was significantly higher in the white morph than in the green and purple morphs (Figure 5), suggesting that BMP2/4 is closely related to formation of the white body color. Numerous studies have shown that BMP2 and BMP4 can induce stem cells to differentiate into adipocytes and to differentiate into white adipocytes (Ahrens et al., 1993; Wang et al., 1993; Sottile and Seuwen, 2000; Bowers and Lane, 2007; Gomes et al., 2012). White sea cucumbers are uniformly white on the dorsal and ventral sides, while purple and green sea cucumbers have obvious color differences, i.e., the dorsal side is darker than the ventral side (Figures 1, 6). The specificity of BMP2/4 was receptor I (BMPR1B)-receptor II (ACVR2A and BMPR2)-R-Smad (Smad1,5). In A. japonicus, their expression levels in white sea cucumber were significantly higher than those in the purple and green sea cucumbers (Figure 5). These results suggest that the BMP2/4-induced differentiation of white adipocytes in A. japonicus is regulated by this signaling pathway. Functional tests, including gain- or loss-of-function assays, using exogenous BMPs or BMP antagonists are necessary to validate the roles of this pathway in A. japonicus. In the GDF gene family, only GDF8 was detected in A. japonicus (Figure 2 and Table 1). There was no record of AMH in sea cucumber. Accordingly, the BMP/GDF/AMH ligand subfamily in sea cucumber is incomplete.

5 Conclusions

In summary, 14 TGF β signaling pathway members were identified in *A. japonicus* for the first time, including 7 ligands, 6 receptors, and 1 R-Smad. Detailed phylogenetic and gene expression analyses support the hypothesis (Graphical Abstract) that both subfamilies of the TGF β superfamily were involved in the regulation of pigmentation in different color morphs of *A. japonicus*. The TGF β /activin/Nodal subfamily was complete and contributed to the regulation of different color morphs. The BMP/GDF/AMH subfamily was incomplete, and the BMP2/4induced differentiation of white adipocytes was regulated by the BMP2/ 4–ACVR2A–Smad1 signaling pathway.

References

Ahrens, M., Ankenbauer, T., Schröder, D., Hollnagel, A., Mayer, H., and Gross, G. (1993). Expression of human bone morphogenetic proteins-2 or-4 in murine mesenchymal progenitor C3H10T½ cells induces differentiation into distinct mesenchymal cell lineages. *DNA Cell Biol.* 12 (10), 871–880. doi: 10.1089/dna.1993.12.871

Attisano, L., and Wrana, J. L. (2002). Signal transduction by the TGF- β superfamily. Science 296 (5573), 1646–1647. doi: 10.1126/science.1071809

Bai, Y., Zhang, L., Xia, S., Liu, S., Ru, X., Xu, Q., et al. (2016). Effects of dietary protein levels on the growth, energy budget, and physiological and immunological performance of green, white and purple color morphs of sea cucumber, apostichopus japonicus. *Aquaculture*. 437, 297–303. doi: 10.1016/j.aquaculture.2015.08.021

Bao, J. (2008). Effects and mechanism of environment on growth of green and red sea cucumber, apostichopus japonicus (Ocean University of China).

Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

Author contributions

LY and CL conceived and designed the experiments. Material preparation, data collection and analysis were performed by LY, BZ, QW, XJ, SH, WH. The first draft of the manuscript was written by LY and all authors commented on previous versions of the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This study was supported by the Shandong Provincial Natural Science Foundation (ZR2022QC183), Key R&D Plan of Shandong Province (2021TZXD008), National Key Research and Development Program "Blue Granary Scientific and Technological Innovation" (2018YFD0901602).

