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Introduction: Management of coastal wetlands has resulted in extensive

conservation of this natural resource; however, changes in carbon storage

function are not yet known. There is a direct link between landscape and soil

carbon storage. Predicting future changes in the landscape and carbon storage

in coastal wetlands is important for developing wetland management policies.

Method: Here, remote sensing and physical methods were used to measure and

calculate the landscape and surface soil carbon stocks of the Liaohe River Estuary

Wetland (LREW). The changes in the landscape and soil carbon stocks under

three scenarios: natural development, strict protection, and culture pond

transfer, were then predicted using the PLUS model.

Result: The results indicate that the surface soil organic carbon storage was

2107.97×103 t, while soil organic carbon density decreased from land to sea.

Anthropogenic activity was found to be the main driver of the current landscape

evolution. However, the impact of sea level rise is increasing. By 2030,

considerably more storage will be gained under the culture pond transfer

scenario than at present.

Discussion: Our results reveal that some of the methods of ecological

restoration may diminish the carbon storage capacity of coastal wetlands.

Making full use of areas with high carbon storage potential may be an effective

wetland carbon sink management strategy. Governments should consider more

comprehensively for a better carbon pool when developing restoration

strategies.

KEYWORDS

soil carbon stocks, estuary wetland, Liaohe River, PLUS model, carbon sequestration,

land use
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1 Introduction

Atmospheric carbon dioxide (CO2) concentration, which is

gradually increasing, reached 421 ppm in 2021 (Kodaira, 2014;

Earth System Research Laboratories, 2022). Coastal wetlands are

known to be powerful carbon sinks vital for reducing atmospheric

CO2 intensity and mitigating global climate change (Bonan, 2008).

Coastal wetlands are the mainstay of blue-carbon ecosystems in

coastal zones. Owing to the influence of periodic tidal inundation,

the tidal reciprocation of seawater can greatly slow the

decomposition of sedimentary organic matter (Mcleod et al.,

2011). As a result, the rate of carbon burial per unit area is 15

times higher than that of carbon sequestration in terrestrial

ecosystems and 50 times higher than that in marine ecosystems

(Wang et al., 2021c). In addition, the presence of large amounts of

sulfate ions in seawater effectively inhibits methane (CH4)

emissions compared with freshwater wetlands, giving coastal

wetlands a considerable advantage over terrestrial ecosystems in

terms of carbon sequestration (Bridgham et al., 2006). Thus, coastal

wetlands are an important resource for combatting current climate

change issues (Mitsch et al., 2013). However, coastal wetlands are

fragile ecosystems. Globally, along with climate change and

increased anthropogenic activity, many coastal wetlands have

been irrevocably exploited and have shrunk in size, resulting in

significant loss of carbon storage function (Moomaw et al., 2018;

Meng et al., 2019).

Soil organic carbon (SOC) is a key component of carbon

capture and storage and plays a crucial role in mitigating the CO2

increase and global greenhouse effect. Most carbon in coastal

wetlands is stored in the soil, especially in areas with vegetation

cover (Phang et al., 2015). However, the stability of carbon

storage in soils is usually poor and is easily lost due to

environmental changes. Therefore, it is necessary to analyze the

impact of anthropogenic activities on soil carbon stocks in wetlands

to identify wetland management approaches to increase

carbon sequestration.

The management of coastal wetlands in many countries has

entered a phase of conservation and restoration. In China, for

example, hundreds of ecological restoration projects have been

carried out over the past decades Li et al., 2022). In the stage

where protection is the dominant management strategy, promising

results have been obtained in protecting biological habitats,

improving hydrological conditions, and reducing pollution (Li

et al., 2019; Xia et al., 2020). However, research on carbon stock

capacity, an important indicator of ecological restoration success

(Horsburgh et al., 2022), is limited. Changes in landscape, which is

closely related to soil carbon storage, can alter soil structure,

stability, and organic carbon inputs, which in turn alters the soil

carbon sequestration capacity (Zhao et al., 2017; Sasmito et al.,

2019), with implications for the carbon cycle of ecosystems. More

studies have used landscape science to estimate soil carbon stocks;

(Li et al,. 2005; Wang et al., 2013); however, these are primarily

analyses of the present situation (Aitali et al., 2022). The

vulnerability of coastal wetlands results in dynamic landscapes
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and soil carbon stocks, and modeling future changes may provide

vital assistance for wetland management (Wang et al., 2014).

