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Epigenetic clocks are accurate tools for age prediction and are of great interest for

fisheries management and conservation biology. Here, we review the necessary

computational steps and tools in order to build an epigenetic clock in any species

focusing on fish. Currently, a bisulfite conversion method which allows the

distinction of methylated and unmethylated cytosines is the recommended

method to be performed at single nucleotide resolution. Typically, reduced

representation bisulfite sequencing methods provide enough coverage of CpGs

to select from for age prediction while the exact implementedmethod depends on

the specific objectives and cost of the study. Sequenced reads are controlled for

their quality, aligned to either a reference or a deduced genome and methylation

levels of CpGs are extracted. Methylation values are obtained in biological samples

of fish that cover the widest age range possible. Using these datasets, machine

learning statistical procedures and, in particular, penalized regressions, are applied

in order to identify a set of CpGs the methylation of which in combination is

enough to accurately predict age. Training and test datasets are used to build the

optimal model or “epigenetic clock”, which can then be used to predict age in

independent samples. Once a set of CpGs is robustly identified to predict age in a

given species, DNA methylation in only a small number of CpGs is necessary, thus,

sequencing efforts including data and money resources can be adjusted to

interrogate a small number of CpGs in a high number of samples.

Implementation of this molecular resource in routine evaluations of fish

population structure is expected to increase in the years to come due to high

accuracy, robustness and decreasing costs of sequencing. In the context of

overexploited fish stocks, as well as endangered fish species, accurate age

prediction with easy-to-use tools is much needed for improved fish populations

management and conservation.

KEYWORDS

age estimation, epigenetic clock, fisheries management, conservation biology, DNA
methylation, machine learning, penalized regressions, bioinformatics
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1096909/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1096909/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1096909/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1096909/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1096909/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1096909&domain=pdf&date_stamp=2023-02-13
mailto:dafanast@gmail.com
https://doi.org/10.3389/fmars.2023.1096909
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1096909
https://www.frontiersin.org/journals/marine-science


Anastasiadi and Piferrer 10.3389/fmars.2023.1096909
1 Introduction

Epigenetics can be defined as “the study of phenomena and

mechanisms that cause chromosome-bound, heritable changes to

gene expression that are not dependent on changes to DNA

sequence” (Deans and Maggert, 2015). Epigenetics has emerged as a

powerful discipline in the study of the integration of genomic and

environmental information, both intrinsic and extrinsic factors, to

bring about a specific phenotype (Turner, 2009; Vogt, 2017). There

are three major epigenetic molecular mechanisms widely accepted as

such: 1) DNA methylation, 2) the modifications of histones and

histone variants, and 3) the abundance and distribution of regulatory

non-coding RNA (for review, see Carlberg and Molnár (2014)). One

of the best studied epigenetic mechanisms is DNA methylation.

Methylation can occur in two of the four nucleotides of DNA,

cytosine and adenine. The former is the process by which a methyl-

group (CH3) is transferred from a methyl donor, S-adenosyl-L-

methionine (SAM), to the fifth position of a cytosine, converting it

to 5-methylcytosine (5mC) or to the sixth position of an adenine

converting it to N6-methyladenine (Ratel et al., 2006; Grosjean, 2013;

Pfeifer, 2016). 5mCs are the most abundant modifications, are present

in most species and therefore the most studied.

According to the Biomarkers Definitions Working Group, a

biomarker is defined as “a characteristic that is objectively

measured and evaluated as indicator of normal biological processes,

pathogenic processes or pharmacologic responses to a therapeutic

intervention” (Biomarkers Definitions Working Group, 2001).

Biomarkers have been developed for a variety of purposes,

including medicine and environmental assessment (Liu et al., 2019).

Epigenetic modifications have been suggested recently as good

candidates for biomarkers because they can be stable, frequent,

abundant and accessible (Costa-Pinheiro et al., 2015). Details on

the development of epigenetic biomarkers in aquatic organisms can

be found elsewhere (Anastasiadi and Beemelmanns, 2023). An

epigenetic clock is a set of biomarkers used to predict age, or in

other words a “highly accurate age estimator based on CpG DNA
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methylation levels”. In the last years they have been developed for

about half a dozen fish species and it is expected that in the years to

come epigenetic clocks will be of common use for both fisheries

management and conservation biology. To the best of our knowledge,

epigenetic clocks have been developed for: European sea bass

(Anastasiadi and Piferrer, 2020), zebrafish (Mayne et al., 2020),

Australian lungfish (Mayne et al., 2021b), Mary river cod (Mayne

et al., 2021b), Murray cod (Mayne et al., 2021b), medaka (Bertucci

et al., 2021), northern red snapper (Weber et al., 2021) and red

grouper (Weber et al., 2021). For details on piscine epigenetic clocks

including accuracy, techniques, CpGs covered and biological aspects

to consider for new clocks please see Piferrer and Anastasiadi (2023).