Conflict of interest

Author XJ was employed by the company Country Conson CSSC Qingdao Ocean Technology CO., Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Bondulich, M. K., Jolinon, N., Osborne, G. F., Smith, E. J., Rattray, I., Neueder, A., et al. (2017). Myostatin inhibition prevents skeletal muscle pathophysiology in huntington's disease mice. *Sci. Rep.* 7 (1), 1–14. doi: 10.1038/s41598-017-14290-3

Bottjer, D. J., Davidson, E. H., Peterson, K. J., and Cameron, R. A. (2006). Paleogenomics of echinoderms. *Science*. 314 (5801), 956-960. doi: 10.1126/science.1132310

Bowers, R. R., and Lane, M. D. (2007). A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle 6 (4), 385–389. doi: 10.4161/cc.6.4.3804

Burger, H. G. (1988). Inhibin: definition and nomenclature, including related substances. J. Endocrinol. 117 (2), 159-160. doi: 10.1677/joe.0.1170159

Cameron, R. A., Kudtarkar, P., Gordon, S. M., Worley, K. C., and Gibbs, R. A. (2015). Do echinoderm genomes measure up? *Mar. Genomics* 22, 1–9. doi: 10.1016/j.margen.2015.02.004

Chang, Y., Feng, Z., Yu, J., and Ding, J. (2009). Genetic variability analysis in five populations of the sea cucumber stichopus (Apostichopus) japonicus from China, Russia, south Korea and Japan as revealed by microsatellite markers. *Mar. Ecol.* 30 (4), 455–461. doi: 10.1111/j.1439-0485.2009.00292.x

Cheng, K. C. (2008). Skin color in fish and humans: Impacts on science and society. Zebrafish 5 (4), 237-242. doi: 10.1089/zeb.2008.0577

Chen, Y., Gao, F., Liu, G., Shao, L., and Shi, G. (2007). The effects of temperature, salinity and light cycle on the growth and behavior of apostichopus japonicus. *J. Fisheries China* 31 (5), 687–691. doi: 1000-0615(2007)05-0687-05

Chen, J., Lv, Z., and Guo, M. (2022). Research advancement of apostichopus japonicus from 2000 to 2021. Front. Mar. Sci., 1595. doi: 10.3389/fmars.2022.931903

de Caestecker, M. (2004). The transforming growth factor-β superfamily of receptors. *Cytokine Growth factor Rev.* 15 (1), 1–11. doi: 10.1016/j.cytogfr.2003.10.004

Derynck, R., Jarrett, J. A., Chen, E. Y., Eaton, D. H., Bell, J. R., Assoian, R. K., et al. (1985). Human transforming growth factor- β complementary DNA sequence and expression in normal and transformed cells. *Nature* 316 (6030), 701–705. doi: 10.1038/316701a0

Fantasia, J., Lin, C. B., Wiwi, C., Kaur, S., Hu, Y., Zhang, J., et al. (2013). Differential levels of elastin fibers and TGF-β signaling in the skin of caucasians and African americans. J. Dermatol. Sci. 70 (3), 159–165. doi: 10.1016/j.jdermsci.2013.03.004

Funkenstein, B., Olekh, E., and Jakowlew, S. B. (2010). Identification of a novel transforming growth factor- β (TGF- β 6) gene in fish: regulation in skeletal muscle by nutritional state. *BMC Mol. Biol.* 11 (1), 1–16. doi: 10.1186/1471-2199-11-37

Gomes, S. P., Deliberador, T. M., Gonzaga, C. C., Klug, L. G., Oliveira, L., Urban, A. C., et al. (2012). Bone healing in critical-size defects treated with immediate transplant of fragmented autogenous white adipose tissue. *J. Craniofacial Surg.* 23 (5), 1239–1244. doi: 10.1097/SCS.0b013e31825da9d9

Guo, Z., Wang, Z., Hou, X., and Zhang, H. (2020). Comparative study on genetic structure of three color variants of the sea cucumber (apostichopus japonicus) based on mitochondrial and ribosomal genes. *J. Shandong Univ. (Natural Science)* 55 (11), 7. doi: 10.6040/j.issn.1671-9352.0.2020.231

Hall, M. R., Kocot, K. M., Baughman, K. W., Fernandez-Valverde, S. L., Gauthier, M. E., Hatleberg, W. L., et al. (2017). The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. *Nature* 544 (7649), 231–234. doi: 10.1038/nature22033

Han, R., Beppu, H., Lee, Y. K., Georgopoulos, K., Larue, L., Li, E., et al. (2012). A pair of transmembrane receptors essential for the retention and pigmentation of hair. *Genesis* 50 (11), 783–800. doi: 10.1002/dvg.22039

Hart, P. J., Deep, S., Taylor, A. B., Shu, Z., Hinck, C. S., and Hinck, A. P. (2002). Crystal structure of the human T β R2 ectodomain–TGF- β 3 complex. *Nat. Struct. Biol.* 9 (3), 203–208. doi: 10.1038/nsb766