The Liaohe River Estuary Wetland (LREW) is the largest reed

wetland in Asia. Owing to over-exploitation, large areas of natural

wetlands have been transformed into built-up land, culture ponds,

and agricultural land. The loss of plant productivity has resulted in

severe degradation of carbon storage function (Zhao et al., 2017; Xia

et al., 2021). An ecological restoration project was conducted in

2015 to protect the LREW. Approximately 5,500 ha of culture

ponds were removed over a 6-year period. This major project

represents the official beginning of the conservation and

restoration phase of the management of the area. However, the

changes in LREW after this project and the possibilities for future

development are yet to be evaluated. Therefore, it is necessary to

investigate the evolution of the landscape and soil carbon stocks in

the area during the ecological restoration phase and estimate how

these changes will occur in the future. This study aimed to

investigate the changes in the landscape and soil carbon storage

in coastal wetlands after entering the restoration and conservation

phase, and to identify appropriate management approaches by

predicting the development under different scenarios. Remote

sensing techniques, landscape prediction models, and field

measurements of soil carbon stocks will be utilized in this paper.

The findings of this study are expected to provide a scientific basis

for management decisions on the landscape pattern and carbon sink

function of the LREW in the future.
2 Materials and methods

2.1 Study area

The LREW, a Ramsar wetland, is located in northeastern China

(121°28′E–122°10′E, 40°32′N–41°3′N) (Ramsar, 2022) (Figure 1). It

is bound by the Daling River in the west, the confluence of the

Liaohe River in the north, and an isobath of seawater –6 m in the

south. The area is ~ 1,800 km2. The study area is dominated by

wetland vegetation, in which typical communities grow, including

reeds, seepweeds, and Asian rice. In addition, many species,

including tanager cranes, black-billed gulls, and spotted seals, live

and breed in the wetlands or utilize them as resting and feeding

areas during migration. The region has a warm temperate

continental monsoon climate with an average annual temperature

of 10–10.9 °C. The average annual rainfall is 380.3–748.2 mm/year

(Zhou and Liu, 2020). Anthropogenic activities include oil

extraction, rice cultivation, and aquaculture.
2.2 Data and methods

2.2.1 SOC analysis
We sampled the upper 20-cm soil layer because the SOC in salt

marshes is mainly distributed in this layer (Ye et al., 2015; Zhao

et al., 2017; Meng et al., 2019). 60 soil samples (0–20 cm deep) were
frontiersin.org
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collected at 60 sites in the LREW in July 2022 (Figure 1). The

sampling grid in the northern and southeastern wetlands was

4 km × 4 km. In the southern part of the shallow waters and the

eastern tidal areas were sampled according to the principles of

representativeness and accessibility. Due to the great variability of

the landscape in tidal area, the distance between sampling points in

different landscapes was controlled to be within 2 km. Soil bulk

weight was measured using a cutting ring during collection. The

samples were dried at 80 °C, ground with an agate mortar, and

passed through a 2-mm sieve. The organic carbon concentration

was determined after adding a 2% hydrochloric acid solution to

remove inorganic carbon. soil organic carbon density (SOCD) and

soil organic carbon storage (SOCS) were calculated using equations

(1) and (2), respectively.

SOCD = SOC ∗BD ∗H ∗ 10−2 (1)

where SOCD is soil organic carbon density (kg m-2), SOC is soil

organic carbon content (g kg-1), BD is soil bulk weight (g cm-3), and

H is the soil layer height (cm).

SOCS = SOCD ∗A (2)

where SOCS is the soil organic carbon storage (kg), and A is the

area of the different landscape types (m2).

The SOCD distribution under different landscape types was

obtained by spatial overlay analysis of the field data and remotely

sensed interpreted images.

2.2.2 Landscape divide
Landsat TM digital images with a ground resolution of 30 m for

2015, 2017, 2019, and 2021 were used to assess landscape changes.

