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Spatial and temporal variations
in sea surface pCO2 and air-sea
flux of CO2 in the Bering Sea
revealed by satellite-based
data during 2003–2019
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Teng Li1, Fang Gong1, Shujie Yu1 and Delu Pan1,2
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Ministry of Natural Resources, Hangzhou, China, 2State Key Laboratory of Tropical Oceanography,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China,
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The understanding of long-time-series variations in air-sea CO2 flux in the Bering

Sea is critical, as it is the passage area from the North Pacific Ocean water to the

Arctic. Here, a data-driven remote sensing retrieval method is constructed based

on a large amount of underway partial pressure of CO2 (pCO2) data in the Bering

Sea. After several experiments, a Gaussian process regression model with input

parameters of sea surface temperature, sea surface height, mixed-layer depth,

chlorophyll a concentration, dry air mole fractions of CO2, and bathymetry was

selected. After validation with independent data, the root mean square error of

pCO2 was< 24 matm (R2 = 0.94) with satisfactory performance. Then, we

reconstructed the sea surface pCO2 in the Bering Sea from 2003 to 2019 and

estimated the corresponding air-sea CO2 fluxes. Significant seasonal variations

were identified, with higher sea surface pCO2 in winter/spring than in summer/

autumn in both the basin and shelf area. Semiquantitative analysis reveals that the

Bering Sea is a non-temperature-dominated area with a mean temperature

effect on pCO2 of 12.7 matm and a mean non-temperature effect of −51.8 matm.

From 2003 to 2019, atmospheric pCO2 increased at a rate of 2.1 matm yr−1, while

sea surface pCO2 in the basin increased rapidly (2.8 matm yr−1); thus, the CO2

emissions from the basin increased. However, the carbon sink in the continental

shelf still continuously increased. The whole Bering Sea exhibited an increasing

carbon sink with the area integral of air-sea CO2 fluxes increasing from 6 to 19

TgC over 17 years. Meanwhile, the seasonal amplitudes in pCO2 in the shelf area

also increased, approaching 14 matm per decade. The reaction of the

continuously added CO2 in continental seawater reduced the ocean CO2

system capacity. This is the first study to present long-time-series satellite data

with high resolution in the Bering Sea, which is beneficial for studying the

changes in ocean ecosystems and carbon sink capacity.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1099916/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1099916/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1099916/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1099916/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1099916/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1099916/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1099916/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1099916&domain=pdf&date_stamp=2023-06-14
mailto:baiyan@sio.org.cn
https://doi.org/10.3389/fmars.2023.1099916
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1099916
https://www.frontiersin.org/journals/marine-science


Zhang et al. 10.3389/fmars.2023.1099916
1 Introduction

Human activity has released fossil fuel CO2 and other

anthropogenic CO2 to the atmosphere, and the global ocean has

absorbed ~26% of total CO2 emissions with a growing absorption

(Khatiwala et al., 2009; Mckinley et al., 2017; Gruber et al., 2019;

Friedlingstein et al., 2022). The regional reaction of the ocean

carbon sink capacity to increasing atmospheric CO2 varies. The

Bering Sea, one of the largest marginal seas, has a broad high-

nutrient low-chlorophyll basin (Chen et al., 2004; Bates et al., 2011)

and a highly productive northeast shelf, which is an important

passage area from the North Pacific Ocean water to the Arctic. The

surface partial pressure of CO2 (pCO2) and air-sea CO2 fluxes in the

Bering Sea are characterized by high spatial and temporal variability

with diverse control processes (Dai et al., 2022). In previous studies,

the Bering Sea has usually been regarded as a source for

atmospheric CO2 on an annual mean (Chen, 1993; Walsh and

Dieterle, 1994; Takahashi et al., 2002). Refined studies have been

reported based on cruise measurements on the northeast shelf and

the basin. On the Bering Sea shelf, winter carbon source sink-

patterns on the continental shelf are controversial due to the high

spatial variability. Kelley and Hood (1971) found that the

southeastern Bering Sea shelf region is supersaturated with pCO2

in winter, however Chen (1985) suggested that the northwestern

Bering Sea shelf is a potential sink for atmospheric CO2 due to

cooling during winter based on field observations. Some studies

indicate that the blooms of spring phytoplankton on the Bering Sea

shelf control associated CO2 declines, which lead to dramatic

changes in air–sea CO2 fluxes and the overall carbon cycle

(Kachel et al., 2002; Cross et al., 2014; Sigler et al., 2014). There

have been fewer studies in the basin area. For example, Dai et al.

(2022) used data collected in October 2007, showing that the

eastern Bering Sea Basin is a neutral or weak CO2 sink in fall.

Song et al. (2016) reconstructed a satellite algorithm for sea surface

pCO2 in the Bering Sea basin in summer. These researchers

reported that the biological impact on pCO2 is more than twice

that of temperature, while the contribution of other effects is

relatively minor and spring phytoplankton blooms have a delayed

effect on summer pCO2. However, this study did not cover other

regions and seasons (Song et al., 2016). Despite numerous

investigations focusing on the high-latitude carbonate system, the

reported air–sea CO2 flux on the Bering Sea shelf varied from −0.24

to −8.76 mol C m−2 yr−1 due to the different spatial and temporal

coverage of their field measurements (Cross et al., 2014; Manizza

et al., 2019; Sun et al., 2020). The main reason for this high

uncertainty is the inadequate representation and coverage of in

situ observations in both time and space. In addition, these studies

were mainly focused on the northern Bering Sea shelf during

summer; few studies have involved changes in the basin or other

seasons due to the lack of adequate observations. Overall, although

many investigations have been conducted for carbonate systems in

high-latitude sea areas, further studies are still needed for all

seasonal source/sink patterns, long-time-series variability, and

major controls in both shelf and basin areas in the Bering Sea.

The continuous uptake of atmospheric CO2 by the ocean has

led to significant changes in the nominal inorganic carbon system,
Frontiers in Marine Science 02
causing changes in biogeochemical processes. Multiple model

results indicate that a predicted consequence of these chemical

changes is an increase in seasonal variability in surface ocean pCO2

under global change (Delille et al., 2005; Rodgers et al., 2008; Hauck

and Völker, 2015). The seasonal amplitude of sea surface pCO2 is

controlled mainly by seasonal changes in temperature and

biological activity, as well as by changes in upwelling, seasonal

mixed-layer depth changes, etc., that alter dissolved inorganic

carbon (DIC) concentrations. Usually, pCO2 increases at high

temperatures (summer) and decreases at low temperatures

(winter), while biologically consumed DIC has the opposite effect

with regard to pCO2 (Takahashi et al., 2002; Steinacher et al., 2010;

Fay and Mckinley, 2017). This triggers pCO2 decreases in summer

and increases in winter, and the variation in seasonal amplitude

depends on the interaction of these two effects. However, to date, in

situ observations to verify this prediction are relatively sparse

because they require long-time-series pCO2 measurements. Only

the Bermuda Atlantic Time-series Study site and the Hawaiian

Ocean Time-series site can serve as clear evidence. Landschützer

et al., 2018 demonstrated a significant increase in seasonal pCO2

variability (2–3 matm per decade) by analyzing global reconstructed

sea surface pCO2. Moreover, the regions are varied, and the Arctic

and subarctic oceans are particularly vulnerable to rising sea surface

pCO2 and ocean acidification because these systems have naturally

low carbonate saturation owing to lower water temperatures that

increase CO2 solubility (Orr et al., 2005; Doney et al., 2009; Fabry

et al., 2009). Therefore, the Bering Sea dataset with high spatial and

temporal resolution are important for understanding seasonal

amplitude variations and changes in the Arctic CO2 sink and

ocean acidification.