However, a crucial aspect for epigenetic clock development is how

DNAmethylation data is actually used to build the age predictor. This

is of importance because a proper model building is essential to take

out the most of the capabilities that epigenetic clocks may offer. There

are several reviews that cover the factors causing, modulating and

accelerating epigenetic clocks, mainly focusing on humans and

mammals (Field et al., 2018; Guevara and Lawler, 2018; Bell et al.,

2019; Simpson and Chandra, 2021). However, to the best of our

knowledge, there are no reviews on the necessary computational steps

and tools in order to build an epigenetic clock in any species, while

these steps will be essentially the same. The issues dealt with below

will thus be very helpful not only to fisheries managers and

conservation biologists but to scientists that want to develop

epigenetic clocks for new species.
1.1 Methods to analyze DNA methylation

The methods used to analyze DNA methylation can be

categorized at three broad levels [Table 1 (Anastasiadi, 2016;

Barros-Silva et al., 2018; Ortega-Recalde and Hore, 2023]. These

three levels are based on how methylated loci are identified (level

1), at what resolution they are identified (level 2) and what portion of

the genome is interrogated (level 3). For epigenetic clocks
TABLE 1 Overview of methodologies for the analysis of DNA methylation (updated from (Anastasiadi, 2016).

Resolution

Low Medium High

5mCs distinction

Restriction enzymes

HpaII-PCR Locus-specific

Genome coverage

MSAP, RLGS CHARM RRBS, MRE-seq Genome-wide

EM-seq Whole genome

Affinity enrichment

MeDIP/MBD-PCR Locus-specific

MeDIP/MBD-chip Genome-wide

HPLC MeDIP/MBD-seq Whole genome

Bisulfite treatment

Infinium BeadChip MBS, MSP, Bis-PCR, Sanger BS Locus-specific

RRBS, bis-RAD-seq, epi-GBS Genome-wide

WGBS Whole genome
MSAP, Methylation Sensitive Amplified Polymorphism; RLGS, Restriction Landmark Genomic Scanning; HPLC, High Performance Liquid Chromatography; CHARM, Comprehensive High-
throughput Arrays for Relative Methylation; MeDIP, Methylated DNA ImmunoPrecipitation; MBD, Methyl-CpG-Binding Domain; RRBS, Reduced Representation Bisulfite Sequencing; MRE,
Methyl-sensitive Restriction Enzyme; EM-seq, Enzymatic Methyl-seq; MBS, Multiplex Bisulfite Sequencing; MSP, Methylation Specific PCR; BS, Bisulfite Sequencing; bis-RAD, Bisulfite Restriction
site Associated DNA; WGBS, Whole Genome Bisulfite Sequencing.
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construction, methods that make use of bisulfite (level 1) at single

nucleotide resolution (level 2) are used. However, the portion of the

genome to be interrogated depends on the resources and available

knowledge on the species of target or closely related species.

Importantly, advances in sequencing using Oxford Nanopore

Technologies MinION render this a powerful alternative to other

methods. Thus, direct detection at single nucleotide resolution of

5mCs using portable devices is possible without the need of bisulfite

conversion. This technology has been used recently to construct an

epigenetic clock in cattle (Hayes et al., 2021).
1.1.1 Level 1. How are methylated loci identified?
5mCs must be identified and separated from the unmethylated

ones (Cs). The processes of distinction between the two types of

cytosines can be further divided into three general sub-levels, detailed

below (Table 1 for an overview), that are not mutually exclusive and

that in some cases are used in combination (Rauluseviciute

et al., 2019):
Fron
1) Restriction enzymes. There are restriction enzymes which

function differently when they encounter 5mCs and Cs. This

property can be used to distinguish between the two types of

Cs and ultimately identify their methylation status. Common

isoschizomers, like MspI and HpaII, are used. For instance,

these enzymes recognize the same sequence pattern (5’-

CCGG-3’), however, MspI cuts at those sites where the

internal C is methylated in the two complementary DNA

strands, while HpaII is functional in those with methylation

of the external C in one or both of the complementary DNA

strands. The Methylation Sensitive Amplified Polymorphism

(MSAP) (Reyna-Lopez et al., 1997; Xu et al., 2000) and the

Restriction Landmark Genomic Scanning (RLGS (Hatada

et al., 1991); are examples of approaches using methylation-

sensitive restriction enzyme (Table 1).

2) Antibodies. This approach is based on the use of antibodies

that show specificity against 5mC or of recombinant proteins

which have been developed to contain a methyl-CpG binding

domain (MBD; e.g (Aberg et al., 2012). These processes end

up enriching the fraction of chromatin that is methylated.