All images were corrected for radiometric and atmospheric effects

and georeferenced with a root mean square error of fewer than 0.3

pixels. The LREW landscapes were divided into nine types, namely
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shallow sea, silt and sludge flat, reed, seepweed, river and reservoir,

shoal, grassland, paddy, culture pond, abandoned culture pond and

build-up land. The landscape classification was performed using a

combination of supervised classification and visual interpretation.

The 2021 Kappa statistic was 0.903, as verified by the field

landscape surveys.
2.2.3 Patch-generating land use simulation
(PLUS) model setting

To predict future landscape changes, the PLUS model was

conducted in this study using a random forest algorithm to

individually mine the factors of each type of land use expansion

and drivers. As a result, the development probability of each type of

land use and the contribution of the drivers can be obtained. In

addition, the model contains a new multiclass seed growth

mechanism that can better simulate multiclass land use patch-

level changes. Combined with the stochastic seed generation and

threshold-decreasing mechanism, the model can simulate the

automatic generation of patches with spatiotemporal dynamics

under development probability constraints (Liang et al., 2021).

Before simulating and optimizing the future land use,

appropriate driving factors, landscape demand area, and

landscape conversion feasibility were set according to the change

characteristics of the actual land use in the study area. The

simulation accuracy under the current parameters is verified by

comparing the landscape data of existing years with the model

simulation results. Six types of driving factors were selected:

elevation, slope, slope direction, distance from the city, distance

from the water system and distance from the coastline. These

factors are often important in influencing landscape change in

coastal wetlands. The kappa coefficients of 0.831 and 0.817 were

calculated for the two periods using the PLUS model, which proved

that the model parameters were set reasonably.
A B

FIGURE 1

Location of Liaohe River Estuary (A). Study area and locations of sampling sites (B).
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Natural development is a common means of coastal wetland

evolution. Management approaches that impose restrictions on

artificial wetlands, such as aquaculture ponds and agricultural

fields, are also common (Braswell & Heffernan, 2019; Rivera-

Monroy et al., 2019). In addition, coastal zone fisheries,

represented by aquaculture, are among the most common services

provided by wetlands to the public (Wang et al., 2021b).

Appropriate management of culture ponds often has a positive

effect on wetland sustainability (Hussenot, 2003; Liu et al., 2014).

On the contrary, the removal of culture ponds can be detrimental to

farmers. The carbon storage capacity of reed wetlands is typically

much higher than that of seablite wetlands (Ji et al., 2020; Li et al.,

2022b). The culture ponds in the LREW were mainly concentrated

in the reed zone. Transferring them to the seablite region

might protect the income of farmers while restoring the soil

carbon storage capacity. Therefore, the simulation scenarios

for this study were divided into three categories: natural

development (ND), strict protection (SP), and culture pond

transfer (CPT) to 2030. The specific land demand parameters are

listed in Table 1. It is to be noted that the Markov module is part of

the PLUS model for forecasting future land demand. Since this

module is common in landscape forecasting, it is not described too

much in this paper.
3 Results

3.1 SOCS distribution

The distribution of SOCS in 2021 in different landscapes was

generated using the inverse distance weighting interpolation

method (Figure 2). The SOCD in the upper 20-cm soil layer

ranged from 0.03–4.69 kg m-2; the lowest value (0.03 kg m-2) was

observed in shallow sea, and the highest (4.69 kg m-2) in the reed

area. Total SOCS in the LREW was 2,107.97×103 t. The distribution

gradually decreased from land to sea. The average SOCD was the

highest in reed landscapes (2.385 kg m-2), followed by agricultural

landscapes (2.364 kg m-2). The lowest SOCD was found in shallow

sea (0.605 kg m-2), and soil carbon stocks were usually higher in

vegetated areas (Table 2).
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3.2 Landscape changes

The landscape types of coastal wetlands in the LREW in 2021

comprised mainly shallow waters and reeds (Figure 3). Shallow

waters accounted for 46% of the total area, reeds for 19%, and shoals

for 12%. The extent of the other landscapes was relatively small.