Benefiting from the growing density of in situ measurements of

sea surface CO2 fugacity and networks of atmospheric CO2

measurements, global ocean biogeochemical models and data

reconstruction methods based on satellite-derived environmental

data have become common and effective variables in long-time-

series studies. Satellite remote sensing data can provide valuable

information at high temporal resolution over large areas of

simultaneous coverage for the assessment of pCO2, which

subsequently quantifies air–sea CO2 fluxes (Song et al., 2016). A

wide variety of data interpolation methods have provided estimates

of the sea surface pCO2 fields (Rödenbeck et al., 2015); these

methods include linear and nonlinear regression, model-based

regression, and statistical interpolation (Rödenbeck et al., 2014).

Various machine learning methods have also been applied in the

study of sea surface pCO2 based on remotely sensed data; for

example, a self-organizing map-based feed-forward network has

been successfully used for the North Atlantic, open ocean, costal

ocean and polar regions (Landschützer et al., 2013; Landschützer

et al., 2014; Laruelle et al., 2017; Yasunaka et al., 2018), and a two-

step neural network model also remapped the global ocean at a

rough resolution (Denvil-Sommer et al., 2019; Chau et al., 2022).

However, the practicality of any individual model varies in different

regions, especially in complex marginal seas with high spatial

variability and a lack of periodic continuous observations. This is

a serious gap given that the influence of atmospheric CO2 and

human activity on coastal systems has been increasing rapidly
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(Doney, 2010; Cai, 2011; Regnier et al., 2013; Gruber, 2015; Laruelle

et al., 2017). We therefore attempted to reconstruct pCO2 in the

Bering Sea, a complex marginal sea, using a series of biogeochemical

parameters, expecting to obtain the pCO2 variability hidden under

the coarse resolution and spatial and temporal gaps.

In this study, we utilize a Gaussian process regression (GPR)

model to obtain the monthly pCO2 of the whole Bering Sea from

2003 to 2019 for the first time. This method is based on using

multiple biochemical satellite products to generate a pCO2 field with

high spatial resolution and estimate long-time-series air–sea carbon

flux for the Bering Sea. In addition, we analyze the spatial and

temporal distributions of pCO2 and carbon fluxes and discuss the

water mass characteristics, the related major control mechanisms,

and the significantly increased seasonal amplitudes in the

continental shelf area.
2 Data and method

2.1 Study area

The Bering Sea is located in the North Pacific Ocean, bordered

by Russia to the west and Alaska to the east. The Bering Sea system

consists of a deep offshore basin (with a maximum depth of 3,500

m) and a wide continental shelf (of<200 m) (Askren, 1972;

Coachman, 1986; Stabeno et al., 1999). The central Bering Sea

basin is characterized as an iron-limited, high-nutrient, low-

chlorophyll region (Leblanc et al., 2005; Sugie et al., 2013).

However, the eastern shelf of the Bering Sea is broad and shallow,

being >500 km wide, with an average depth of only 70 m, resulting

in a long growing season and high annual primary production (Rho

and Whitledge, 2007). Tidal mixing along the shelf break also

results in a highly productive region, often referred to as the

green belt, where nitrate from the deep basin and iron from the

shelf converge to mix into the transmissive zone (Springer et al.,
Frontiers in Marine Science 03
1996). This high primary productivity across the shelf and slope in

turn supports a wide variety of pelagic and benthic predators, as

well as rich fishery resources (Fissel et al., 2016). For the coast of

Alaska, streams flow into the Bering Sea, and eddy-induced

downwelling transports relatively warm seawater from the surface

layer (Miura et al., 2002; Mizobata et al., 2002). Substantial portions

of the shelf are normally covered by sea ice during winter months,

and sea ice retreat typically occurs in April–May (Stabeno and

Bell, 2019).

The circulation in the Bering Sea basin is commonly described

as a cyclonic gyre, with the Kamchatka Current (KC) flowing

southward forming the western boundary current and the Bering

Slope Current (BSC) flowing northward forming the eastern

boundary current (Figure 1). Circulation in the Bering Sea is

strongly affected by the Alaskan Stream (AS), which flows

through many channels in the Aleutian Islands into the Bering

Sea. Inflow into the Bering Sea is balanced by outflow through the

Kamchatka Strait, so circulation in the Bering Sea basin may be

more properly described as a continuation of the North Pacific

subarctic circulation (Stabeno and Reed, 1994; Stabeno et al., 1998).

Circulation on the eastern Bering Sea shelf is broadly

northwestward. The net northward transport through the Bering

Strait, although important for the Arctic Ocean, has little effect on

the circulation in the Bering Sea basin. However, it does play a

dominant role in determining the circulation of the northern shelf

(Stabeno et al., 1999).
2.2 Observations and gridded data

A series of pCO2 data was collected from the Surface Ocean CO2

Atlas (SOCAT; available at http://www.socat.info/) (Pfeil et al.,

2013; Sabine et al., 2013). The latest SOCAT version, SOCAT

v2021, contains 30.6 million quality-controlled fCO2 observations

from 1957 to 2020 (Bakker et al., 2016). At the time of this analysis,
BA

FIGURE 1

(A) Schematic map of the Bering Sea. Color representation of the subregions, which are classified by the 200-m isobath: yellow indicates the shelf
of the Bering Sea, blue indicates the Bering Sea basin, and red indicates the coastal Aleutian Islands. (B) Schematic of the mean circulation in the
upper 40 m of the water column over the basin and shelf (Stabeno and Reed, 1994; Stabeno et al., 1998). The arrows with solid heads represent
currents with mean speeds of typically >50 cm/s. The Alaskan Stream (AS), Kamchatka Current (KC), Bering Slope Current (BSC), and Aleutian North
Slope Current (ANSF) are indicated. The color indicates the bathymetry.
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SOCATv2022 was the most up to date version available. In this

study, we selected the best fCO2 by its quality flag (with an accuracy

of better than 5 matm); the total amount of the original observations

was 411,497 during 2003 to 2019, and the range was from north of

the Aleutian Islands to south of the Bering Strait (approximately

from 52 N to 66 N).