Methylated DNA ImmunoPrecipitation (MeDIP) (Jacinto

et al., 2008) and Methyl-CpG-Binding Domain (MBD)

(Jacinto et al., 2008; Nair et al., 2011) are examples of

affinity-based approaches (Table 1) with MeDIP using a

monoclonal antibody specific for 5mCs and MBD-based

strategies using methyl-CpG binding domain-based

proteins (MBDCap) (Nair et al., 2011).

3) Bisulfite. The treatment of DNA with bisulfite involves a

chemical reaction that converts unmethylated Cs into uracils

in 3 steps. Methylated 5mCs also react with bisulfite but this

reaction is extremely slow and 5mCs are favoured by the

equilibrium. Thus, 5mCs essentially escape conversion and

remain intact (Clark et al., 1994). This reaction functions,

therefore, as a recorder of the original methylation status and

downstream steps allow to register and recall it. Several

techniques, ranging from locus-specific to whole-genome,
tiers in Marine Science 03
take advantage of the bisulfite properties in order to analyze

the DNA methylation levels, like the Methylation-specific

PCR (MSP) or the Whole Genome Bisulfite Sequencing

(WGBS; Table 1). Bisulfite conversion of DNA is

considered the “gold standard” in DNA methylation

analysis because it allows the identification of the

methylation status of each interrogated cytosine. However,

limitations exist for bisulfite conversion methods as well.

Methylation of a cytosine is a binary state (methylated or

not methylated) in a given cell at a given time. Bisulfite

sequencing reflects the relative proportion of Us/Cs at a given

position, when sequencing tissues due to cell heterogeneity,

and not the binary state of a specific cytosine unless single cell

sequencing is performed. Methods based on bisulfite

treatment of DNA are used for epigenetic clock construction.
1.1.2 Level 2. What is the resolution used?
The methylation profiling methods can have variable resolution,

where higher resolution means information retrieval at the level of

nucleotide and lower resolution means information retrieval at a

larger genomic scale. In Table 1, an overview of the different

methodologies for the analysis of DNA methylation with their

corresponding resolution is provided. The resolution can broadly be

grouped into the following three categories:
1) Low resolution. These techniques typically allow to obtain

information on the global 5mC content. This is useful in

order to conclude whether there are overall differences in the

global methylation content or not, e.g., between control and

treatment or disease group. Nevertheless, where exactly in the

genome these differences occur remains unknown.

2) Medium resolution. Here, apart from global differences, an

approximate location of the 5mCs is obtained. This is the

case, for instance, of MeDIP-seq, where the methylated

fraction of the immunoprecipitated DNA is sequenced and

the differences can be located within a region that

corresponds to the length of the sequenced fragment.

3) Single nucleotide resolution. In this case, the precise location

of both 5mCs and Cs is obtained. This means that the exact

position of 5mCs and Cs can be mapped to genomic

coordinates that include 3 numbers: chromosome, start

position, end position. For example, one obtains the

information that in chromosome 1, start position=253, end

position=254, there is a 5mC. Single nucleotide resolution is

needed to construct an epigenetic clock.
1.1.3 Level 3. Which part of the genome
is targeted?

The part of the genome that is investigated following the

separation of Cs is also variable. In Table 1 an overview of the

different methodologies for the analysis of DNA methylation with

their relative CpG/genome coverage is provided. They can be broadly

grouped into three categories according to this criterion as well:
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Fron
1) Locus-specific. The amount of 5mCs and Cs is measured

within target regions of interest typically spanning 10-1–102

CpGs. The target region of interest can be a specific gene,

regulatory region of a gene, genomic regions within a gene

such as exons, introns or 5’UTRs, or any other genomic

region that is a priori interesting and therefore can be a target

for the analysis of its DNA methylation.

2) Genome-wide. The amount of 5mCs and Cs is measured

within a part of the genome that is considered representative

of the overall genome. The part of the genome is in the order

of 105–106 CpGs and is representative because usually it is

enriched for sites that can be methylated. For example, after

digestion with enzymes that specifically recognize sites that

include CpGs.

