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This paper investigates the impact of increasing maximumwind speed of tropical

cyclones on the return periods of water levels in the sea area of the Yangtze River

Delta. To conduct this study, a series of numerical experiments are performed

using historical tropical cyclones that impacted the Yangtze River Delta from

1949 to 2019. The aim is to analyze the effects of global climate change on

extreme water levels and the corresponding return periods. To obtain the

historical water levels in the sea areas of the Yangtze River Delta, a storm

surge model is driven by the selected tropical cyclones. The simulated

astronomical tidal levels during the same period are also used. The extreme

water levels of different return periods are then calculated. The maximum wind

speeds of the selected tropical cyclones are increased by 11% according to the

expected amount of increase under global climate change. The extreme water

levels of different return periods under this scenario are calculated with the same

procedure. The results of the study show that the impact of increasing maximum

wind speed of tropical cyclones on the increases of extreme water levels and the

decrease of return periods is more significant in the inner area of the estuaries

than in the outer areas. Moreover, the responses of the extreme water levels and

the corresponding return periods in the Yangtze River Estuary and the Hangzhou

Bay show different characteristics. The results of this study provide significant

reference value for the management of future coastal disaster prevention and

mitigation in the Yangtze River Delta. Furthermore, the methodology used in this

study can be applied in other estuaries to investigate the potential impacts of

changes in climate and hydrology factors on extreme water levels and the

corresponding return periods.
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1 Introduction

Under the background of global climate change, the maximum

wind speed of tropical cyclones and extreme high tide level in

coastal areas are likely to increase (IPCC, 2012), which pose a great

threat to coastal and estuary areas (e.g., Pan et al., 2013; Pan et al.,

2020; Li et al., 2022) and also impact the present return period

system based on historical hydrological data. Although some soft

shore protection technologies can be used to resist the coastal

disasters to some degree (e.g., Temmerman et al., 2013; Pan et al.,

2022a), it is necessary to understand the impacts of global climate

change on the return period system for the purpose of future coastal

disaster prevention and mitigation.

The Yangtze River Delta (YRD) is formed by two estuaries,

the Yangtze River Estuary and the Hangzhou Bay (i.e., the

Qiantangjiang River Estuary), as seen in Figure 1. It is one of the

economic centers of China with dense population and developed

commodity economy, and it is often affected by storm surges

induced by tropical cyclones. Studies are conducted on the

impacts of global climate change on the storm surge induced by

tropical cyclones in the Yangtze River Delta (e.g., Wang et al., 2012;

Zhao et al., 2014; Feng et al., 2018; Pan and Liu, 2019; Shen et al.,

2019) and other estuaries (e.g., Karim and Mimura, 2008; Robins

et al., 2016; Yin et al., 2017; Li et al., 2020; Yuan et al., 2022; Zhou

et al., 2022). Most of these studies focus on the impacts of climate

change on the distribution of extreme storm surge levels in the

estuaries. With these studies, a portray of the changes in

distribution of extreme storm surge level under climate change

can be gained. However, the sea dike risk due to climate change is

determined by both the changes in extreme storm surge levels and

the original sea dike crest levels, which are determined by historical

data and different alone the coast of the estuaries. Therefore, it is

necessary to investigate the changes in return periods of water levels

due to climate change, to provide reference for future planning of

coastal and offshore projects such as sea levees (Pan et al., 2015a;

Pan et al., 2015b), harbours (Gao et al., 2020; Wang et al., 2020; Gao

et al., 2021), offshore wind power fields (Guan et al., 2019; He et al.,
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2019), artificial beaches (Pan et al., 2017; Pan et al., 2018; Li et al.,

2021; Li et al., 2022), etc.

