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Given the insufficient early warning capacity of nuclear cold source biological

disasters, this paper explores prediction methods for biomass caused by nuclear

cold source disasters based on deep learning. This paper also uses the correlation

analysis method to determine the main environmental factors. The adaptive

particle swarm optimization method was used to optimize the depth confidence

network model of the Gaussian continuous constrained Boltzmann machine

(APSO-CRBM-DBN). To train the model, the marine environmental factors were

used as the main input factors and the biomass after a period of time was used as

the output for training. Optimal prediction results were obtained, and thus, the

prediction model of biomass caused by the nuclear cold source disaster was

established. The model provides an accurate scientific basis for the early warning

of cold source disasters in nuclear power plants and has important practical

significance for solving the problem of biological blockage at the inlet of cold

source water in nuclear power plants.

KEYWORDS

nuclear power cold source, disaster warning, biomass prediction, deep confidence
network, adaptive particle swarm method
1 Introduction

In recent years, with the change of marine ecological environment, the water inlet

blockage of nuclear power source caused by marine organisms has become more and more

serious (Tang et al., 2017). The nuclear safety accident and economic loss caused by it have

been paid more and more attention by all countries in the world. Since 2004, there have been

nearly 200 clogged intakes at nuclear power plants around the world, the vast majority of

which are caused by jellyfish, seaweed, aquatic plants, shellfish, fish, and other marine

organisms. These blockages lead to power reduction or reactor shutdown of units, which

seriously affects the safe operation of nuclear power plants (Ruan, 2015; Tang et al., 2017). In

the winter of 2014 and 2015, the phaeocystis red tide in the coastal waters of Guangxi covered
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the waters near Fangchenggang, and the phaeocystis (2–3 cm) clogged

the filter apparatus, posing a threat to the safety of the cold source

system of nuclear power facilities. In December 2009, a large number

of water weeds invaded and blocked the filtration system of the pump

station of unit 4 of the CRUAS nuclear power plant in France,

resulting in the loss of cold source of the unit (Tang et al., 2017). In

2012, a large number of jellyfish invaded the cooling water system of a

nuclear power plant in California, USA (Tang et al., 2017). In July

2014, a large number of jellyfish flooded into the intake of the

circulating water filtration system of the Hongyanhe Nuclear Power

Plant, leading to the shutdown of Unit H1/2. In August 2015, a large

number of Haitian melons rushed into the water inlet of Ningde No. 3

unit, resulting in unit shutdown operation. In January 2016, the No. 2

unit of the Lingao Nuclear Power Plant was in emergency shutdown

due to the influx of shrimp into the water intake (Meng et al., 2018;

Meng et al., 2019; Zhang et al., 2020). In April 2018, just at the critical

time of the Boao Forum for Asia, a large amount of seaweed flooded

into the Changjiang Nuclear Power Plant in Hainan Province,

blocking the drum filter screen and causing the circulating water

pump to trip. Two units of the Changjiang Nuclear Power Plant were

shut down, and the whole plant lost power supply to the outside

world. Marine biological disaster is an urgent problem facing the

safety of our coastal nuclear power operation.

In order to prevent or reduce the impact of marine disaster-

causing organisms, domestic and foreign nuclear power plants have

also taken active defense measures. The main approach is to develop a

marine disaster biological monitoring system, in order to give early

warning before the disaster-causing organisms reach the grid and

filter drum network. Kim and Myung, (2018); Kim et al. (2016)

collected jellyfish videos on the water surface with cameras mounted

on drones, identified and calculated the density of jellyfish in the

video frame images, monitored the biomass of disaster-causing

organisms in real time, and made track prediction in combination

with meteorological and hydrodynamic environment, which could

play an early warning role to a certain extent and gain the response

time to take measures such as fishing and interception. Meng et al.

(2018) established underwater acoustic detection and optical imager

for real-time monitoring of marine organisms in the waters near the

nuclear power intake. When the biomass reaches a certain threshold,

the system software starts to give an early warning. Martin-Abadal

et al. (2020) proposed a jellyfish real-time monitoring system based

on the deep learning method. The deep learning model processes

underwater monitoring videos to realize jellyfish identification and

quantitative estimation. A number of scholars (Yang et al., 2018;

French et al., 2019; Han et al., 2022) have developed a real-time

monitoring system of underwater sonar image, which, combined with

hydrodynamic elements, and based on algorithms such as neural

networks, gives early warning to marine organisms. However, in

many cases, the accumulation rate of disaster-causing organisms is

very fast. When the biomass is detected to increase sharply, the

response time left for nuclear power plants is very short. Therefore,

relying only on real-time monitoring system cannot fundamentally

solve the problem. The most effective approach is to develop an early

warning system for marine catastrophes to realize early warning

before the catastrophes arrive at the grid and filter drum network.