Henning, F., Jones, J. C., Franchini, P., and Meyer, A. (2013). Transcriptomics of morphological color change in polychromatic Midas cichlids. *BMC Genomics* 14 (1), 171–171. doi: 10.1186/1471-2164-14-171

Hubbard, J. K., Uy, J., Hauber, M. E., Hoekstra, H. E., and Safran, R. J. (2010). Vertebrate pigmentation: from underlying genes to adaptive function. *Trends Genet.* 26 (5), 231–239. doi: 10.1016/j.tig.2010.02.002

Jakowlew, S. B., Dillard, P. J., Kondaiah, P., Sporn, M. B., and Roberts, A. B. (1988a). Complementary deoxyribonucleic acid cloning of a novel transforming growth factorbeta messenger ribonucleic acid from chick embryo chondrocytes. *Mol. Endocrinol. (Baltimore Md.)* 2 (8), 747–755. doi: 10.1210/mend-2-8-747

Jakowlew, S. B., Dillard, P. J., Sporn, M. B., and Roberts, A. B. (1988b). Complementary deoxyribonucleic acid cloning of a messenger ribonucleic acid encoding transforming growth factor β 4 from chicken embryo chondrocytes. *Mol. Endocrinol.* 2 (12), 1186–1195. doi: 10.1210/mend-2-12-1186

Jakowlew, S. B., Dillard, P. J., Sporn, M. B., and Roberts, A. B. (1988c). Nucleotide sequence of chicken transforming growth factor-beta 1 (TGF-beta 1). *Nucleic Acids Res.* 16 (17), 8730. doi: 10.1093/nar/16.17.8730

Jakowlew, S. B., Dillard, P. J., Sporn, M. B., and Roberts, A. B. (1990). Complementary deoxyribonucleic acid cloning of an mRNA encoding transforming growth factor-β2 from chicken embryo chondrocytes. *Growth Factors* 2 (2), 123–133. doi: 10.3109/08977199009071499

Ji, T., Dong, Y., and Dong, S. (2008). Growth and physiological responses in the sea cucumber, apostichopus japonicus selenka: Aestivation and temperature. *Aquaculture* 283 (1), 180–187. doi: 10.1016/j.aquaculture.2008.07.006

Kang, J. H., Yu, K. H., Park, J. Y., An, C. M., Jun, J. C., and Lee, S. J. (2011). Allelespecific PCR genotyping of the HSP70 gene polymorphism discriminating the green and red color variants sea cucumber (Apostichopus japonicus). *J. Genet. Genomics* 38 (8), 351–355. doi: 10.1016/j.jgg.2011.06.002

Kondaiah, P., Sands, M. J., Smith, J. M., Fields, A., Roberts, A. B., Sporn, M. B., et al. (1990). Identification of a novel transforming growth factor-beta (TGF-beta 5) mRNA in xenopus laevis. J. Biol. Chem. 265 (2), 1089–1093. doi: 10.1016/S0021-9258(19)40162-2

Lapraz, F., Duboc, V., and Thierry, L. (2007). A genomic view of TGF- β signal transduction in an invertebrate deuterostome organism and lessons from the functional analyses of nodal and BMP2/4 during sea urchin development. *Signal Transduction*. 7 (2), 187–206. doi: 10.1002/sita.200600125

Lee, H., Chong, D. C., Ola, R., Dunworth, W. P., Meadows, S., Ka, J., et al. (2017). Alk2/ ACVR1 and Alk3/BMPR1A provide essential function for bone morphogenetic proteininduced retinal angiogenesis. Arteriosclerosis thrombosis Vasc. Biol. 37 (4), 657-663. doi: 10.1161/ATVBAHA.116.308422

Li, J., Liu, J., Cao, X., Wang, F., Li, J., Zheng, L., et al. (2020). Effects of light intensity on growth, digestion and immunity of green, white and purple sea cucumber apostichopus japonicus selenka. *J. Dalian Ocean Univ.* 35 (02), 184–189. doi: 10.16535/j.cnki.dlhyxb.2019-057

Linton, L. M., Birren, B. W., and Lander, E. (2001). International human genome sequencing consortium. *Nature* 409 (6822), 860–921. doi: 10.1038/35057062

Li, H., Xu, H., Akhatayeva, Z., Liu, H., Lin, C., Han, X., et al. (2021). Novel indel variations of the sheep FecB gene and their effects on litter size. *Gene* 767, 145176. doi: 10.1016/j.gene.2020.145176

Long, J. (2019). Bioinformatic analysis of $TGF-\beta$ signaling pathway members and their expression in Nile tilapia (Southwest University).