To obtain collocated and contemporaneous field-measured

pCO2 and satellite data products, we gridded the observations

into 4 km spatial resolution gridded sea surface pCO2 data and

did not directly use the gridded dataset listed in SOCATv2022,

which has a spatial resolution of 1 degree × 1 degree. In addition to

the consideration of sampling biases caused by uneven coverage, we

averaged the underway data with a 1/24° (~4-km) monthly grid and

obtained 24,695 gridded fCO2 data. The gridded fCO2 data density

is highly uneven, with most of the surface fCO2 data collected on the

Bering continental shelf during the summer (Figures 2A–D). In

addition, we converted fCO2 to pCO2 by using an empirical formula

(Weiss, 1974a; Körtzinger, 1999). The measured years of SOCAT

data in the Bering Sea from 2003 to 2019 in the shelf and basin are

shown in Figures 2E, F. During the study period, there are enough

data in 2009-2019 and data are unavailable in 2005-2008.

Following the 4-km grid of the observed data, we matched a

variety of environmental parameters to construct matched datasets

for training and testing of the retrieved model. Although the spatial
Frontiers in Marine Science 04
and temporal resolutions of these parameters are different, we used

the nearest neighbor interpolation method to adjust the spatial

resolution to a standard monthly 4-km resolution grid in this study.

Sea surface temperatures were downloaded from the National

Oceanic and Atmospheric Administration (NOAA). We used the 1/

4° Daily Optimum Interpolation Sea Surface Temperature (OI-

SST), which is a long-term climate data record that incorporates

observations from different platforms (satellites, ships, buoys, and

Argo floats) into a regular global grid, in this research (available at

https://www.ncei.noaa.gov/products/optimum-interpolation-sst)

(Reynolds et al., 2007; Banzon et al., 2016; Huang et al., 2021). The

associated chlorophyll a (Chla) concentrations were taken from a

global 4-km-resolution monthly data product compiled by NASA’s

MODIS Ocean Science Team (Nasa Goddard Space Flight Cente,

2014), which was calculated using an empirical relationship derived

from in situmeasurements of Chla and blue-to-green band ratios of

in situ remote-sensing reflectance (Carder et al., 2004). The sea

surface height (SSH) and mixed-layer depth (MLD) were extracted

monthly from the Global Ocean Physics Reanalysis Glorys12V1

(PHYS 001-030) products at a resolution of 1/12° (~8 km) from the

Copernicus Marine Environment Monitoring Service (CMEMS)

(https://doi.org/10.48670/moi-00021). We extracted the dry air

mole fractions of CO2 (xCO2) from CarbonTracker (version

2019B; https://doi.org/10.25925/20201008), which is a modeling
B

C D

E F

A

FIGURE 2

Spatial distribution of SOCAT data in the Bering Sea during 2003 to 2019 in different seasons: (A) March to May, (B) June to August, (C) September
to November, and (D) December to February. The measured year of SOCAT data in the Bering Sea from 2003 to 2019 in the (E) shelf and (F) basin.
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system developed by NOAA that provides global estimates of

surface atmosphere fluxes and four-dimensional CO2 data

(Jacobson et al., 2020). The bathymetry was extracted from the

global ETOPO1 database (from NOAA, 2022) (Amante and Eakins,

2009). The list of all products used in the calculations is summarized

in Table 1.

In the process of calculating the flux, we added extra parameters

to estimate the air–sea CO2 flux, including sea surface 10-m wind

and atmospheric pressure. Sea surface 10-m wind data were from

the cross-calibrated multiplatform (CCMP) vector wind analysis

dataset Mears et al., 2022, which combines satellite measurements,

in situ measurements, and a background wind field into complete

maps of ocean winds every 6 h with biases lower (by almost 0.5 m/s)

than those of buoys (Mears et al., 2019). We also compared many

satellite and reanalysis wind speed products and finally chose the

CCMP wind speed product due to its suitable temporal coverage

and accurate characterization. Atmospheric pressure data were

from the European Centre for Medium-Range Weather Forecasts

Reanalysis v5 reanalysis (ERA5) dataset, which embodies a detailed

record of the global atmosphere, land surface, and ocean waves

from 1950 onward, providing an hourly output throughout with 37

pressure levels (Hersbach et al., 2020). We used the sea surface

pressure from a 0.25° square latitude–longitude grid. The sea ice

concentration (SIC) data were obtained from the National Snow

and Ice Data Center (NSIDC) Climate Data Record at a spatial

resolution of 25 km and a monthly temporal resolution (Meier

et al., 2013).
2.3 Air–sea CO2 flux calculation and
algorithm performance index

The global air–sea CO2 flux is often estimated by a bulk method

in which in situ pCO2 measurements in seawater are combined with

a wind-speed-dependent gas transfer velocity (Weiss, 1974b;

Wanninkhof, 2014):

flux =   kw � sol � (pCO2water − pCO2air )� (1 − SIC) (1)

kw = 0:251� U10 � (
Sc
660

)−0:5 (2)

where flux (mol m−2 yr−1) is the air–sea CO2 flux; kw is the gas

transfer velocity; sol is the solubility of CO2 in seawater
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(mol m−3 μatm−1); pCO2water (μatm) and pCO2air (μatm) are the

partial pressure of surface ocean CO2 and atmospheric CO2,

respectively, in the marine boundary layer; SIC is the sea ice

concentration of ocean area covered by sea ice; U10 is the wind

speed 10 m above sea level; and Scdenotes the Schmidt number

calculated from SST and sea surface salinity (SSS). We used SIC in

this study because sea ice, an imperfect barrier to gas exchange, has

an important effect on air-sea CO2 flux (Long et al., 2011; Loose

et al., 2014; Butterworth and Miller, 2016). However, whether the

effect of sea ice on gas exchange is nonlinear (Loose et al., 2009;

Loose et al., 2014) or linear (Butterworth and Miller, 2016;

Prytherch et al., 2017) is still under debate, and for simplicity,

only linear ice corrections were used in this work. In addition, we

used 99% when the SIC was greater than 99% to allow for air-sea

CO2 exchange through fracture, lead, and brine channels (Semiletov

et al., 2004). All data used here can be sourced in Section 2.2. The

sink–source pattern of CO2 flux was determined by the difference

between ocean pCO2 and atmospheric pCO2 (DpCO2); that is, a

positive value of DpCO2 corresponds to a CO2 source, while a

negative value corresponds to a CO2 sink.

The carbon sink in a total area is usually conducted by the area

integral of air-sea CO2 flux. In the Bering Sea, we summed the

results of multiplying each grid flux by the area of each grid of three

parts (the basin, the shelf and the area of the Aleutian Islands coast).

The net CO2 flux in a subregion was estimated by multiplying the

mean CO2 flux density among the available pixels and normalizing

to the total area. In addition, the high-latitude pCO2 is missing due

to the unavailable Chla. In the processing of ocean color satellite

data, atmospheric correction usually fails under high solar zenith

angles with weak sunlight signals, which usually occurs in winter in

high-latitude areas. Therefore, there are large blank areas of missing

Chla and corresponding reconstructed pCO2 and flux in Jan. and

Dec. To reduce the effect of this vacancy on the area integral of air-

sea CO2 flux estimation, we used the seasonal average, which is

calculated through adjacent months at the same location, to replace

the vacancy.