At this time, the establishment of an accurate biomass prediction
Frontiers in Marine Science 02
model is an important scientific basis for the system to realize

early warning.

A highly nonlinear model between marine environmental

parameters and disaster-induced biomass is needed to predict the

biomass of nuclear cold sources. Highly nonlinear models are usually

constructed by training on traditional artificial neural networks or

machine learning methods, such as deep learning. Many biological

prediction models for red tide algal blooms have been built by

scholars from various countries based on marine environmental

data (Zohdi and Abbaspour, 2019), but few prediction models for

organisms are caused by nuclear cold sources. Based on the analysis of

marine environmental data, this paper uses the mixed APSO-CRBM-

DBN deep learning algorithm to study a prediction method that can

accurately predict disaster-induced biomass of nuclear power cold

sources. We have built an accurate prediction model for the disaster-

induced biomass of nuclear power cold sources.
2 Methodology

In this paper, the correlation analysis of marine environmental

monitoring data and disaster-causing biomass data was carried

out by using the multi-factor correlation analysis method, and

the main influencing parameters were determined. Nuclear

disaster-causing organisms are affected by a variety of marine

environmental factors, and the mapping relationship is nonlinear;

thus, it is difficult to predict using the regression model. Therefore,

this paper builds a deep confidence network model, trains marine

environmental data and pointed pen cap data, and obtains a

prediction model suitable for predicting the disaster-causing

biomass of nuclear cold source.
2.1 Model input influence
factor determination

Organisms that cause nuclear disasters are comprehensively

affected by marine environmental parameters. These environmental

impact parameters vary for different organisms. Therefore, to

improve the accuracy of the model, it is necessary to more

accurately determine the environmental parameters affecting the

proliferation and aggregation of relevant organisms. In this study,

the input environmental impact parameters were selected as

comprehensively as possible. The autocorrelation coefficient method

was then used to calculate the contribution of each parameter to the

biomass, and the correlation coefficients between the parameters were

used to calculate the correlation between the parameters. The range of

environmental parameters was refined as well.

The correlation coefficient between parameters denotes the

covariance of the multivariate parameter matrix. In multivariate

probability statistics, the spread matrix is a statistic used to estimate

the covariance of a multidimensional normal distribution. An n-

dimensional sample represents the adoption of n different

environmental parameters, where each dimension represents the time

series of one parameter. The matrix X ofm x n represents the data matrix

of the above n parameters, where X=[x1,x2, ,xn]. The sample mean is
frontiersin.org
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x = 1
no

n

j=1
xj, where xj is the jth column in X. The semi-positive definite

matrix of the dispersion matrix is as follows:

S =o
n

j=1
xj − x
� �

xj − x
� �T

= o
n

j=1
xjx

T
j

 !
− nxxT

(1)

In the formula, the dispersion matrix S=XCnX
TCnX

T, where Cn is

the centering matrix. The equation to calculate Cn is as follows:

Cn = In −
1
n
O (2)

where O represents the matrix with all the elements equal to 1. In

maximum likelihood estimation, given n data samples, the covariance

CML of a multidimensional normal distribution can be expressed as a

normalized divergence matrix, and the correlation coefficient between

multiple parameters can be obtained.

CML =
1
n
S (3)

In this paper, the autocorrelation coefficient method was adopted

to calculate the contribution of environmental parameters to biomass.

The time series of biomass and other environmental parameters is

defined as X and Y, and the number of elements is N (N represents the

length of the time series), where xi and yi are elements in X and Y,

respectively, and x,y are sample means, respectively. The correlation

coefficient is defined mathematically as:

r =
o
n

i=1
xi − xð Þ yi − yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
n

i=1
xi − xð Þ2o

n

i=1
yi − yð Þ2

s (4)
2.2 Model design

The model consists of a visible layer, a hidden layer, and an output

layer. The input layer is continuously monitoring data, including
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ecological, hydrodynamic, and other environmental parameters and

biomass. The input layer data are represented by x(t),t=1,2, ,T, where

T is the number of samples in the data time series. the output layer is

the biomass at time t +MT, andM can be flexibly adjusted according

to the specific prediction time. Figure 1 shows the biomass prediction

model structure of a nuclear cold source disaster.