Lowe, C. J., Clarke, D. N., Medeiros, D. M., Rokhsar, D. S., and Rokhsar, J. (2015). The deuterostome context of chordate origins. *Nature*. 520 (7548), 456–465. doi: 10.1038/ nature14434

Massagué, J. (2012). TGF
ß signalling in context. Nat. Rev. Mol. Cell Biol. 13 (10), 616–630. doi: 10.1038/nrm3434

Massagué, J., and Chen, Y. (2000). Controlling TGF- β signaling. Genes Dev. 14 (6), 627–644. doi: 10.1101/gad.14.6.627

Mellor, S. L., Cranfield, M., Ries, R., Pedersen, J., Cancilla, B., Kretser, D. D., et al. (2000). Localization of activin βA -, βb -, and β c-subunits in human prostate and evidence for formation of new activin heterodimers of β c-subunit. *J. Clin. Endocrinol. Metab.* 85 (12), 4851–4858. doi: 10.1210/jcem.85.12.7052

Miller, D. A., Lee, A., Matsui, Y., Chen, E. Y., Moses, H. L., and Derynck, R. (1989a). Complementary DNA cloning of the murine transforming growth factor- β 3 (TGF β 3) precursor and the comparative expression of TGF β 3 and TGF β 1 messenger RNA in murine embryos and adult tissues. *Mol. Endocrinol.* 3 (12), 1926–1934. doi: 10.1210/mend-3-12-1926

Miller, D. A., Lee, A., Pelton, R. W., Chen, E. Y., Moses, H. L., and Derynck, R. (1989b). Murine transforming growth factor- β 2 cDNA sequence and expression in adult tissues and embryos. *Mol. Endocrinol.* 3 (7), 1108–1114. doi: 10.1172/JCI67521

Miyazono, K., Katsuno, Y., Koinuma, D., Ehata, S., and Morikawa, M. (2018). Intracellular and extracellular TGF- β signaling in cancer: some recent topics. Front. Med. 12 (4), 387–411. doi: 10.1007/s11684-018-0646-8

Patterson, G. I., and Padgett, R. W. (2000). TGF β -related pathways: roles in caenorhabditis elegans development. Trends Genet. 16 (1), 27–33. doi: 10.1242/ dev.00863

Piek, E., Heldin, C., and Dijke, P. T. (1999). Specificity, diversity, and regulation in TGF- β superfamily signaling. FASEB J. 13 (15), 2105–2124. doi: 10.1096/fasebj.13.15.2105

Rebbert, M. L., Bhatiadey, N. , and Dawid, I. B. (1990). The sequence of TGF-beta 2 from xenopus laevis. *Nucleic Acids Res.* 18 (8), 2185. doi: 10.1093/nar/18.8.2185

Romano, V., Raimondo, D., Calvanese, L., D'Auria, G., Tramontano, A., and Falcigno, L. (2012). Toward a better understanding of the interaction between TGF- β family members and their ALK receptors. *J. Mol. modeling* 18 (8), 3617–3625. doi: 10.1007/s00894-012-1370-y

Schilling, S. H., Hjelmeland, A. B., Rich, J. N., and Wang, X. (2008). 3 TGF-β: A multipotential cytokine. *Cold Spring Harbor Monograph. Arch.* 50, 45–77. doi: 10.1101/087969752.50.45

Shi, Y., and Massagué, J. (2003). Mechanisms of TGF- β signaling from cell membrane to the nucleus. cell 113 (6), 685–700. doi: 10.1016/s0092-8674(03)00432-x

Signor, P. W., and Brett, C. E. (1984). The mid-Paleozoic precursor to the mesozoic marine revolution. *Paleobiology* 10 (2), 229–245. doi: 10.1017/S0094837300008174