3) Whole-genome. The amount of 5mCs and Cs is measured

across the whole genome covering more than 106 CpGs. The

entire genome is interrogated for its methylation levels, there

is no reduction for specific regions or representative parts, but

rather information on every single basis is obtained.
2 DNA methylation analysis using
bisulfite sequencing

In the last years, high throughput sequencing (HTS) approaches have

been used extensively to analyze the DNA methylation patterns in many

different situations. The technique that combines the best possible way to

distinguish 5mCs, single nucleotide resolution and whole genome

coverage is Whole Genome Bisulfite Sequencing (WGBS), which is a

HTS-based approach that uses bisulfite conversion to allow the

distinction between 5mCs and Cs and interrogates the whole genome

at single nucleotide resolution (Bock, 2012). Other HTS-based

approaches that use bisulfite conversion, but analyze only a part of the

genome are: Reduced Representation Bisulfite Sequencing (RRBS) (Gu

et al., 2011; Klughammer et al., 2015), Bisulfite-converted Restriction site

Associated DNA sequencing (bis-RAD-seq) (Trucchi et al., 2016),

epiRADseq (Schield et al., 2016) and epi-GBS (van Gurp et al., 2016;

Gawehns et al., 2022). Furthermore, targeted approaches such as BisPCR2

(Bernstein et al., 2015), Multiplex Bisulfite Sequencing (MBS)

(Anastasiadi et al., 2018) or others (Masser et al., 2013; Korbie et al.,

2015; Roeh et al., 2018) are also HTS-based techniques that make use of

bisulfite conversion but for a targeted part of the genome. Oxford

Nanopore Technology sequencing is expected to vary for the basic

bioinformatics steps, however, the statistical analysis including machine

learning model building will be essentially the same (section 3). The HTS

methods used for epigenetic clocks in fish species until now include

RRBS, bis-RAD-seq, MBS and BisPCR2 (see Table 1, Piferrer and

Anastasiadi, 2023).

Different epigenetic clocks can be developed using different CpGs

across the genome in different combinations, depending on the

original dataset and the machine learning model. Around 20% of

the Illumina 450K CpGs (90000 CpGs) can be used for epigenetic

clocks (Porter et al., 2021). Taking this information into account,

WGBS (>106 CpGs) or RRBS (103-106 CpGs) may produce a large

amount of unnecessary data and workload, while bis-RAD-seq or
tiers in Marine Science 04
epiRADseq (103-105 CpGs) are expected to produce a good balance of

informative CpGs without excess. Targeted approaches (e.g., MBS 10-

1-102 CpGs) will be more relevant when prior information is available.
2.1 Bioinformatics workflow for
bisulfite sequencing

All HTS-derived data produced from methods that use bisulfite

conversion share some common characteristics. A summary workflow

allows to distinguish the steps of quality controls, filtering/trimming,

alignment/mapping, methylation extraction and analysis (Figure 1).

Processing of HTS-derived data always initiates with the appropriate

quality controls of the raw sequencing data obtained followed by filtering

of the data that fall below the specified thresholds. Adapters or indices

have usually been added to the DNA fragments during the preparation of

the libraries and are used to demultiplex the samples if needed. Their

sequences also usually need to be removed from the data (trimming)

otherwise they might influence the downstream steps of the workflow.

Once adapters have been trimmed and low quality reads filtered out, the

reads are aligned against the genome which, importantly, must have been

previously bisulfite converted in silico. This is because bisulfite treatment

converts the unmethylated cytosines of the genome into uracils, which

are in turn converted into thymines (Ts) after amplification by PCR. This

process results in many genomic sites in the sequenced reads that fail to

map to the genome because the original sites have been lost and thus,

they cannot match. Moreover, after PCR amplification, the

complementary DNA strand contains adenines (As) instead of

guanines (Gs) in the positions where the C was unmethylated and has

been converted into T. Thus, the procedure through which the sequenced
FIGURE 1

Workflow for bioinformatics analysis of bisulfite sequencing data for
epigenetic clock construction.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1096909
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Anastasiadi and Piferrer 10.3389/fmars.2023.1096909
reads are aligned to the genome needs to take into account these

mismatches and considerations. Different tools have been developed to

convert and map bisulfite sequencing data (See section 2.4.). A reference

genome is not a pre-requisite for applying bisulfite sequencing since

alternative bioinformatics procedures have been developed to assist the

analysis, e.g., ad hoc genomes can be deduced from RRBS reads

(Klughammer et al., 2015) or for bs-RAD-seq, a standard RAD-seq

reduced representation genome can be used (Trucchi et al., 2016).

Once reads have been successfully mapped, the information of the

methylation status has to be extracted at each C position of the genome, a

process called methylation extraction or methylation calling. Usually, the

final methylation of a given C is calculated according to the proportion of

5mCs and Cs found in that position: their sum equals to the coverage of a

position and is the denominator in the equation where the numerator is

the number of 5mCs. This value may be expressed as (5mCs/5mCs+Cs)

and thus the methylation values will range from 0 to 1, or can be

expressed as percentage, (5mCs/5mCs+Cs) multiplied by 100, and thus

the methylation values will range from 0 to 100 (more details in

section 2.5).
2.2 Quality controls

Modern sequencing platforms (e.g., Illumina) usually include

the corresponding software which automatically performs the

demultiplexing steps required prior to sample analysis and thus the

corresponding set of files for each sample are obtained. In the case of

single-end sequencing one file per sample is produced, while in the

case of paired-end sequencing two files are produced per sample, each

one of them refers to the forward and reverse read.