The root-mean-square error (RMSE) and correlation coefficient

(R2) were used as the standard statistical metrics to measure model

performance in this study. The RMSE was calculated for the dataset

as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(Obs − Est)2i

r
(3)
TABLE 1 Environmental dataset used for pCO2 retrieval.

Predictor Dataset Resolution Reference

SST OISST 0.25°, daily Huang et al. (2021)

Chla MODIS 0.0417°, monthly Carder et al. (2004)

MLD CMEMS 0.083°, daily

SSH CMEMS 0.083°, daily

xCO2 CarbonTracker 3° × 2°, daily Jacobson et al. (2020)

Bathymetry ETOPO1 0.017° Amante et al. (2009)
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where n is the index of the samples, Obs are the observation

measurements, and Est are estimates from the model.
2.4 Seasonal difference calculation
of pCO2

The seasonal difference calculation of pCO2 was calculated

by using the following four steps. First, a third-order polynomial

(to account for trends) and fourth-order harmonic function (to

reproduce the seasonality) were fitted to all grid data to reproduce

the full seasonal cycle (Graven et al., 2013).

f (t) = a1 + a2 � t + a3 � t2 + a4 � sin(2� p � t=T) + a5

� cos(2� p � t=T) + a6 � sin(4� p � t=T) + a7

� cos(4� p � t=T) (4)

where t is time in years and T is the period, chosen here as 1 yr.

Second, we recreate the seasonal cycle of a certain year by fitting

equation (4) to every full analysis year, including the year before and

after that, to create a three-year running time series. 2003 and 2019

are reconstructed using the two following or preceding years. Third,

from the resulting harmonic function f(t) segments, the mean of the

months January, February and March was used as the winter

average and July, August and September as the summer average.

Then, we calculated winter minus summer for a certain year as the

seasonal difference. Finally, the trends in these seasonal differences

are calculated from the slope of the linear regression line fit to the

17-year time series.
3 pCO2 algorithm and validation

3.1 Machine learning algorithms

Based on the large match-up dataset, we tried various machine

learning methods, including support vector machine, eXtreme

gradient boosting, Gaussian-process-based kernel machine

learning approach (GPR), and random forest. Among them, the
Frontiers in Marine Science 06
GPR method was found to have optimal results in the retrieval of

pCO2 in the Bering Sea (the comparison of algorithm performance

can be found in the Table 2).

The GPR approach allows handling the model selection issue

within a Bayesian framework in a completely automatic way, thus

offering the potential advantage of avoiding the traditional

empirical and tricky tuning of the free parameters of the model

(Pasolli et al., 2010). GPRs are usually highly flexible and accurate

for prediction over new inputs closer to training data points, and

recent studies have demonstrated the effectiveness of GPR for

time-series gap-filling applications (Mateo-Sanchis et al., 2018;

Pipia et al., 2019; Belda et al., 2020). Furthermore, GPR has

exhibited robust performance in some sea surface biophysical

retrieval approaches and therefore has outperformed other

machine learning regression algorithms, such as random forest

and artificial neural networks, especially in retrieving biophysical

parameters from satellite data (Verrelst et al., 2012; Verrelst et al.,

2015; Rivera-Caicedo et al., 2017). Pipia et al. (2021) proposed a

GPR-based gap-filling strategy and generation of multi-orbit

cloud-free green leaf area index maps with an unprecedented

level of detail. Svendsen et al. (2020) used a Gaussian process to

estimate the chlorophyll content, colored dissolved matter, and

inorganic suspended matter from multispectral data acquired by

the Sentinel-3 OLCI sensor. Blix et al. (2018) used the GPR

machine learning model to estimate the complex waters against

in situ measurements over Lake Balaton in 2017 based on the

Ocean and Land Color Instrument (OLCI) onboard the Sentinel

3A satellite. The effectiveness of this approach in the context of

estimation of biophysical parameters offers a new alternative to

state-of-the-art regression methods such as those based on

artificial neural networks and support vector machines (Pasolli

et al., 2010). Based on the characteristics of the Bering Sea and the

previous research, we inferred that the strengths of GPR on

biophysical environmental parameters (Verrelst et al., 2012;

Verrelst et al., 2015; Rivera-Caicedo et al., 2017) and the

advantages in learning from small samples (Ly et al., 2021) can

help the algorithm to reconstruct sea surface pCO2 well in the

Bering Sea. Thus, we chose to use the GPR method to retrieve

pCO2 in the Bering Sea.
TABLE 2 Comparison of algorithm performance of various machine learning methods.

Training Testing

RMSE r2 MAE RMSE r2 MAE

(matm) (matm) (matm) (matm)

Random forest 29.25 0.87 16.28 26.65 0.88 10.17

Support vector machine 44.86 0.69 28.93 44.51 0.61 24.45

Neural network 39.68 0.76 29.05 39.21 0.69 32.9

Multiple linear regression 60.51 0.43 47.78 59.51 0.35 56.44

e-Xtreme gradient boosting 42.09 0.74 31.98 44.59 0.71 30.42

Gaussian process regression (GPR) 19.18 0.93 14.86 21.82 0.91 10.04
fron
Bold indicates the algorithms used in this study.
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3.2 GPR method for pCO2 in the
Bering Sea

We used time and location data from in situ pCO2

measurements to identify a set of pCO2 values with matched

environmental parameters. These gridded monthly standard

products were used in the pCO2 model development. The

predictor variables of the model were a set of environmental

parameters associated with the Bering Sea carbonate system based

on some previous studies (Song et al., 2016; Chau et al., 2022),

including SST, Chla, MLD, SSH, xCO2, and bathymetry.

In many other studies, these parameters represent physical,

chemical, and biological proxies determining the distribution of sea

surface pCO2. Here, both SST and MLD were used in the model to

account for the influence of thermodynamic and DIC variation in

pCO2 (Landschützer et al., 2013). Meanwhile, Chla is commonly

used as a “tuning” parameter to emphasize biological activity and

primary productivity (Chen and Hu, 2017). SSH, however, was used

to characterize the horizontal current flows and to capture the

mixing and convergence of water masses at the ocean surface (Chau

et al., 2022). In addition, bathymetry was collected to identify the

two different carbonate systems: the ocean basin and the shelf.

We tried to incorporate sea surface salinity into the input data.