If the output matrix after model learning is Y, there is the output:

Y = u(X) (5)

In the formula above, u(X) is the deep learning model function.
2.3 Algorithm design

The algorithm formula based on the CRBM-DBN prediction

model is:

E v, h; qð Þ =o
n

i=1

vi − aið Þ2
2d 2

i
−

o
m

j=1
bjhj −o

n

i=1
o
m

j=1

wijvihj
d 2
i

(6)

In Equation (6), q={ w,a,b } ={ w=(wij)n×m,a=(ai)n,b=(bj)m } is the

parameter of CRBM; and are the vectors of visible and hidden

elements of CRBM, respectively. wij is the weight of symmetric

connection between the visible cell, vi, and the hidden cell, hj. a1 is

the bias of the visible layer element, vi, and bj is the bias of the hidden

element, hj. d
2

i is the standard deviation of the Gaussian noise of the

visible layer element, vi. n and m are the numbers of visible element,

vi, and the hidden element, hj, respectively, and di is the standard

variance vector of the visible layer Gaussian.

There is no link in the CRBM layer of the prediction model, and

the conditional probability of visible layer and hidden layer elements

can be calculated by Equations (7) and (8):

P hj = 1 ∣ v
� �

=

s o
n

i=1
wijvi + bj

 !
(7)
FIGURE 1

Biomass prediction model of nuclear cold source disaster.
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P vi = 1 ∣ hð Þ = N sio
m

j=1
wijhj + ai,s

2
i

 !
(8)

where s(x) is the sigmoid activation function, and its expression is

s(x)=(1+e−x)−1 , N(m,V) , which represents the Gaussian function

with expectation m and variance V. In order to characterize the

complex nonlinear relationship between input and output variables,

the prediction model was trained by combining unsupervised and

supervised trainings.
2.4 Optimization based on the
APSO algorithm

The prediction accuracy of the deep learning model depends

mainly on the hyperparameters composed of the learning rate, the

number of hidden layer neurons, and the number of hidden layers.

However, there is no set of perfect methods to guide the selection of

these parameters. This paper uses an adaptive particle swarm

optimization algorithm (APSO) to improve the global search ability

based on the basic particle swarm optimization algorithm (PSO). This

algorithm has fast convergence speed, high precision, and better-

optimized performance. Figure 2 shows the flowchart of the

optimized model training. Figure 2A shows the training process of

the prediction model, which calls the parameters optimized by APSO

algorithm for model training. Figure 2B shows the flowchart of the

optimization algorithm. The particle swarm optimization algorithm

first initializes the hyperparameter according to the empirical value,

converts the position into the form of network parameter, and regards
Frontiers in Marine Science 04
the mean square error as the fitness value to calculate the fitness value

of each particle in the particle swarm, and update it. If the fitness value

is reduced to meet the condition of convergence, the optimal particle

is outputted as the optimization hyperparameter of the deep learning

model. The adaptive PSO algorithm mainly includes the following

steps: Set the population size of the particle swarm as N, and set a

four-dimensional vector for each particle. Here, Xi1 represents the

learning rate, while Xi2, Xi3, and Xi4 represent the number of nodes in

the hidden layer.

1 Read the dataset and initialize the APSO;

2 Particle 1, particle 2,… and particle n training model;

3 The reconstruction error is taken as a fitness function, and the

fitness training model of each particle is calculated. The particle, Xk
pbest

, with the maximum fitness and the globally optimal particle, Xk
gbest ,

are searched in the iteration.

Ffitness =
o
N

i=1
o
m

j=1
pij − tij
� �2
N

(9)

Here, N represents the number of samples in the dataset, m

represents the dimension of each data, pij represents the reconstructed

value of the j-dimension monitoring data in the ith sample in the

dataset, and tij represents its true value.