The standard format for these files is the FASTQ. FASTQ is a text-

based format to store the sequences which includes more information

than the older FASTA format which included only the sequence. In

FASTQ, each read is unique and contains a sequence identifier and

there is further information on the specific quality of the read. The

quality of the reads is mainly measured by the Phred score which is a

property logarithmically related to the base-calling error probabilities.

A Phred score of 10, means that there is a 1 in 10 probability of

incorrect base call and a 90% accuracy in base calls. A Phred score of 30

means that there is a 1 in 100 probability of incorrect base call and a

99.9% accuracy in base calls. Typically, Phred scores below 20, which

equals to 99% accuracy of base call, are excluded from

downstream analysis.

Quality controls are usually performed by a range of open source

software packages, the most common of which is FASTQC (Andrews,

2010). In case several samples are to be evaluated at once, the MultiQC

(Ewels et al., 2016) can be useful for simultaneous assessment of quality

(see indicators below). These tools allow to assess the data quality via a

variety of plots and statistics (Figures 2A–D), namely:
Fron
1) Sequence counts. The number of sequences counted for each

sample.

2) Sequence quality histograms. The mean Phred score across

each base position in the read.

3) Per sequence quality scores. The total number of reads plotted

against the average Phred quality scores over the full read.
tiers in Marine Science 05
4) Per base sequence content. The percent of bases called for each

of the four nucleotides (e.g., 30% A, 40% T, 20% C, 10% G) at

each position (e.g, position 1-150 for a 150 bp read

sequencing) across all reads.

5) Per sequence GC content. The number of reads plotted against

the GC% per read.

6) Per base N content. The percent of bases at each position of

the read for which no base could be called and are therefore

coded as “N”.

7) Sequence length distribution. The distribution of lengths

across all reads.

8) Sequence duplication levels. The percent of reads of a specific

sequence that are present repeatedly inside the file and can be

an indicator of PCR duplication.

9) Overrepresented sequences. Sequences that appear more times

than expected.

10) Adapter content. Cumulative plot of the fraction of reads

where the adapters used for library construction are

identified.
Sequence quality scores below 30 are nowadays considered

unacceptable. However, interpretation of the rest of the metrics will

be specific to the technique and sequencing platform used, since high

duplication levels are inherent to enrichment (e.g., RRBS) or targeted

techniques, but may indicate a problem with WGBS data.

On the other hand, the simultaneous visualization of multiple

quality controls (QC) can be obtained by the MultiQC software

(Figure 2E). A drop of quality below the available threshold at the

end of the read is expected in general and for long reads (300 bp)

in particular.

Example code of running FASTQC in all available fq files:

fastqc –nogroup -q -t 2 -o output_fastq_raw *.fq.gz

Example code of running MultiQC in the output of FASTQC:

multiqc output_fastqc_raw -i Fastqc-Raw
2.3 Trimming

Several open source packages are available for trimming (Table 2).

Trimming of low quality reads can significantly improve the quality of

the data to process and all downstreamworkflow, as aminimum in terms

of Phred scores Low quality Phred scores (<20) would be associated with

too high probabilities of erroneously called bases, one nucleotide, e.g,. A,

instead of another, e.g., C. Thus, they cannot be accepted in a HTS

experiment. Quality controls are performed again after the trimming

procedure as well and are useful to visualize the improvements.

Example code of running Trimmomatic on WGBS data:

java -jar -Xms8G -Xmx8G

/software/Trimmomatic-0.36/trimmomatic.jar PE -threads 3

/raw_data/sample1_1.fq.gz

/raw_data/sample1_2.fq.gz

/trimmed_data/sample1_trimmed_R1.fastq

/trimmed_data/sample1_trimmed_R2.fastq

ILLUMINACLIP:/trimmed_data/adapters.fasta:2:30:10

S L I D INGWINDOW:5 : 2 0 M INL EN : 50 HEADCROP : 10

LEADING:5 TRAILING:5
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TABLE 2 Trimming software.