In this paper, the effects of increasing maximum wind speed of

tropical cyclones on the return periods of water levels in the sea area

of the Yangtze River Delta are investigated via a serious of

numerical experiments. Although global climate change comes

with a serious of effects, e.g., sea level rise, increasing maximum

wind speed of tropical cyclones, and changes in the tracks of

tropical cyclones, this study only focus on the effects of increasing

maximum wind speed of tropical cyclones. Under a hypothesis that

the river run-off, astronomical tide, mean sea level, and tracks of

tropical cyclones are unchanged, while the maximum wind speeds

of tropical cyclones increase in a possible scenario (IPCC, 2012), the

effects of increasing maximum wind speed of tropical cyclones on

the return periods of water levels in the sea area of the Yangtze River

Delta are investigated via a numerical model. Based on numerical

simulations under different scenarios, the distributions of increase

of water levels and decreases of return periods are analyzed

and discussed.
2 Methodology

A storm surge model of the Yangtze River Estuary is set up

based on the ADCIRCmodel (e.g., Dietrich et al., 2011) and verified

via a comparison between the simulated and measured data. With

the storm surge model, a two-step numerical study scheme is

designed to investigate the possible impact of increasing

maximum wind speed of tropical cyclones on the return periods

of water levels in the sea area of the Yangtze River Delta. The

numerical study scheme is designed based on the hypothesis that

the river run-off, astronomical tide, mean sea level, and tracks of

tropical cyclones are unchanged, while the maximum wind speeds

of tropical cyclones increase in a possible scenario. In the first step,

all the tropical cyclones that impact the Yangtze River Delta during

1949 to 2019 are picked out and used to drive the storm surge

model. The astronomical tides during 1949 to 2019 are also

simulated to provide the maximum annual astronomical tidal

levels. With the simulated annual tidal levels (may from either

storm surges or astronomical tides), the water levels of different

return period are calculated in the sea area of the Yangtze River

Delta. In the second step, all the processes in step 1 are repeated

except that the tropical cyclones are strengthened according to

IPCC (2012), and the water levels of different return periods are

calculated accordingly. The new-calculated water levels of different

return periods are then compared to the old ones and the impacts of

increasing maximum wind speed of tropical cyclones on the spatial

distribution of return periods of water levels in the sea area of the

Yangtze River Delta are discussed.
2.1 Storm surge model

The storm surge model is set up with ADCIRC model. The

ADCIRC model is a shallow-water circulation model that solves for

water levels and currents at a range of scales (e.g., Westerink et al.,
FIGURE 1

The study area: the Yangtze River Delta.
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2008; Dietrich et al., 2011). The ADCIRC model has been widely

used in the numerical studies on storm surge processes around the

world (e.g., Parker et al., 2019; Zhang et al., 2020; Shankar and

Behera, 2021; Li et al., 2022; Pan et al., 2022b; Wang et al., 2022).

The computational grid and stations used in model verification

and data analysis are given in Figure 2. The computational grid

covers the sea area of the East China Sea, part of south China sea,

and a small part of Pacific Ocean. The total number of

computational nodes and elements are 60338 and 112455,

respectively. The ocean boundary conditions are provided by the

TPXO 7.2 database. In the verification cases, the upper boundary of

the Yangtze River is adapted from the measurement at Datong (DT)

station, while in the cases for numerical experiments the monthly-

averaged run-off discharges are used. Because the runoff of the

Qiantang River has little influence on the flow field in Hangzhou

Bay, the monthly-averaged runoff of Qiantang River is used for the

upper boundary of the Qiantang River in both verification cases and

the cases for numerical experiments. A modified Holland model

(Holland, 1980; Mattocks and Forbes, 2008; Pan et al., 2016) is used

to generate the wind fields according to tropical cyclone tracks. The

equation of the wind speed is given as

vrot =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
ra

Rmax

r

� �B

Pn − Pcð Þexp −
Rmax

r

� �B� �
+

rf
2

� �2
s

−
rf
2
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B =
((vr − vmc)=WPBL)

2

Pn − Pc
(2)
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where vrot is the velocity of the rotating storm; Pn is the

background surface pressure; Pc is the central surface pressure; ra
is the density of air; f is the Coriolis force; B is the hurricane shape

parameter, which controls the eye diameter and steepness of the

tangential velocity gradient; vr is the maximum wind speed; vmc is

the moving speed of the storm; WPBL is a wind reduction factor,

defined at the gradient wind flow level above the influence of the

planetary boundary layer (Powell et al., 2003).

The storm surge model is verified by simulating three storm

surges that impact the sea area of the Yangtze River Delta

significantly. The three simulated storm surges are induced by the

tropical cyclones Winnie (9711), Fung-wong (1416) and Lekima

(1909) whose tracks are illustrated in Figure 3. Comparisons of

simulated and measured water levels at different stations during the

three storm surges are plotted in Figure 4. As seen, good agreements

can be found between model simulations and observations of water

level, indicating that the storm surge model provides satisfactory

descriptions of the water levels.
2.2 Numerical study scheme

The tropical cyclones that impact the sea area of the Yangtze

River Delta from 1949 to 2019 are firstly picked out. To do this, a

circle is made with the center located LCG and the radius of 500 km.