Compared with 2015, the areas of silt and sludge flats, shoals,

abandoned culture ponds, and built-up land increased (Figure 3A).

The extent of silt flats increased the most, at 75.66 km2 (68.70%).

The areas of shallow sea, rivers and reservoirs, aquaculture ponds,

and grasslands decreased. The most substantial change in the

landscape was in shallow waters, which decreased by 103.21 km2

(Figure 3B). The reed and farmland areas remained almost

unchanged (Figure 4A). The extent of shallow sea, reeds, culture

ponds, abandoned culture ponds, and grassland is estimated to

decrease by 2030 under the ND and SP scenarios (Figures 3C, D).

The extent of reeds, ponds and abandoned ponds will decrease

more under the SP scenario, reaching 5.45 km2, 6.97 km2, and 17.07

km2, respectively. The extent of the shoals, seepweeds, and built-up

land will increase. Under the ND scenario, the extent of the shoals

will increase by 42.55 km2, seepweeds by 13.59 km2, and built-up

land by 9.07 km2. Under the SP scenario, the extent of shoals will

increase by 35.99 km2, seepweeds by 28.31 km2, and the built-up

land by 6.51 km2. The extent of the rivers and reservoirs, paddies,

and silt and sludge flats will remain mostly unchanged (Table 3).

Under the ND scenario, 45.27 km2 of shallow sea will transform

into sandbars, 9.09 km2 of abandoned ponds will become tidal flats,

and 8.28 km2 of tidal flats and 4.43 km2 of sandbars will transform

into seepweeds. Under the SP scenario, 40.44 km2 of shallow sea will

transform into sandbars, 17.62 km2 of abandoned culture ponds

will become tidal flats, and 15.23 km2 of tidal flats and 6.52 km2 of

shoals become seepweeds.

In contrast to the ND and SP scenario trends, the reed area will

increase by 7.36 km2 and the pond extent by 3.08 km2 in the CPT

scenario (Figure 3E). The seepweeds area will increase by 6.64 km2,

and the abandoned pond will decrease by 19.58 km2. An extent of

43.60 km2 of shallow sea will transform into sandbar, 6.44 km2 and

13.91 km2 of abandoned breeding ponds into tidal flats and

breeding ponds, 11.35 km2 of breeding ponds into reeds, and 4.43

km2 of silt flats into seepweeds.
TABLE 1 Simulation scenarios and corresponding parameter settings in the patch-generating land use simulation (PLUS) model.

Simulated
scenarios Parameter settings in land demand

Natural
development

Using Markov module to obtain the area in demand for each future landscape in 2030

Strict protection
Set the land requirement for abandoned culture ponds to 0, set the culture pond requirement to half that in 2021, and divide the reduced land

requirement equally between reeds, seepweeds, and silt and sludge flats

Culture pond
transfer

Divide the study area into reed and seepweed areas, set the reed area pond demand to 0, seepweed land demand equal to the study area pond area in
2021, and the rest of the land demand is the same as Natural development
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3.3 SOCD and SOCS changes

The carbon stock of the surface soil in the LREW was

2,108.03 ×103 t in 2021 (Figure 4B). The SOCS of reeds was the

highest at 828.83×103 t. The SOCS of the shallow sea was the second

highest at 507.04×103 t. Compared with 2015, the total SOCS

decreased by 9.35×103 t. The SOCS of culture ponds and shallow

sea decreased by 78.44×103 t and 62.44×103 t, respectively. The

SOCS of silt and sludge flats increased by 74.99×103 t (Figure 5A).

The process of turning breeding ponds into abandoned culture

ponds or tidal flats reduces approximately 34.1 × 103 t SOCS during

2015-2021.

By 2030, the surface soil carbon stock in the ND scenario

will be 2,108.53×103 t, an increase of 0.51×103 t from 2021

(Figure 5B). The extent of the storage increase zone is 74.70 km2.

The change from shallow sea into shoals and silt flats into reeds

will increase SOCS by 3.40×103 t and 2.95×103 t, respectively.

The storage reduction zone is 25.53 km2. The change of reeds

into shoals and silt flats will decrease SOC by 7.49×103 t, and the

change of agricultural land into built-up land will decrease SOC by

3.62×103 t.