Software package Website link Reference

Trim Galore! https://github.com/FelixKrueger/TrimGalore

Trimmomatic https://github.com/timflutre/trimmomatic (Bolger et al., 2014)

Cutadapt https://github.com/marcelm/cutadapt/ (Martin, 2011)

NGS QC Toolkit http://www.nipgr.res.in/ngsqctoolkit.html (Patel and Jain, 2012)

ngsShoRT http://research.bioinformatics.udel.edu/genomics/ngsShoRT/ (Chen et al., 2014)

UrQt https://lbbe.univ-lyon1.fr/-UrQt-.html (Modolo and Lerat, 2015)

Flexbar https://github.com/seqan/flexbar (Dodt et al., 2012)
F
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FIGURE 2

Quality control of sequencing data. Examples of plots from bis-RAD-seq experiment (own data). (A) Per base sequence quality shows the distribution of
Phred quality of the bases (y-axis) along the length of the reads from base 0 to 150 (x-axis). (B) Per sequence quality scores shows the mean sequence
quality as assessed by the Phred score (x-axis) in the number of overall sequences (y-axis). (C) Per base sequence content show the percentage of the
four bases (T in red, C in blue, A in green and G in brown) along the length of the read from position 0 to 150 (x-axis). (D) The sequence duplication
levels show the percent of sequences and their corresponding duplication levels (x-axis). (E) Simultaneous visualization of per base sequence quality
from multiple samples by MultiQC software. The distribution of Phred quality of the bases (y-axis) along the length of the reads from base 0 to 150
(x-axis) is shown and green lines represent multiple samples.
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2.4 Alignment

Bisulfite conversion depletes the genome of unmethylated

cytosines which represents a challenge for the normal alignment

procedure of reads to a large reference genome. Softwares developed

for standard alignment procedures are not adequate in this case due to

the conversion effect (Laird, 2010). This challenge has been

circumvented by two different algorithms:
Fron
1) Wild card aligners. In this case, the Cs of the genome are

replaced by Y which is the wild-card letter that is able to

match both Cs and Ts, equivalent to Cs and 5mCs in the

original molecule. Otherwise, these aligners modify the

alignment score matrix in a manner that allows mismatch

between Cs in the original molecule and Ts in the sequence of

the read. Examples of wild card aligners include BSMAP and

RRBSMAP (Xi and Li, 2009; Xi et al., 2012).

2) Three-letter aligners. In this case, all the Cs are converted into

Ts in both the reads to be aligned and in the genomic

sequence. The alignment is simplified and carried out using

only three-letters of the nucleotide alphabet with C excluded.

In this case, any standard aligner can be used at the lower

level of the package, such as Bowtie or Bowtie2 (Langmead

et al., 2009). Examples of three-letter aligners include

Bismark, bwa-meth and BS-Seeker (Chen et al., 2010;

Krueger and Andrews, 2011; Krueger et al., 2012, Pedersen

et al., 2014).
Example code using bwa-meth:

Index reference genome

python/software/bwa-meth/bwameth.py index/genome/

species-genome.fasta

Align reads to reference genome

python

/software/bwa-meth/bwameth.py–threads 16

–reference/genome/species-genome.fasta

/trimmed_data/sample1_trimmed_R1.fastq

/trimmed_data/sample1_trimmed_R2.fastq

| samtools view -Sb -q 10 - >/alignments/sample1.bam

Example code using Bismark:

bismark

/reference/genome/

-1 sample1_trimmed_R1.fastq

-2 sample1_trimmed_R2.fastq

–non_directional –un -o alignments

bismark

/software/bismark/Genome/

-1 sample1_trimmed_R1. fastq

-2 sample1_trimmed_R2.fastq

–non_directional –un -o alignments

Wild card aligners typically result in higher genomic coverage, but

also in the introduction of bias towards higher DNA methylation as

compared to three-letter aligners. This is relevant mainly in parts of

the genome such as repetitive sequences. When selecting an aligner,

considerations such as speed, computer memory and program use are

more important (Bock, 2012). A recent comprehensive comparison of
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the most commonly used aligners should be consulted before

executing this step (Nunn et al., 2021). In any case, mapping of the

reads to the genome needs to be precise because otherwise it would

result in biased DNA methylation levels calculated on the basis of

methylated and unmethylated reads (Bock et al., 2010).
2.5 Methylation extraction

The methylation state of each C is extracted according to the

alignments. Cytosines from the aligned sequences are transcribed into

a table format where each row corresponds to a cytosine and its genomic

position according the chromosome and position, methylation state and

strand. Coding of this information within the table depends on the

software used. For example, the Bismark (Krueger and Andrews, 2011)

primary alignment output codes cytosines depending on the context, as z

in CpG context, x in CHG context and h in CHH context. Methylation

status is coded as uppercase (Z, X, H) for methylated and lowercase (z, x,

h) for unmethylated. This information is transcribed into + for

methylated and - for unmethylated cytosines in the methylation

extraction file.