All tropical cyclones that moved in this circle area during 1949 to

2019 are considered to have significant impact on the sea area of the
A

B

C

FIGURE 2

Computational grid and stations: (A) the computational grid, (B) local refinement and stations for model verification and (C) stations for data analysis.
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Yangtze River Delta and a total of 154 tropical cyclones are selected,

as seen in Figure 3. The tropical cyclone track data are from the

CMA (China Meteorological Administration) Tropical Cyclone

Best Track Dataset (Ying et al., 2014; Lu et al., 2021; data

available in tcdata.typhoon.org.cn). All the selected tropical

cyclones are used to drive the storm surge model to get the water

level distributions under the effects of historical tropical cyclones

(the cases are referred to as historical cases hereinafter). In addition,

the astronomical tides from 1949 to 2019 are also simulated to

provide the maximum annual astronomical tidal levels, in case of

the annual maximum tidal levels of some years are induced by the

highest astronomical tide rather than storm surge (the cases are

referred to as astronomical cases hereinafter).

Then the tropical cyclones are enhanced with increased

maximum wind speeds and decreased central pressures.

According to the special report of IPCC (2012) on extreme events

and disasters, the mean maximum wind speed of tropical cyclones

may increase 2% to 11% by the end of the 21st century. Based on

this, the maximum wind speeds of all selected tropical cyclones are

increased according to the upper limit (11%), and the central

pressures are deceased accordingly with the empirical relationship

Vc = 1:176(1010 − Pc)
0:87 + 6:5 (3)

where Vc is the maximum wind speed, m/s; Pc is the central

pressure of a tropical cyclone, hPa. The empirical relationship is

extracted according to the relationships between the maximum

wind speed and the central pressure of the selected 154 tropical

cyclones. It can be seen that the units on the two sides of Equation

(1) are not the same. However, because the central pressure of a

tropical cyclone has much less influence on the storm surge than the

maximum wind speed (usually it is considered that the pressure-

induced surge accounts for about 5% of the storm surge), the errors

in the center pressure have little influence on the simulated results

and a generally reasonable decrease of the central pressure meets the

requirement of the numerical study scheme.
Frontiers in Marine Science 04
The enhanced tropical cyclones are then used to drive the storm

surge model to get the water level distributions under the effects of

increased maximum wind speed of tropical cyclones (the cases are

referred to as enhanced cases hereinafter). The annual maximum

tidal levels obtained based on the results of historical cases + the

astronomical cases (namely historical scenario) can be labeled as

Historical Annual Maximum Tidal Levels (HAMTL), while annual

maximum tidal levels obtained based on the results of enhanced

cases + the astronomical cases (namely enhance scenario) can be

labeled as Enhanced Annual Maximum Tidal Levels (EAMTL).

The two set of annual maximum tidal levels can be used to

extract return period information. A theoretical distribution should

be chosen firstly. For two reasons, 1) this study focuses on the effects

of enhanced tropical cyclones, and 2) the analysis is on all spatial

points in the sea area of the Yangtze River Delta for the purpose of

spatial comparison, the theoretical distribution needs to meet two

requirements: 1) the theoretical distribution can be fitted by only

part of the data (in this study the upper part is used to reflect more

feature of the extreme high water levels), and 2) the curve-fitting

need to be straightforward without manual adjustment. According

to the two requirements, the two-parameter Weibull distribution is

chosen rather than the Gumbel Probability Distribution (which

cannot be fitted by part of the data) and Pearson III Probability

Distribution (which has tuning parameters that need manual

adjustment). The probability distribution function of two-

parameter Weibull distribution is given by

P(X ≤ x) = 1 − exp −
x
a

� �b
� �

(4)

where P is the probability of the studied variable X being less

than or equal to x, a is the scale factor, and b is the shape factor.

Because the two-parameter Weibull distribution starts with zero,

the X is the difference between the annual maximum tidal levels and

the minimum value of the annual maximum tidal levels at each

spatial point.

Some samples of the Weibull curve-fitting are given in Figure 5.