The surface SOCS under the SP scenario will be 2,105.25×103 t,

which is 2.77×103 t less than that in 2021 (Figure 5C). The area of

the stock increase zone will be 92.44 km2. The change in silt and

sludge flats to reeds and seepweeds will increase SOCS by 8.20×103

t. The transformation of sandbar to seepweeds will increase SOCS

by 3.29×103 t. The combined extent of the SOCS decrease areas will

be 44.57 km2. The area of the stock reduction zone will be 44.57

km2. If reeds become silt flats, seepweeds, and shoal SOCS will

decrease by 17.59×103 t. If abandoned ponds become tidal flats,

SOCS will be reduced by 4.70×103 t. Some breeding ponds will be

abandoned, reducing SOCS by 2.77×103 t.
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The surface soil carbon stock under the CPT scenario will be

2,121.18×103 t, an increase of 13.15×103 t from 2021 (Figure 5D).

The area of the SOCS increase zone is 82.80 km2. The change of

abandoned ponds to culture ponds and the culture ponds to reeds

will increase SOC by 10.25×103 t and 4.42×103 t, respectively. The

extent of the SOCS decrease region is 14.84 km2. The change from

reed to sandbar will decrease SOCS by 4.95×103 t.
4 Discussion

4.1 Significance of carbon storage

According to Luo et al. (2015), in the LREW, the surface SOCS

in vegetated areas accounted for ~ 70% of the overall SOCS, with

30% being held in areas without vegetation cover. Therefore, the

SOCS of the coastal wetland is ~ 5,015.10×103 t, and the average

SOCD is ~ 2.77 kg m-2. This value is lower than that of many salt

marshes, such as Louisiana and the northern Gulf of Mexico (Dodla

et al., 2008; Hansen & Nestlerode, 2014). However, this does not

imply that the carbon sink capacity of the LREW is weak. In

contrast, the LREW has an organic carbon accumulation rate of

388 g cm-2 yr, with a high carbon sequestration potential (Ye et al.,

2015). The main reason for the low SOCS is perhaps the nascent

coastal wetlands of the LREW and the annual harvesting of crops on

the agricultural land and reeds in the area, which significantly

reduces the soil carbon source income (Brix et al., 2014; Cui et al.,

2022). In addition, except for reed wetlands, which have good

carbon sequestration capacity, the SOCD of farmland is high. This is

because most of the agricultural fields in the region are paddy fields.

Flooded soils provide favorable conditions for carbon sequestration

(Wan et al., 2018; Liu et al., 2021a).

Many studies have assessed the impact of land-use cover change

on carbon stocks (Arrouays et al., 2001; Lozano-Garcıá et al., 2017;

Padbhushan et al., 2022). However, the error in estimating carbon
TABLE 2 Upper soil organic carbon density (SOCD) in different
landscape types.

Landscape type SOCD (kg m-2)

Shallow sea 0.605

Silt and sludge flat 0.991

Reed 2.385

Seepweeds 1.185

River and reservoir 1.504

Shoal 0.680

Culture pond 1.995

Abandoned culture pond 1.258

Paddy 2.364

Built-up land 1.065

Grassland 0.671
SOCD, soil organic carbon density
FIGURE 2

Distribution of the soil organic carbon (SOC) pool of the upper 20-
cm soil layer in the LREW in 2021.
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stocks based on land-use type alone is large. Surface soil carbon

stocks are more closely related to vegetation type. For example,

reeds and seepweeds under the same land-use type fall under

swamps; however, their soil carbon stocks differ by nearly double.

The results of this study, which used a landscape classification

approach to estimate carbon stocks, may be more accurate, which in

turn may provide support for the statistics on carbon sink capacity.
4.2 Effect of ecological restoration

4.2.1 Changes to the present
4.2.1.1 Landscape

Anthropogenic activities were the main drivers of landscape change

in the LREW from 1995–2015. Most areas have been under

development because of the establishment of economic development

zones. Reed wetlands have been transformed into paddy fields and tidal

flats into aquaculture ponds (Zhao et al., 2017; Liu et al., 2020). Our

study shows that development of the LREW ceased from 2015–2021.