④ The velocity and position of each particle are updated by

Equations (10) and (11).

vdi,t+1 = wvdi,t + c1 ∗ r1 ∗ pdi,t − xdi,t
� �

+c2 ∗ r2 ∗ pdg,t − xdi,t
� � (10)

xd
i,t+1

= xd
i,t
+ xd

i,t+1
(11)
A B

FIGURE 2

Training process of the APSO-CRBM-DBN disaster-induced biomass prediction model. (A) Predictive model training process. (B) APSO optimization process.
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w =
wmax � (wmax �wmax)k

T
(12)

C1 =
Cmax− Cmax−Cminð Þk

T

C2 =
Cmax+ Cmax−Cminð Þk

T

8<
: (13)

Above, w , C1, and C2 are the inertial weight and acceleration

factor values at the kth iteration.Cmax and Cmin are the maximum and

minimum initial acceleration factor values, respectively, and T is the

number of iterations

⑤ Judge whether the fitness function is small enough. If it is small

enough, end the algorithm training and select the optimal particle to

design the prediction model. Otherwise, go to step 2 to continue

the training.
3 Experiments

3.1 Dataset

To effectively verify the accuracy of the prediction model of

biomass caused by nuclear power cold source disaster, combined

with the training cost of the model, 200 samples were selected as the

training set and 40 samples were selected as the test set from the 2,000

continuous and synchronous environmental and biological

monitoring data samples obtained from the Changjiang Station of

the nuclear power plant in Hainan for 4 months. The environmental

parameters in the data samples mainly included temperature, salinity,

chlorophyll, dissolved oxygen, flow velocity, flow direction, and wave

height. Organisms mainly include nib cap snails, prawns, and

phaeocystis. The paper first selected nib cap snails with high

biological abundance as research objects, and then used correlation

parameter analysis to select environmental parameters closely related

to the organisms. Temperature, salinity, chlorophyll, and dissolved

oxygen were initially selected as the main influencing parameters and

as input parameters of the deep learning model. Figure 3 shows the

correlation analysis between input parameters and output biological

abundance. Table 1 shows partial tip cap snail abundance and

environmental data.
3.2 Data preprocessing

In the prediction model, temperature, salinity, chlorophyll,

dissolved oxygen, and the current abundance of nib cap snails were

selected as the influence factors in the input layer, and the biological

abundance of nib cap snails after an interval of 24 h was selected as

the output layer. The frequency of real-time monitoring data is

different, and there are invalid data in the monitored data; thus, it

is necessary to preprocess the data to obtain high-quality sample data

suitable for model training. Therefore, in this paper, the common

multiple of frequency is calculated to synchronize the monitoring data

elements in the time domain. At the same time, the nonlinear filtering

method and correlation analysis between elements are used to remove

the noise of environmental data. It is assumed that marine organisms

present uniform distribution, and when the monitoring data have a
Frontiers in Marine Science 05
large deviation, the paper calculates the deviation change to judge the

anomaly, removes the abnormal value, and finally processes and

obtains the synchronized continuous environmental and biological

abundance data with an interval of 1 h, which is suitable for model

training. The complete dataset is in the supplementary materials.

The formula for median filtering and minimum filtering is:

x(k) = min ium x(k − N), · · ·, x(k), · · ·, x(k + N)f g (14)

x(k) = medium x(k − N),⋯, x(k),⋯, x(k + N)f g (15)

where x(k) and x(k) represent the monitoring value at moment k

and the filtering window of the monitoring data, respectively. The

window length was 2N + 1.

The formula of nearest neighbor interpolation is:

x(t) = xi +
xi+1−xi
ti+1−ti

x(t − ti) (16)

In the above equation, x(t) is the interpolation value at time t; ti,,y

and ti+1,yi+1 are the positions and values of the front and back ends of

the missing data segment.

A linear method was adopted to normalize the input layer data.

The formula is as follows:

x 0 = 0:1 +
x − xmin

xmax − xmin
(17)

In the above equation, x and x' are the values before and after

normalization of the impact factor, respectively; xmax and xmin are the

maximum and minimum values of the impact fac tor

sequence, respectively.
3.3 Parameter initialization

Model parameters included model depth, the node number of the

model input and output layers, learning rate, weight, and bias. The

CRBM-DBN model consisted of one visible layer, two hidden layers,

and one output layer. The number of nodes in the input layer was 5,

and the number of nodes in the output layer was 1. The weight and

bias of the model were initialized by random functions as shown in

Equation (18).