The curves are fitted with the upper 25% of the annual maximum

tidal levels to have a better reflection of the distribution of largest

water levels. Using a different theoretical distribution or portion of

data might yields different results in detailed values, but the general

spatial patterns should be similar. As seen, the Weibull distribution

fits well with both the HAMTL and EAMTL, and significant

differences can be found between the best fit curves of HAMTL

and EAMTL. It can be noticed that in Figure 5D) (station 4) the

curve-fitting is moderate, with the middle and lower part of the data

have a deviation from the curve. A possible explanation is that the

station 4 is close to open sea area and it also influenced little by the

Zhoushan islands compared to station 5, so the middle and lower

part of the data are more induced by the astronomical tide rather

than the storm surge. For all the spatial points in the sea area of the

Yangtze River Delta, the Weibull fit is conducted to both the

HAMTL and EAMTL. With the best fit curves, the water levels of

different return periods under historical and enhanced scenarios

can be obtained as the data base for further analysis.
FIGURE 3

The tracks of all selected tropical cyclones that impact the sea area
of the Yangtze River Delta and the three tropical cyclones used for
model verification.
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3 Results and discussion

The differences in extreme water levels (50-year, 100-year, and

200-year return period) between historical and enhanced scenarios

are calculated by subtracting the values from the historical scenarios
Frontiers in Marine Science 05
from those from the enhanced scenarios. In this way, the impacts of

the increasing maximum wind speed of tropical cyclones on the

extreme water levels can be reflected straightforwardly. The

distribution of the difference in extreme water levels are

illustrated in Figure 6. As seen, under the impact of increased
A B

D

E F

G

I

H

C

FIGURE 4

Comparisons of simulated and measured water levels at different stations during the tropical cyclones Winnie (9711), Fung-wong (1416) and Lekima
(1909). The (A–F) respectively correspond to the water levels at YL, WS, ZP, KP and LCG during tropical cyclone Winnie (9711). The (F) and (G)
respectively correspond to the water levels at YL and XLJ during tropical cyclone Fung-wong (1416). The (H) and (I) respectively correspond to the
water levels at KP and ZP during tropical cyclone Lekima (1909). Note: because the measured data are from different sources, different stations are
verified in the three storm surge processes.
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maximum wind speed, the increase patterns of extreme water levels

are majorly controlled by the estuary topography. Generally, the

extreme water levels increase more significantly in the inner area

than the outer area of the estuary. The increases of the extreme

water levels of different return periods increase along the estuary

from out sea to the upstream, which applies to both the Yangtze

River Estuary and the Hangzhou Bay. A comparison between the

two estuaries indicates that the extreme water levels of the

Hangzhou Bay are more sensitive to the increase of maximum

wind speed of tropical cyclones. At the upstream end of the Yangtze

River Estuary (i.e. near the XLJ station in Figure 2) the increase of

200-year water level is about 0.15 m, while at the upstream end of

the Hangzhou Bay (i.e. near the station 6 in Figure 2) the value is

about 0.4 m. The reason might be the squeezing effect of the horn-

shape of the Hangzhou Bay to the storm surge. Noticing that the

hypothesis of the numerical study scheme is that the river run-off,
Frontiers in Marine Science 06
astronomical tide, mean sea level, and tracks of tropical cyclones are

unchanged, while the maximum wind speeds of tropical cyclones

are increased, strictly speaking the changes in extreme water levels

are due to the maximum wind speeds of tropical cyclones rather

than the climate change. However, the patterns of spatial

distributions are of reference significance to the management of

future coastal disaster prevention and mitigation.

Except for the increases of the extreme water levels, the decrease of

return periods of extreme water levels due to increasing maximum

wind speed is also a concerned issue and of great importance to the

management of future coastal disaster prevention and mitigation. To

calculate the decreases of return periods, the extreme water levels of

certain return periods (i.e., 50, 100 and 200 years) are calculated firstly,

and then the corresponding return periods of the extreme water levels

of certain return periods are calculated based on the simulated results

of the enhanced scenarios. The decreases of return periods are then
A B

D

E F

C

FIGURE 5

Samples of the curve-fitting with HAMTL and EAMTL. The (A–F) correspond to the station 1 to station 6 illustrated in Figure 2C.
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calculated by subtracting the new-calculated return periods (based on