The promotion of ecological restoration projects has led to a continuous

reduction in the extent of aquaculture ponds on the tidal flats on the

west bank of the Liaohe River. The culture ponds gradually transformed

into tidal flats after abandonment. Subsequently, seepweeds grew in

some of the restoration areas. Due to the port construction works on the

east side of the LREW, grassland was transformed into built-up land.

Siltation in the LREW is evident, indicating that the shallow sea became

estuarine sandbars and silt flats. The extent of reeds has increased

slightly because of the establishment of a national protection zone.
A

B

FIGURE 4

Comparison of each area (A) and each soil organic carbon storage
(SOCS) (B) of different landscape.
A B

D EC

FIGURE 3

Landscape type distribution in the study area in (A) 2015, (B) 2021, (C) 2030 under ND scenarios, (D) 2030 under SP scenarios, and (E) 2030 under
CPT scenarios.
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4.2.1.2 Soil organic carbon storage

The removal of breeding ponds would restore natural plant cover,

reduce pollution, and increase bird habitats and foraging sites (Yuan

et al., 2022). However, this study showed that the restoration of soil
Frontiers in Marine Science 07
carbon stocks might be less effective in the short term. The ecological

restoration project has transformed the west coast culture ponds into

abandoned culture ponds and tidal flats, reducing soil carbon storage.

The abandonment of culture ponds will reduce about 7 t SOCS per
TABLE 3 Areas of change in landscape and soil organic carbon storage (SOCS) under different scenarios.

Landscape type conversion Area (ha) Change in SOCS (t)

Converted from Converted to ND SP CPT ND SP CPT

Shallow sea Silt and sludge flat 348.14 724.11 10.38 1343.83 2795.07 40.08

Shoal 4526.85 4044.42 4360.29 3395.13 3033.31 3270.22

Silt and sludge flat Shallow sea 224.98 108.29 131.52 -868.44 -418.00 -507.67

Reed 211.54 375.22 12.29 2948.83 5230.61 171.31

Seepweed 827.96 1532.42 443.42 1606.24 2972.89 860.24

River and reservoir 75.46 524.08 37.02 387.09 2688.53 189.90

Grassland 93.12 94.06 0.26 -298.00 -300.99 -0.84

Reed Silt and sludge flat 224.76 550.64 27.72 -3133.16 -7675.90 -386.36

Seepweed 93.39 460.05 5.42 -1120.63 -5520.66 -64.99

River and reservoir 61.26 69.29 45.38 -539.71 -610.46 -399.84

Shoal 255.76 257.41 290.01 -4360.78 -4388.81 -4944.69

Paddy 48.19 149.23 5.98 -10.12 -31.34 -1.26

Built-up land 54.72 56.82 44.64 -730.56 -758.49 -595.91

Seepweed Silt and sludge flat 41.54 37.28 25.81 -80.58 -72.32 -50.07

Shoal 19.69 53.30 9.11 -99.41 -269.19 -46.03

River and reservoir Reed 64.17 64.06 47.77 565.38 564.39 420.90

Shoal Reed 20.84 20.02 0.30 355.38 341.37 5.09

Seepweed 443.02 651.61 197.52 2237.26 3290.62 997.50

River and reservoir 70.30 70.41 10.65 579.28 580.20 87.72

Culture pond Reed 12.40 285.27 1135.28 48.37 1112.57 4427.59

Abandoned culture pond 147.33 376.49 130.70 -1085.79 -2774.75 -963.25

Paddy 19.76 67.91 21.10 72.92 250.59 77.88

Abandoned culture pond Silt and sludge flat 909.20 1761.81 644.01 -2427.57 -4704.04 -1719.50