Example code using MethylDackel for use with methylKit:

MethylDackel extract –OT 0,0,0,145 –OB 3,0,6,0 –methylKit

-o/methylation_extraction/sample1.methylKit

/genome/species-genome.fasta

sample1-aligned.bam

Example code using Bismark:

bismark_methylation_extractor sample1_aligned.bam -p –

merge_non_CpG -o extraction –bedGraph –cutoff 1
2.6 Bisulfite conversion rate

Evaluation of bisulfite conversion efficiency is an important step

of the whole procedure because if this fails, then conclusions on the

methylation status of the cytosines are erroneous. Spike-in sequences

of knownmethylation status may have been introduced during library

preparation to assist with bisulfite conversion rate estimation. If not,

bisulfite conversion rate can be estimated in silico. Tools like the

‘bsrate’ script of the MethPipe pipeline (Song et al., 2013) allow for an

automatic calculation of the bisulfite conversion ratio. Otherwise, one

can make use of the percent of Cs methylated in a CHH context where

C is cytosine and H can be any nucleotide except of Gs. In this case,

the percent of these Cs is subtracted from 100 and the result is the

bisulfite conversion rate. In current DNA methylation analysis

procedures, bisulfite conversion rates should be as high as possible.

Typical good values are >99%.
3 Statistical analysis

3.1 Objective

The objective of this step is to identify CpGs the methylation

levels of which allow to predict the age of an individual. The

methylation of these CpGs may be decreasing or increasing with
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age with different slopes. The methylation of each CpG will be given a

specific weight (coefficient) and their combination will be sufficient to

predict age. These coefficients were shown to differ in the same CpGs

between broad age groups in mammals, including humans (younger,

middle-aged and older). Therefore, the extreme age groups should be

considered with caution (Field et al., 2018) but nevertheless included

for the development of the clock. The statistical analysis includes a

typical machine learning model building (Figure 3). Building of

machine learning models for age prediction follows the same

principles as for any biological feature predicted from epigenetic

biomarkers (Anastasiadi and Beemelmanns, 2023). The outcome

variable is quantitative (age) and thus we deal with a regression

problem aiming to predict the outcome variable on the basis of the

independent variable(s) by means of a fitting curve explaining the

input. When running a regression trying to predict a quantitative

value (i.e. age) with many predictors (CpGs) results tend to overfit,

reducing the predictive value. Penalized regression circumvent this

problem by shrinking values of the predictors, being the

recommended for age prediction based on CpG methylation (See

Section 3.3).
3.2 Data structure

The dataset consists of:
Fron
1) Biological samples that cover a defined age range. The total

number of samples should ensure covering the full age range

of the species considered, and may vary between species in
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the extremes of lifespan. In the published literature of fish

epigenetic clocks, the total number of samples range between

10 in Northern red snapper and red grouper (Weber et al.,

2021) and 141 in Australian lungfish (Mayne et al., 2021b)

with mean 46 samples (Piferrer and Anastasiadi, 2023). These

numbers maybe suboptimal, since the minimum sample size

according to simulations using human and zebrafish (Danio

rerio) data is 70 (Mayne et al., 2021a). If feasible, 134 samples

should be ideally included according to the same simulations,

a recommendation for all new piscine epigenetic clocks

(Mayne et al., 2021a). In order to build a prediction model,

these will have to be divided into training and test sets. The

training set is used for the machine to learn, to fit the

parameters of the model. The test set is an independent set

of data which the model built predicts and thus serves as an

evaluation dataset of the model fit. Usually, the original

dataset is split in 70-80% of the observations into training

and 20-30% of the observations into the test set, using

random procedures.

2) The methylation levels of target CpGs. Depending on the

technique used, the number of CpGs will be in the order of

hundreds (e.g. MBS), thousands (e.g. bis-RAD-seq),

hundreds of thousands (e.g. RRBS) or millions (e.g.

WGBS). Since many epigenetic clocks across a genome are

possible (Porter et al., 2021) and extremely accurate

epigenetic clocks with only 3 carefully selected CpGs have

been constructed in mice (Han et al., 2018), the number of

CpGs analyzed are not expected to affect the overall accuracy.

However, each epigenetic clock or model will be unique as

will be the coefficients attributed to each CpG of the clock.

This type of data is not independent, since the methylation of

one CpG may depend on the methylation of its neighboring

CpG and are characterized by strong multicollinearity, where

a large number of CpGs may be closely related to each other.