Sodergren, E., Weinstock, G. M., Davidson, E. H., Cameron, R. A., Gibbs, R. A., Angerer, R. C., et al. (2006). The genome of the sea urchin strongylocentrotus purpuratus. *Science* 314 (5801), 941–952. doi: 10.1126/science.1133609

Sottile, V., and Seuwen, K. (2000). Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone). *FEBS Lett.* 475 (3), 201–204. doi: 10.1016/s0014-5793(00)01655-0

Sun, B., Tan, Y., Hong, X., and Liu, D. (2013). Expressions of TGF β R2 and Smad2 in peripheral lymphocytes in patients with systemic lupus erythematosus. *J. Pract. Med* 29 (8), 1255–1257. doi: 10.3969/j.issn.1006-5725.2013.08.019

Sun, J., Zhang, Y., Xu, T., Zhang, Y., Mu, H., Zhang, Y., et al. (2017). Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. *Nat. Ecol. Evol.* 1 (5), 121. doi: 10.1038/s41559-017-0121

ten Dijke, P., Hansen, P., Iwata, K. K., Pieler, C., and Foulkes, J. G. (1988). Identification of another member of the transforming growth factor type beta gene family. *Proc. Natl. Acad. Sci.* 85 (13), 4715–4719. doi: 10.1073/pnas.85.13.4715

ten Dijke, P., Miyazono, K., and Heldin, C.-H. (2000). Signaling inputs converge on nuclear effectors in TGF- β signaling. *Trends Biochem. Sci.* 25 (2), 64–70. doi: 10.1016/s0968-0004(99)01519-4

Ushiro, Y., Hashimoto, O., Seki, M., Hachiya, A., Shoji, H., and Hasegawa, Y. (2006). Analysis of the function of activin betaC subunit using recombinant protein. *J. Reprod. Dev.* 52 (4), 487–495. doi: 10.1262/jrd.17110.0604200034-0604200034. Van Obberghen-Schilling, E., Kondaiah, P., Ludwig, R. L., Sporn, M. B., and Baker, C. C. (1987). Complementary deoxyribonucleic acid cloning of bovine transforming growth factor- β 1. *Mol. Endocrinol.* 1 (10), 693–698. doi: 10.1210/mend-1-10-693

Wang, E. A., Israel, D. I., Kelly, S., and Luxenberg, D. P. (1993). Bone morphogenetic protein-2 causes commitment and differentiation in C3Hl0T1/2 and 3T3 cells. *Growth factors* 9 (1), 57–71. doi: 10.3109/08977199308991582

Wang, G., Zhu, W., Li, Z., and Fu, R. (2007). Effects of water temperature and salinity on the growth of apostichopus japonicus. *Shandong Science*. 20 (3), 6–9. doi: 10.3969/ j.issn.1002-4026.2007.03.002

Weiss, A., and Attisano, L. (2013). The TGFbeta superfamily signaling pathway. Wiley Interdiscip. Reviews: Dev. Biol. 2 (1), 47-63. doi: 10.1002/wdev.86 Zhang, X., Sun, L., Yuan, J., Sun, Y., Gao, Y., Zhang, L., et al. (2017). The sea cucumber genome provides insights into morphological evolution and visceral regeneration. *PloS Biol.* 15 (10), e2003790. doi: 10.1371/journal.pbio.2003790

Zhao, B., Hu, W., Li, C., and Han, S. (2018). Effects of temperature and salinity survival, growth, and coloration of juvenile apostichopus japonicus selenta. *Oceanologia Limnologia Sin.* 36 (5), 1835–1842. doi: 10.11693/hyhz20170800211

Zheng, S., Long, J., Liu, Z., Tao, W., and Wang, D. (2018). Identification and of TGF- β signaling pathway members in twenty-four animal species and expression in tilapia. *Int. J. Mol. Sci.* 19 (4), 1154. doi: 10.3390/ijms19041154

Zhu, H., Kong, L., Li, Q., Wang, Y., and Zhao, Q. (2013). Effects of Salinity, Temperature and stocking density on the growth and srvival of white race Sea Cucumber(Apostichopus japonicus) larvae (Periodical of Ocean University of China). doi: 10.16441/j.cnki.hdxb.2013.07.006