Due to the large uncertainty of various salinity datasets in the

Bering Sea, the input data produced low-quality results, so we

removed the salinity parameter. The SSH usually contains

contributions from high- and low-frequency changes in steric

(temperature and salinity) signals and ocean circulation

(Meyssignac and Cazenave, 2012; Zhou et al., 2012; Volkov et al.,

2022). Here, we used SSH to relatively optimize the performance of

our algorithm in the lack of high-quality salinity data. Remote

sensing reflectance has been used as input in other studies; however,

in the Bering Sea, the model performance with remote-sensing

reflectance as inputs was not satisfactory and may form a

redundancy of input quantities similar to chlorophyll, as

chlorophyll products are usually retrieved from remotely sensed

reflectance data. Thus, after trying various combinations, we finally

chose six independent environmental predictors: SST, SSH, MLD,

Chla, xCO2, and bathymetry in the pCO2 model development;

details of the datasets are given in Section 2.2.
3.3 Model training and validation

We divided the underway pCO2 match-up dataset into three

parts. First, to ensure the final independent validation, we selected

data from the two longest cruises: One was from a cruise in the

Bering Basin in October 2009, and the other was from a cruise in the

continental shelf sea in July and August 2019 (Figure 3A). These are

the longest cruises in each of the two regions to ensure the enough

data number and spatial coverage, and we used them as a third

completely independent data to validate the algorithm

performance, beyond the training dataset and testing data. These

cruise-based observations were used for an extra-validation, which

put a higher demand on the robustness of the algorithm. To verify

that the two cruises are not special, we randomly chose random sets
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of cruises covering the basin and shelf for independent validation

and developed a model with the same parameters and methods. The

accuracy of the four models is very close to that of the original

model, demonstrating that our modeling is stable with changes in

the independent validation (four cases of the model validation

results from different random selections of independent cruises

can be found in the Supplemental Material).

Then, we derived a relationship between the pCO2 field and

environmental predictors based on a GPR method, with 75% of the

remaining gridded pCO2 (produced from SOCAT v2022 cruise

data, see more details in Section 2.2) used as the training dataset and

25% as the model testing dataset (Figures 3B, C). We therefore

could establish nonlinear relationships between six independent

environmental predictors (SST, SSH, MLD, Chla, xCO2, and

bathymetry) and pCO2. The reconstructed pCO2 field matches the

SOCAT data well. In both the basin and continental shelf, a high

agreement between the training pCO2 and the gridded SOCAT

v2022 data is demonstrated, with an overall mean R2 of 0.93 and

RMSE ~ 19.18 μatm (based on 16,985 observations) (Figures 3D, E).

This good fit can also be found in the testing, with an RMSE = 12.56

matm in the basin and 23.08 matm in the shelf (Figures 3F, G).

In independent validation, we obtained a mean R2 of 0.94 and

RMSE ~ 23.49 μatm (based on 1424 observations) (Figure 4).

Although there are some errors in regions of extreme gradient

variations, we were still able to capture the correct trends in these

rapidly changing regions (Figures 4A, B). The validation indicated

that the GPR method can accurately reconstruct pCO2 in the Bering

Sea (Figure 4C). However, because of the lack of in situ

measurements, our estimates along the western coast of the

Bering Sea (e.g., the Gulf of Anadyr) are tentative extrapolations

without sufficient validation. We note that there is no in situ data in

the self of the Bering Sea during 2005-2008 and no data available in

the basin before 2008, and these data gap may induce the

uncertainty of time series analysis. We try to develop satellite

retrieval algorithm and to reconstruct the satellite-based pCO2

from 2003 to 2019, but we will also emphasis such uncertainty

and discuss the time series from 2009 to 2019.
4 Results

4.1 Seasonal variation in pCO2 and air–sea
CO2 flux

Based on a novel GPR method with multisource remote-sensing

data, we generated monthly 1/24° (~4 km) resolution pCO2 and

reconstructed the air–sea CO2 flux during the period from January

2003 to December 2019. The 17-year climatological monthly pCO2

data exhibit marked seasonal and spatial variation (ranging from

250–450 μatm) in the Bering Sea (Figure 5). In the Bering Sea basin,

sea surface pCO2 decreases continuously from April to July and

reaches its annual minimum (326.2 matm) in August and rises from

September to November, eventually reaching a peak (441.2 matm) in

December; a similar pattern can be found in the shelf area where sea

surface pCO2 reaches its annual minimum (291.6 matm) in May

with a peak (416.3 matm) in January. Although both the continental
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B
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FIGURE 4

Comparison of reconstructed pCO2 with two independent validation cruise datasets over (A) the basin and (B) the continental shelf. (C) Comparison
of validation pCO2 in the Bering Sea with the observations.
B C

D E

F G

A

FIGURE 3

Location sites of the (A) independent validation dataset, (B) training dataset, and (C) testing dataset. The validation dataset includes two independent
cruises measured in October 2009 in the basin and in July and August 2019 over the continental shelf. Comparison of training pCO2 in the (D) basin
and (E) continental shelf with the observations. Comparison of testing pCO2 in the (F) basin and (G) continental shelf with the observations. Colors
indicate the amount of data within each grid, and red lines are one-by-one lines.
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shelf and the ocean basin exhibit typical subpolar pCO2 seasonal

patterns, with low pCO2 in summer and high pCO2 in winter and

spring, the pCO2 in the shelf region declines 2–3 months earlier

than that in the ocean basin area and remains at lower values for

longer periods. Our reconstructed dataset reconstructs the large

summer gradient in pCO2 between the basin and shelf well

(Figure 5), and this phenomenon is also confirmed by the

measured data (Figure 2). The coastal region of Alaska has

experienced extremely high pCO2 in the summer. The seasonal

amplitude of seawater pCO2 is almost a factor of 3–4 greater than

that of the atmospheric pCO2 (Figure 6A).

Based on the satellite-derived pCO2, sea surface wind speed,

xCO2, and SST, we estimated the long-time-series air–sea CO2 flux

in the Bering Sea from 2003 to 2019. The seasonal variation in air–

sea CO2 fluxes in the Bering Sea is closely related to the seawater

pCO2 pattern, with a mean air-sea CO2 flux of approximately ± 0.7

mol m−2 mon−1 (Figure 7). The Bering Sea basin exhibits dramatic

seasonal amplitudes, with sea water releasing CO2 to the

atmosphere from November to April and becoming a sink during

June to October (Figure 6B). The continental shelf, however,

continues to behave as a sink for the atmosphere and reaches its

maximum absorption in spring (Figure 6B), except along the

Alaskan coast, which exhibits a weak source in summer,

especially from June to August. In addition, seawater in the

southern Bering Sea (coastal Aleutian Islands) is a total source to
Frontiers in Marine Science 09
the atmosphere, with the strongest emission occurring in spring. As

mentioned in Section 2.3, remote-sensing reflectance data and Chla

products under high solar zenith angles are usually invalid in winter

in high-latitude areas. Therefore, there are large blank areas of

missing Chla and corresponding reconstructed pCO2 and flux in

Jan. and Dec. in Figures 5, 6, which would lead to uncertainty in

the estimation.
4.2 Long-time-series variation in air–sea
CO2 flux

We averaged the valid pCO2 data for each month and then

calculated the annual average based on the monthly average results.

From 2003 to 2019, atmospheric pCO2 in the Bering Sea increased

steadily (2.13 ± 0.09 matm yr−1, P< 0.01). Meanwhile, sea surface

pCO2 in the basin area increased more rapidly than that in the

atmosphere (2.82 ± 0.63 matm yr−1 in 2003-2019 and 2.95 ± 0.57

matm yr−1 in 2009-2019, P< 0.01). However, there is no clear trend

on the continental shelf, where sea surface pCO2 fluctuates in the

range of 347 ± 12 matm, consistently maintaining a low value

of<360 matm with seasonal fluctuations of ±63 matm (Figure 8A).