W = 0:1randn(n,m)

b = 0:1� randn(1,m)

a = 0:1� randn(1, n)

8>><
>>: (18)
3.4 Model evaluation

In order to better analyze the prediction effect of the model, two

common index parameters, root mean square error (RMSE) and

mean absolute error (MAE), are used as the evaluation indexes of the

accuracy of the prediction model, which are defined as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
Yi − Ŷ i

� �2s
(19)
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A

B

D

C

FIGURE 3

Input and output correlation analysis. (A) Correlation analysis between the abundance and temperature of tip pen cap snails. (B) Correlation analysis
between the abundance of tip cap snails and dissolved oxygen. (C) Correlation analysis of spikelet abundance and salinity. (D) Correlation analysis
between the abundance of pointy pen cap snails and chlorophyll.
TABLE 1 Partial tip cap snail abundance and environmental data.

Time Temperature (°CC) DO (mg/L) Chlorophyll (mg/L) Salinity (psu) Abundance (ind/m³)

2021/11/1 0:00 25.818 6.94 1.909 29.33 11.11

2021/11/1 1:00 25.819 6.923 1.521 29.317 16.50

2021/11/1 2:00 25.824 6.958 1.494 29.306 22.22

(Continued)
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MAE =
1
no

n

i=1
Yi − Ŷ i

�� �� (20)
3.5 Experimental results

The normalized dataset was divided into training and test sets.

The model experiment was designed. After model optimization, the

model depth was two layers, the learning rate was 0.05, and the

number of nodes in the hidden layer was 9 and 11. The fitting curves

of predicted and true biomass were drawn, and the root mean square

error (RMSE) and mean absolute error (MAE) were used as

evaluation criteria to analyze the fitting situation. The performance

values in Table 2 clearly confirm the validity of the prediction model

and optimization method. Figure 4 is the prediction result. Figure 4A

shows the fitting diagram of predicted value and actual monitoring
Frontiers in Marine Science 07
value before and after optimization, and Figure 4B shows the training

error loss of the predicted model. It can be seen that the model could

effectively fit the changing trend of biomass, and the fitting effect was

better after optimization of the algorithm.

4 Conclusion

Based on the real-time monitoring data of the Binhai Nuclear

Power Plant, this paper carried out research on the prediction method

of disaster-causing biomass of nuclear power plants. The main input

environmental parameters were selected by parameter correlation

analysis, and the deep learning algorithm of particle swarm

optimization was adopted to simulate the nonlinear relationship

between marine environmental parameters and typical disaster-

causing organisms, taking the tip pen cap snails as an example. The

model suitable for nuclear power cold source disaster-induced
TABLE 1 Continued

Time Temperature (°CC) DO (mg/L) Chlorophyll (mg/L) Salinity (psu) Abundance (ind/m³)

2021/11/1 3:00 25.832 6.995 1.415 29.288 11.11

2021/11/1 4:00 25.826 7.021 1.559 29.259 11.11

2021/11/1 5:00 25.872 6.962 2.316 29.245 44.40

2021/11/1 6:00 25.885 7.009 2.031 29.169 77.78

2021/11/1 7:00 25.856 7.033 1.775 29.104 122.22

2021/11/1 8:00 25.847 6.996 1.959 29.052 22.22

2021/11/1 9:00 25.842 7.047 2.106 28.99 55.56

2021/11/1 10:00 25.825 7.073 2.393 28.906 66.60

2021/11/1 11:00 25.807 7.09 1.967 28.889 88.89

2021/11/1 12:00 25.82 7.184 1.979 28.85 33.33

2021/11/1 13:00 25.834 7.115 2.267 28.826 88.89

2021/11/1 14:00 25.83 7.102 2.43 28.791 11.11

2021/11/1 15:00 25.826 7.131 2.25 28.779 44.44

2021/11/1 16:00 25.808 7.027 2.884 28.751 77.78

2021/11/1 17:00 25.801 6.91 2.296 28.722 22.22

2021/11/1 18:00 25.824 6.841 2.118 28.712 55.56

2021/11/1 19:00 25.838 6.753 1.792 28.708 122.22

2021/11/1 20:00 25.858 6.639 2.3 28.692 211.11

2021/11/1 21:00 25.89 6.492 2.581 28.671 77.78

2021/11/1 22:00 25.878 6.434 2.513 28.626 22.22

2021/11/1 23:00 25.938 7.063 2.236 28.602 16.50
TABLE 2 Experimental results.

Model RMSE MAE

CRBM-DBN 18.76 15.68

APSO-CRBM-DBN 16.58 14.36
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biomass prediction is trained, and the effectiveness of the model is

effectively verified by performance indicators, which has important

practical significance for solving the problem of biological blockage of

cold source water intakes in nuclear power plants.
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