Reed 175.12 168.84 53.90 1973.56 1902.84 607.46

Culture pond 3.29 2.88 1391.37 24.23 21.20 10254.43

Paddy Built-up land 275.11 270.00 89.31 -3615.00 -3547.75 -1173.56

Grassland 22.49 6.95 0.71 -380.71 -117.63 -12.02

Built-up land Reed 80.95 80.27 68.10 1080.64 1071.66 909.07

Grassland Seepweed 50.47 129.28 30.67 259.39 664.51 157.63

River and reservoir 61.86 35.67 51.14 515.28 297.16 425.97

Paddy 38.10 26.60 23.23 645.06 450.27 393.35

Built-up land 400.33 406.49 386.91 1517.23 1540.59 1466.37
fron
SOCS, soil organic carbon storage; ND, natural development; CPT, culture pond transfer; SP, strict protection.
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hectare and the conversion to tidal flats will reduce 10 t SOCS. The

ecological restoration method of removing ponds reduces 34.1×103 t

SOCS in the LREW area until 2021.

It should be noted that the main sources of soil carbon stocks are

the decay and deposition of plants. Soil carbon stocks in newly formed

landscapes often take some time to reach a steady state (Chen et al.,

2016; Peter, 2017). In addition, especially in decommissioned areas, soil

carbon stocks recover more slowly after vegetation growth. The

estimation of future soil carbon stock in this study does not consider

this long-term change, which may lead to some errors.

4.2.2 Changes in the future
4.2.2.1 Landscape

Themain driver of landscape change in the ND and SP scenarios up

to 2030 is the interaction of anthropogenic and natural factors. The

LREW will continue to silt up, existing sandbars will develop, and new

sandbars will appear. The formation of sandbars and breeding ponds that

become tidal flats provides a basis for the growth of alkali ponies. Strict

protection has increased the rate of conversion of breeding ponds to tidal

flats and seepweeds. The development of the east bank of the LREW has

resulted in the transformation of more grassland into built-up land.

The impact of climate change on the LREW is expected to

increase in the future. Many coastal wetlands are affected by sea

level rise (SLR) (Moomaw et al., 2018; Sklar et al., 2021). The sea

level in the Bohai Sea, where the LREW is located, is predicted to

rise by 0.7 m in the 21st century (Chen et al., 2021). Our prediction

shows that the shallow sea of the LREW will not expand

substantially until 2030. This may be because of the siltation and

accumulation of sediment by wetland vegetation, which raises the
Frontiers in Marine Science 08
foundation. Thus, the LREW is resistant to SLR (Liu et al., 2021b;

Buchanan et al., 2022). However, seawater intrusion due to SLR

may transform the reeds into seepweeds and even mudflats (Yu

et al., 2019). By 2100, SLR will transform most of the mudflats in the

study area into shallow sea, and the salt marsh wetlands will retreat

and degrade to some extent (Zhi et al., 2022).

4.2.2.2 Soil organic carbon storage

In the long term, tidal flats formed by the retreat will provide

space for the growth of plants with high carbon storage capacity.

Even without human involvement in cultivation, future growth of

seepweeds is expected in the areas where culture ponds have been

removed. By 2030, approximately 880ha of tidal flats will grow

seepweeds under the ND scenario. This is similar to the results of

the analysis by Cao et al. (2022) of a suitable zone for seepweeds

growth in this region. Vegetation growth provides additional

carbon input to the soil and improves its physicochemical

conditions. However, the growth of seepweeds only adds about 2

t of SOCS per hectare. Furthermore, the SOC content of restored

wetlands is often lower than that of natural wetlands, and it may

take decades to reach the same level (Wang et al., 2021a).

A single means of ecological restoration (e.g., culture pond

removal for LREW) typically has a lower effect than a combination

of multiple approaches (Luke et al., 2017). The LREW is still in the

process of restoration. Although ecological restoration currently

contributes little to carbon storage function, future effects need to be

supported by monitoring data (Li et al., 2022a). The formation of

resilient ecosystems is the most successful sign of ecological

restoration (Billah et al., 2022).
A B

C D

FIGURE 5

Changes in soil organic carbon density (SOCD) comparing (A)2015 with 2021, (B) 2021 with 2030 under ND scenarios, (C) 2021 with 2030 under SP
scenarios, and (D) 2021 with 2030 under CPT scenarios.
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4.3 Future management strategies for
higher carbon storage

In the absence of human intervention, the conversion of culture

ponds to natural wetlands is a long process and the recovery of the

carbon storage function is slower. The transfer of culture ponds will

increase the surface soil carbon storage by ~ 12 ×103 t, which is much

higher than that in the ND and SP scenarios. In addition, the degree of

landscape fragmentation will be significantly reduced. Aquaculture

ponds usually pollute and destroy wildlife habitats (Macecek & Grabas,

2011; Gao et al., 2019). However, their direct removal can result in

economic losses and a reduction in carbon storage capacity.