As a result, the trend of the annual mean air–sea pCO2 difference

(DpCO2) in the basin area rises at a slow rate, while it declines

rapidly in the shelf area. Small variations occurred in DpCO2 during
B

A

FIGURE 5

(A) Climatological monthly sea surface pCO2 in the Bering Sea during 2003-2019. (B) Climatological monthly mean sea ice concentrations (SICs) in
the Bering Sea during 2003-2019.
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2003-2008, which might contain some uncertainty as the in-situ

data are unavailable during this period. During 2009-2019, the

decreasing rate of DpCO2 (4.37 matm yr-1) in the shelf is

approximately three times that of the increasing rate in the basin;

against the background of continuously increasing atmospheric

CO2, sea surface pCO2 exhibited insignificant changes in

continental shelf, which also exacerbated the air-sea DpCO2

(Figure 8C). Thus, the Bering Sea basin was a slowly developing

CO2 source, while the carbon sink in the Bering Sea shelf area has

been increasing significantly. Meanwhile, the annual mean wind

speed in the Bering Sea changed little during the study period, and

the mean wind speed in the sea basin was always 1 m s−1 greater

than that on the shelf (Figure 8B). Note that in 2008-2019, the mean

wind speed exhibited a slight increasing trend: 0.052 m s-1 yr-1

(shelf, P = 0.013) and 0.043 m s-1 yr-1 (basin, P = 0.038). Then, we
Frontiers in Marine Science 10
analyzed the annual variation of sea surface pCO2 and atmospheric

pCO2 in each month to check if the trends are various in season

(Figures 8D, E). During 2003-2019, the atmospheric pCO2

increased at a similar rate (2.19 ± 0.02 matm yr-1) in all months

(Figure 8B), while sea surface pCO2 exhibited different trends in

different months. In general, except April-June, the growth rates of

sea surface pCO2 were around 1.63 ± 0.98 matm yr-1, p-value< 0.05).

However, the growth rates were not significant in April-June (p-

value > 0.05), indicating that sea surface pCO2 fluctuated within a

certain range without significant annual trends in these months.

This may be due to the strong photosynthesis and high primary

productivity during May to August and the biological effects

facilitate the carbonate buffering system to some extent. When

weakened productivity and deep DIC upwelling occur

simultaneously, large growth rates occurred in October (2.6 matm
FIGURE 7

Climatological monthly air–sea CO2 flux in the Bering Sea during 2003-2019. That flux calculation is related to the sea ice concentration (SIC) (Eq.
1); please see Figure 5B for the climatological monthly mean SIC.
BA

FIGURE 6

Mean seasonal variability in (A) pCO2 and (B) air–sea CO2 flux in the Bering Sea basin and shelf from 2003 to 2019. Shadows of the curve represent
the statistical standard deviation.
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yr-1) and November (2.5 matm yr-1), which even higher than the

atmospheric growth rate (Figure 8F).

We estimated the annual absorption of the sea basin, continental

shelf, and whole Bering Sea (Figure 9) with the area integral of the air-

sea CO2 flux. Note here that the total CO2 uptake does not exactly

match the trend of the mean air–sea CO2 flux because CO2 uptake is

the integral of the gridded flux with respect to the gridded area.

Consequently, southern grids will produce greater CO2 uptake or

release than those in the north under the same carbon flux. As a

result, the whole Bering Sea exhibited an increasing carbon sink with

an integral increase in air-sea CO2 fluxes from 6 to 19 TgC over 17

years. The variation of total air-sea carbon flux was insignificant in

2003-2008, and consistently increased from 2011 to 2015,

maintaining at 15-19 TgC since 2015. However, due to the

insufficient observations for the continental shelf in 2003-2009, we

cannot confirm whether the GPR algorithm underestimates air-sea
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CO2 sink, which may have contributed to the rapid increase in 2011-

2015. Although the Bering Sea is generally characterized as an

important carbon sink with an average air–sea CO2 flux of 8.87

TgC yr−1, this absorption is almost entirely driven by the on-shelf

regions and the green belt. The deep basin, in contrast, is a high-

nutrient, low-chlorophyll region with increasing sea surface pCO2

and acts as a CO2 source with increasing CO2 emissions during the

study time period. The upwelling along the coastal Aleutian Islands

contributed to the regional high pCO2 (Kelley and Hood, 1973;

Sapozhnikov et al., 2011), whereas this upwelling-induced CO2

emission did not exhibit a significant trend over the study period

from 2003 to 2019. The increased wind speed from 2008-2019 also

contributed to a larger air–sea CO2 flux. In conclusion, the carbonate

systems in the basin and continental shelf of the Bering Sea evolved in

different directions under the background of the continuous rise in

atmospheric pCO2.
B

C
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FIGURE 8

Time series of annual (A) pCO2, (B) square of the 10-m wind speed on the sea surface U2
10 , and (C) air–sea pCO2 difference (DpCO2) over the basin

and shelf from 2003 to 2019. The dark lines in (B) are the regression lines during 2008-2019. Shadows of the curve represent the statistical standard
deviation. Time series of the annual variation of (D) sea surface pCO2, (E) atmospheric pCO2 and (F) growth rates. In Figure F, bars are growth rates
for sea water and polylines for atmosphere in specific months from 2003 to 2019, and the growth rate of sea surface pCO2 in Apr. to Jun. was not
shown, because they failed in the significance tests (p-value > 0.05). Figs D, E and F share the same color bar which indicate the months.
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5 Discussion

5.1 Seasonal pCO2 control mechanisms

To explore the drivers of air–sea CO2 fluxes in the Bering Sea,

we used a method similar to that developed by Takahashi et al.

(2002) and calculated the effects of temperature (T) and all other

non-temperature processes (nonT) on the sea surface pCO2

differences. We used temperature-normalized pCO2 to remove the

temperature control; this can be expressed as follows:

npCO2 = pCO2 � exp½0:0423(   SSTmean − SST)� (5)

where the quantity npCO2 is the temperature-normalized

pCO2; SST is the sea surface temperature; and SSTmean is the

climatological annual mean calculated from the optimum

interpolation sea surface temperature during 2003–2019, as (∂ln

pCO2/∂T) is +4.23% °C−1 (Takahashi et al., 1993). Therefore, the

effects of temperature (T) and all other non-temperature processes

on the sea surface pCO2 differences can be estimated as follows:

T(pCO2) = pCO2 − npCO2 (6)

nonT(pCO2) = npCO2 − pCO2(atm) (7)

where T(pCO2) represents the impact of temperature

(temperature effect) and nonT(pCO2) weights the impact of all

other processes, such as the biological effect, upwelling and other

mixing processes. pCO2(atm) is atmospheric pCO2. The sum of
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temperature and non-temperature pCO2 components is equal to the

seasonal variability at any given time under the assumption that the

annual mean pCO2 should be well represented (Takahashi et al.,

2002; Cross et al., 2014). Because we aim at the mechanisms

affecting seasonal air-sea CO2 fluxes, the atmospheric pCO2 was

selected as a reference when calculating nonT(pCO2) (Wang et al.,

2022). Hence, the sum of T(pCO2) and nonT(pCO2) is equal to

DpCO2(= pCO2 − pCO2(atm)) at any given time in this study.