the enhanced scenarios) from the given ones (based on the historical

scenarios) and plotted in Figure 7. It can be seen that the decrease of

return periods and increase patterns of extreme water levels have

generally similar distributions and some differences in the two

estuaries. Under increased maximum wind speed, the return periods

decrease more rapidly in the upstream of the estuaries generally. In the

sea area out of the estuaries the return periods decrease about 50% (e.g.,

25 years for 50-year return period case, 50 years for 100-year return

period case, 110 years for 200-year return period case), while in the

upper stream ends of the estuaries the return periods decrease about

80% (e.g., 35 years for 50-year return period case, 80 years for 100-year

return period case, 170 years for 200-year return period case). A

comparison between the two estuaries indicates that, on the contrary of

the increase of extreme water levels, the decrease of return periods in
Frontiers in Marine Science 07
the Yangtze River Estuary is more sensitive to increasing maximum

wind speed than those of the Hangzhou Bay, the reason of whichmight

be that the extreme water levels are higher in the Hangzhou Bay than

those in the Yangtze River Estuary under the same return period. As

discussed in preceding paragraph, due to the hypothesis of the study,

the changes in extreme water levels are due to the maximum wind

speeds of tropical cyclones rather than the climate change. but the

patterns of spatial distributions are of reference significance to the

management of future coastal disaster prevention and mitigation.

It should also be noticed that all the 154 historical tropical

cyclones are strengthened according to the upper limit (11%) of the

IPCC (2012) estimation, so the quantitative values of the increases

of extreme water levels and the decrease of return periods might be

overestimated, but the patterns of spatial distributions are of

reference significance.
A B

C

FIGURE 6

The differences in extreme water levels between historical and enhanced scenarios: (A) 50-year return period, (B) 100-year return period, (C) 200-
year return period.
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From the points of view of the changes in both extreme water

levels and return periods, the inner areas of the estuaries will be

under greater pressures from storm surges compared to the open

sea areas, which applies to both the Yangtze River Estuary (river-

tide dominated) and the Hangzhou Bay (tide dominated). Hence

attentions show be paid on the disaster prevention of the inner areas

of the estuaries under the background of increasing

tropical cyclones.
4 Conclusions

Under the hypothesis that the river run-off, astronomical tide,

mean sea level, and tracks of tropical cyclones that affect the

Yangtze River Delta are unchanged, while the maximum wind

speeds of tropical cyclones increase 11%, the impacts of
Frontiers in Marine Science 08
increasing maximum wind speeds of tropical cyclones on the

return periods of water levels in the sea area of the Yangtze River

Delta are investigated via a series of numerical experiments. The

following conclusions can be drawn:

(1) Under the scenario of increased maximum wind speeds of

tropical cyclones, the extreme water levels under certain return

periods (i.e., 50, 100 and 200 years) increase more significantly in

the inner area than the outer area of the estuary. The maximum

increases of extreme water level under 50, 100 and 200 years return

period are about 0.3, 0.4 and 0.5 m, which appear at the upstream

end of the Hangzhou Bay. The extreme water levels in the

Hangzhou Bay seems more sensitive to the increase of maximum

wind speeds of tropical cyclones, which might be due to the

squeezing effect of the horn-shape of the Hangzhou Bay.

(2) Under the scenario of increased maximum wind speeds of

tropical cyclones, the decrease of return periods ranges about 10 to
A B

C

FIGURE 7

The decrease of return periods of extreme water levels of the enhanced scenarios compared to the historical scenarios: (A) 50-year return period,
(B) 100-year return period, (C) 200-year return period.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1101640
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pan et al. 10.3389/fmars.2023.1101640
35 years for 50-year return period, 30 to 80 years for 100-year return

period, and 70 to 170 years for 200-year return period in the

Yangtze River Delta and the sea area out of it. The general patten of

the decrease of return periods is similar to that of the increase

pattern of extreme water levels, i.e., the changes in the inner areas of

the estuaries are more significant than those in the sea areas out of

the estuaries. However, the decrease of return periods is less

significant in the Hangzhou Bay than that in the Yangtze River

Estuaries, which might be due to that the extreme water levels are

higher in the Hangzhou Bay themselves.

It should be mentioned that the historical tropical cyclones are

strengthened according to the upper limit (11%) of the IPCC (2012)

estimation, so the quantitative values of the increases of extreme

water levels and the decrease of return periods might be

overestimated, but the patterns of spatial distributions are of

reference significance to the management of future coastal

disaster prevention and mitigation. The methodology can also be

used in other estuaries to investigate the potential impacts of

changes in climate and hydrology factors on extreme water levels

and the corresponding return periods.
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