Appropriate farmland and culture ponds can improve the carbon

sink function of coastal wetlands. The method of transforming farming

ponds might achieve harmony between humans and nature in coastal

wetlands. Reducing pesticide and fertilizer use is also an effective way to

achieve sustainable development.

In addition, the predicted results show that degradation is evident

in the reed areas near the shoreline owing to SLR. The regression of

reeds into mudflats or seepweeds will reduce the soil carbon storage

function and release sequestered carbon. To cope with SLR, measures

such as mudflat conservation and reserving coastal space for

development buffer zones should be taken to safeguard the carbon

storage and other ecosystem service values of coastal wetlands.

Otherwise, SLR will result in a loss of 110×103 t of carbon storage by

2100 (Zhi et al., 2022).

An important assumption and limitation of this study is that soil

carbon accumulation for each landscape type will not change over the

next 10 years (Yue et al., 2012; Zhao et al., 2017). We believe that more

accurate SOC estimates will improve the ability to develop wetland

management strategies in the future. To provide more information on

coastal wetlands to address global warming, future research should be

conducted in the following areas:1) deep soil sampling and surface

plant sampling might be conducted for the ecologically restored areas

in the future. Conduct a more comprehensive and accurate analysis of

the impact of the carbon storage function brought about by the project

started in 2015.; 2) long-term monitoring of wetlands after project

implementation to determine more precise change trends in landscape

and soils to facilitate the development of adapted ecological restoration

strategies; and 3) the feasibility of wetland management strategies for

culture pond transfer from an economic perspective; that is, whether

the amount of capital investment required for the initiative matches the

economic value generated.
5 Conclusion

In this study, soil carbon sequestration capacity was linked to the

PLUS model. Based on the delineation of the landscape pattern of

coastal wetlands in the LREW from 2015–2021 and the assessment of

soil carbon storage, we predicted the carbon storage in 2030 under

various scenarios and reached the following conclusions:
Fron
1) The LREW landscape in 2021 was dominated by shallow

marine waters with reeds. The surface SOCS was 2108.03

×103 t. The SOCD of vegetated landscapes was larger than
tiers in Marine Science 09
that of unvegetated landscapes. SOCD gradually decreased

from land to sea.

2) The landscape of coastal wetlands in the LREW changed

significantly from 2015–2021. The areas of tidal flats, shoals,

abandoned culture ponds, and built-up land increased. The

areas of shallow sea, rivers and reservoirs, breeding ponds,

and grasslands decreased. The surface SOCS was reduced by

9.35t×103 t, and 34.1×103 t SOCS was reduced due to the

ecological restoration project over this period.

3) By 2030, the area of shallow sea, reeds, culture ponds,

abandoned culture ponds and grasslands will decrease

under the ND and SP scenarios. However, the decrease in

the area of reeds, ponds, and abandoned ponds is higher in

the SP scenario. The extent of shoal, seepweeds, and built-

up land will increase. The extent of reeds and culture ponds

will increase in the CPT scenario. The increase in the extent

of seepweeds and the decrease in that of abandoned culture

ponds are smaller than in the other two scenarios. The

change trend of the remaining landscape will be similar.

4) The carbon sequestration of the LREW can be better achieved by

the transformation of aquaculture ponds. The carbon stock of

surface soil in 2030 under the CPT scenario will be 12.52×103 t

higher than that in 2021. It is much higher, at 0.57×103 t under

the ND scenario and –2.72×103 t under the SP scenario.
In conclusion, future wetland management strategies can be

informed by more accurate SOC estimates. Further research should

be conducted to provide more information on coastal wetlands with

the aim of addressing global warming.
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