Based on Eqs. (5) and (6), we estimated the effects of

temperature and non-temperature effects in the Bering Sea from

pCO2 data estimated from satellite data. Figure 10 shows that the

spatial distributions of T(pCO2) and nonT(pCO2) differ. Bates et al.

(2011) indicated that the biological effect, that is, the balance of

photosynthesis and respiration, is the most dominant process

driving variability in non-temperature processes on the

continental shelf in the Bering Sea. Our findings also suggested

that non-temperature effects, including biological contributions,

upwelling and seasonal mixing, together dominate the surface

pCO2. As T(pCO2) and nonT(pCO2). have opposite effects, and

the non-temperature effect is a factor of ~2–4 greater than the

temperature effect. The mean temperature effect of pCO2 is 12.7

matm, whereas the mean non-temperature effect is −51.8 matm. This

difference is consistent with the previous conclusion that

temperature is not the primary control mechanism in the Bering

Sea (Takahashi et al., 2002; Song et al., 2016). In addition, the effect

of temperature on pCO2 is positive, and the strongest temperature

effects occur within the Norton Sound (>40 matm) (Figure 10A). In
BA

FIGURE 10

Climatological distribution of (A) temperature effect and (B) non- temperature effect in the Bering Sea.
FIGURE 9

Time series of the annual mean air–sea CO2 flux sink in different subregions of the Bering Sea from 2003 to 2019. The lower right panel is a
schematic representation of the subregions; the zoning is based on the 200-m isobath.
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contrast, the effect of the non-temperature component is negative

and more widespread, with thmost impacted area being in the Gulf

of Anadyr (<-100 matm) (Figure 10B).
5.2 Water mass variation and the
influence on pCO2

To analyze the pCO2 distributions in more detail, we classified

water masses in the Bering Sea with respect to the subregions (see

Figure 1A). Based on the previous method of water mass

classification in the Bering Sea, we discuss the characteristics of

six water masses in the Bering Sea: basin winter water (BWW),

basin summer water (BSW), shelf winter water (SWW), shelf

summer water (SSW), melt water (MW), and Alaskan coastal

water (ACW) (Schumacher et al., 1979; Coachman, 1986; Clement

et al., 2005; Jinping et al., 2006; Danielson et al., 2017; Lin et al.,

2019; Yamashita et al., 2019; Abe et al., 2021; Hirawake et al., 2021;

Wang et al., 2022). The classified boundaries of temperature and

salinity are given in Table 3. The Bering Sea basin and shelf water

bodies can be distinguished from summer and winter by a

boundary of 4°C. Salinity can be used to distinguish among the

sea basin, shelf, and coast. Low-salinity water near the coast has

two sources: melt ice and riverine input, which can be

distinguished by temperature. Due to the mixing of MW and

ACW, we classified the mixing water masses as either MW or

ACW according to their temperature. Due to the lack of cruise

data in the nearshore area, we cannot distinguish the mixing of

MW with river water. During thermodynamic dominance, pCO2

increases with higher temperature. However, in subpolar regions,

pCO2 increases in winter when the seasonal mixed-layer depth is

deepening, with DIC-rich water from deep upwelling to the sea

surface (Sarmiento, 2013; Fay and Mckinley, 2017; Gallego et al.,

2018). In addition, the vertical mixing of high-DIC subsurface

waters results in sea surface pCO2 increasing. We also found that

the pCO2 in the basin was significantly higher in winter (BWW)

than in summer (BSW), suggesting that the Bering Sea basin is not

a region of dominant temperature effect on pCO2 (Figure 11).

Similar seasonal variations occurred in the shelf and basin with

lower pCO2 in summer water than in winter water (Figures 11C,

F). Meanwhile, this seasonal difference is more significant in the

shelf, which may be because phytoplankton production is higher
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in the shelf area than in the high-nutrient low-chlorophyll basin.

The pCO2 coastal region of Alaska is much more strongly

influenced by the low-salinity MW and ACW; however,

different types of changes are generated. The MW diluted the

seawater, resulting in a lower pCO2 (Figure 11C). In the river

plume area, pCO2 is often at a low level because of the

photosynthesis of phytoplankton. However, the estuarine areas

and nearshore areas are also affected by a large amount of riverine

humic and other organic matter from the catchment basin, and

strong respiration, mineralization and degradation processes lead

to high pCO2 in rivers and estuarine areas. Nishimura et al. (2012)

observed high concentrations of dissolved Fe and humic-type

fluorescence intensity in a nearly peak river water discharge

period in the northern Bering Sea shelf (Yukon River estuary

region and St. Lawrence Island polynya region). Strong

mineralization and degradation of high concentrations of

terrestrial organic matter will lead to high pCO2 in estuaries and

offshore areas. Murata (2006) also indicated that coccolithophorid

Emiliania huxleyi blooms occurred in coastal Alaska

simultaneously in summer with CO2 changes (increase in CO2).

During the growth of coccoliths when the calcium carbonate shell

is formed, CO2 is released at the same time, resulting in an

increase in sea water pCO2. It is different from diatom blooms

with CO2 drawdown (Murata, 2006).

We also calculated the temperature and non-temperature

effects on pCO2 in each of the six typical water masses

(Figure 12). The opposite trend between temperature and non-

temperature effects is evident in the Bering Sea basin and the

continental shelf, with temperature providing positive values

and negative values from non-temperature effects in summer

and vice versa in winter. However, regardless of the seasonal

change, the non-temperature effect always outweighs the

temperature effect, becoming the most dominant control

mechanism in the Bering Sea, which can usually be considered

a result of seasonal variations in DIC (Takahashi et al., 2009;

Gallego et al., 2018). In addition, this non-temperature effect

reaches a maximum in the summer over the continental shelf,

which may be due to the combined effect of low DIC resulting

from the high net community productivi ty (primary

productivity – community respiration) produced and low DIC

diluted by high summer river runoff (Mathis et al., 2010; Mathis

et al., 2011; Cross et al., 2012).
TABLE 3 Primary water masses in the Bering Sea.

Water masses Salinity Temperature

Basin winter water BWW >32.5 >0, ≤ 4

Basin summer water BSW >32.5 >4

Shelf winter water SWW >30.5, ≤ 32.5 >0, ≤ 4

Shelf summer water SSW >30.5, ≤ 32.5 >4

Melted water MW ≤ 30.5 ≤ 0

Alaskan coastal water ACW ≤ 30.5 >0
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5.3 Strengthening of pCO2
seasonal variations

Many studies have found that the amplitude of pCO2 seasonal

differences have been increasing substantially in recent decades based

on observed data or model-based predictions. Landschützer et al.

(2018) indicated that the seasonal differences increase at a rate of

1.5 ± 1.1 matm per decade observed at the Hydrostation ‘S’/Bermuda

Atlantic time-series study site and at the Hawaiian Ocean time-series

station, which was 3.8 ± 2.4 matm per decade. Furthermore, model-

based predictions also support the increasing seasonal difference in

pCO2 in the South Atlantic, Pacific, and North Atlantic (Doney et al.,

2009; Hauck and Völker, 2015; Mcneil and Sasse, 2016).

In the Bering Sea basin, the satellite-derived pCO2 reveals no

remarkable change in the seasonal amplitude (1.3 matm per decade);

however, it has been rapidly increasing on the continental shelf from

2003 to 2019, approaching 14 matm per decade (the calculationmethod

can be found in the supplemental materials). Although a considerable

amount of winter data is missing in the shelf of the Bering Sea from our

reconstructed pCO2 dataset (which both resulted from the failure of
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satellite processing at the large zenith angle in high latitudes in winter

and the inability to observe water signals due to ice cover), there is some

uncertainty in the time-series trend estimation. We regarded that such

missing datamight be systematic, and the trend estimated from satellite

products could be referable, as Landschützer et al. (2018) also showed

the average increasing rate at 55°N can be ~8 matm per decade. In

addition, the seasonal cycle in high-latitude areas has a maximum in

winter, leading to a positive winter-minus-summer difference in pCO2.

Whether in the sea basin or on the shelf, Chla is relatively stable in

autumn and winter, while the peak caused by blooms in spring and

summer fluctuates (1.5-2.3 mg/L in the continental shelf and 2.5-3.0 mg/
L in the basin) with significant interannual variation (Figure 13A). The

temperature shows a large seasonal amplitude (Figure 13B). The sea

surface height of the basin increases throughout the study time period,

while there is no significant trend in the shelf (Figure 13C). In addition,

the mixed-layer depth shows the most complex interannual variability,

with an abrupt decrease in the mixed-layer depth occurring in the basin

(since 2013), while at the same time, the shelf area is increasing with a

smaller trend (Figure 13D). Compared to the Bering Sea basin, the

greater seasonal amplitude of pCO2 in the continental Bering Sea is
BA

FIGURE 12

Violin plots of (A) temperature effects T(pCO2) and (B) non-temperature effects nonT(pCO2) of the typical water masses. Note that the width of the
violin curve corresponds with the kernel density of the data. Statistical results shape each colored symbol, that is, the inside hollow circles indicate
the median, the horizontal lines indicate the mean, and the external shapes indicate the frequency.
B C

D E F
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FIGURE 11

Carbonate chemistry characteristics of the water mass in the Bering Sea, showing T/S characteristics (A, D), location of the water masses (B, E), and
pCO2 (C, F). In the T/S diagrams, the dashed line is the freezing line. Water mass designations follow those of Table 3: BWW = basin winter water,
BSW = basin summer water, SWW = shelf winter water, SSW = shelf summer water, MW = melted water and ACW = Alaskan coastal water.
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mainly the result of decreasing pCO2 in summer (Figure 13E),

combined with the stable growth of atmospheric xCO2. The final

interannual variation in DpCO2 is shown in Figure 13F.

Previous studies have identified two possible mechanisms that

may drive the increase in seasonal differences: the long-term increase

in the mean concentration of CO2 in the surface ocean and the

reaction of the added CO2 with the carbonate ions in seawater

(Landschützer et al., 2018). Taking these hypotheses into

consideration, we analyzed the mechanisms in the continental

Bering Sea. First and foremost, because sea surface pCO2 increases,

the pCO2 variation with temperature also increases; thus, even the

same seasonal temperature difference can strengthen the seasonal

pCO2 amplitude. This effect is more applicable to explain the

variation in seasonal amplitude in the basin. The continental

Bering Sea remained at 348 ± 12 matm during 2003–2019,

exhibiting an unclear trend. Second, the reaction of the

continuously added CO2 with the carbonate ions in continental

seawater results in a reduction in the capacity of the surface ocean

CO2 system. Hauck et al. (2015) showed that the seasonal drawdown

of carbon by biological production contributes an even larger share to

the total CO2 uptake as the Revelle factor increases in this century in

the Southern Ocean and other regions governed by strong seasonality

(Hauck et al., 2015). In other words, the same amount of biological

production will lead to stronger CO2 uptake over the course of the

century. The strong seasonal decrease in DIC might increase the

uptake of CO2 in the Bering Sea. Furthermore, this is particularly vital

in systems with strong seasonality, such as at high latitudes, where

darkness inhibits biological production in winter. Increased seasonal

variability in sea surface pCO2 largely enhances the influence of ocean

acidification on marine organisms by exposing them earlier to higher

levels of ocean acidification (Doney et al., 2009; Bates et al., 2014;

Lauvset et al., 2015). This leads to transitions that cross critical

thresholds harmful to marine ecosystems and fisheries, such as

hypercapnia and low saturation regarding calcium carbonate

(Gruber et al., 2012; Lauvset et al., 2015; Mcneil and Sasse, 2016).
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Along with increasing atmospheric CO2, the total amount of

ocean absorption has also been increasing annually, which impacts

the ocean carbon sink and biogeochemical processes. The Bering

Sea, a vital passage for North Pacific Ocean water to enter the

Arctic, will also be deeply affected.

We developed a sea surface pCO2 model based on the GPR

method in the Bering Sea and reconstructed the monthly average

pCO2 with high spatial resolution over a long time series during

2003-2019 using a set of SST, SSH, MLD, Chla, xCO2, and

bathymetry data as input data. We obtained a mean R2 of 0.94

with an RMSE of ~ 23.49 μatm in the independent validation.

On a background of the continuous rise in atmospheric pCO2

(2.1 matm yr−1), the carbon sink in the basin and continental shelf

of the Bering Sea evolved in different directions. From 2003 to

2019, sea surface pCO2 in the basin area increased rapidly (2.8

matm yr−1); thus, the CO2 emissions from the basin increased.

However, there is no clear trend on the continental shelf, which

consistently maintains a low value of<360 matm (with seasonal

fluctuations of ±63 matm) and is a significant carbon sink in the

Bering Sea shelf. This is the first long-time-series estimation of the

annual CO2 flux for the whole Bering Sea. The results show that

the Bering Sea is generally a rising carbon sink and that the main

control mechanism here is not the temperature effect.

Additionally, extensive biological activity and high primary

productivity occur in the shelf of the Bering Sea, which

contribute to the annually increasing uptake of atmospheric

pCO2. Hence, the total Bering Sea can be deemed an increasing

carbon sink. However, the seasonal amplitude in the shelf is also

increasing significantly because of the change in the carbonate

system, which may reduce the time required for the Bering Sea

shelf to reach its upper limit of absorption, and it is worth

considering whether the Bering Sea can continue to consume

large amounts of atmospheric CO2 in the future.
B

C D

E F
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FIGURE 13

Long-time-series monthly mean Bering Sea (A) Chla, (B) SST, (C) SSH, (D) MLD, (E) pCO2, and (F) DpCO2 from 2003 to 2019.
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