Genome-wide patterns of DNA methylation in vertebrates

are bimodal with a specific CpGs showing 0 or 100%

methylation.
3.3 Penalized regressions

In the development of epigenetic clocks we are dealing with a

large multivariate dataset, where the number of variables (the

different CpGs, at least the ones initially analyzed) is much, much

higher than the number of samples (biological samples). Thus, the

standard linear model is not suitable to use. A way to circumvent the

structure of the dataset is to use penalized regressions. This approach

was already implemented by Horvath (2013) when constructing the

first epigenetic clock in humans. Penalized regressions allow to

construct linear regression models that are penalized when they

have too many variables (Kassambara, 2018). The penalization

occurs via the addition of a constraint in the equation (Bruce and

Bruce, 2017). This increases bias but, importantly, reduces variance.

The methodology to achieve this is shrinkage or regularization, which

results in the shrinkage of some coefficients values to zero. This allows
FIGURE 3

Workflow for machine learning model building for epigenetic clock.
Data are split into training and test, model is tuned and evaluated
using the training dataset, the optimal model is selected and evaluated
using the test dataset. If model performance is not optimal, the
procedure may be repeated using the training dataset. The age in
independent data can be predicted by the optimal final model or
“epigenetic clock”.
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for exclusion of the variables (i.e., individual CpGs) that contribute

less by shrinking their coefficient or in other words, to retain the

minimum number of CpGs that are valuable for age prediction.

There are three most commonly used methods of penalized

regression and typically they are all tested when constructing an

epigenetic age prediction clock for a new species:
Fron
1) Ridge regression. The least contributing variables will have

their coefficient very close to zero.

2) LASSO regression (Least Absolute Shrinkage and Selection

Operator). The variables with the least contribution will be

forced to be zero. This will produce models with reduced

complexity as compared to ridge regression, where all

variables are kept.

3) Elastic net regression. This type of penalized regression stands

in between the previous two types, where some coefficients

will be shrank, as in ridge regression, and some coefficients

will be set to zero, as in LASSO.
There are advantages and disadvantages of each penalized

regression type over the other that depend on the specific dataset.

LASSO will perform better when there are few predictors with large

coefficients and a lot of predictors with small coefficients, while ridge

will perform better where there are a lot of predictors with similar

coefficients. Ridge regression keeps all variables, therefore, is not

recommended when genome-wide techniques have been used. In any

case, parameters of the model have to be tuned and the model has to

be selected by evaluating its performance, as explained below.
3.4 Machine learning model building

Penalized regressions are machine learning models and thus, to

build them, a standard machine learning model building procedure

should be followed (Figure 3). In aquatic organisms, machine learning

methods for developing epigenetic biomarkers have been applied in

limited cases, while the procedure has been recently reviewed in

details (Anastasiadi and Beemelmanns, 2023).

Below we explain the typical workflow of the procedure that can

be implemented in R using the specialized caret (Classification And

REgression Training) package (Kuhn, 2008). Nevertheless, other

packages or programming language (e.g., Python) can also be used

to navigate the same workflow.

1) Data splitting. Data are split into at least 2 datasets that allow to

later evaluate model performance. The training dataset contains 70-

80% of the samples and is used to for algorithm training and

parameter tuning. The test datasets contains the remaining 20-30%

of samples and is used once the right model has been trained and

selected to test whether the model can be generalized in unseen data.

Ideally, training dataset is sufficiently large to be split further into

training and validation dataset during model performance

assessment. However, this is rarely the case and instead resampling

techniques are used. With resampling, iterative splitting into training

and validation datasets occurs and prediction errors of all splitting

cycles are averaged at the end. K-fold cross-validation (CV) has been

extensively used in fish epigenetic clock building. Data splitting can be
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performed using specific functions that randomly splits the dataset,

while keeping track of the randomness by setting the seed to a specific

number in R.

R code example:

library(tidymodels)

library(readr)

set.seed(123)

splits <- initial_split(meth.age.df, strata = age)

age_other <- training(splits)

age_test <- testing(splits)

Training set proportions by age class

age_other %>%

count(age) %>%

mutate(prop = n/sum(n))

Test set proportions by age class

age_test %>%

count(age) %>%

mutate(prop = n/sum(n))

2) Data preparation and pre-processing. This step may include a)

exclusion of CpGs the methylation of which has zero or near-zero

variance across ages in the training dataset; b) dealing with

multicollinearity by identifying CpGs with correlated methylation –a

common feature in this type of data–; c) data transformation of centering

and scaling variables to mean 0 and standard deviation 1; d) imputation

of missing values if necessary. Imputations can be performed by the mice

(Multivariate Imputation by Chained Equations) package in R (van

Buuren and Groothuis-Oudshoorn, 2011).

Correlation of CpG methylation with other biological parameters

that we want to account for, such as diet, sex or other environmental

factors, can be dealt with by exclusion of the correlated CpGs when

lots of CpGs. This type of correlation is likely to be confounding

factor in the model if these biological parameters are parallel to age

(i.e., we have many samples of younger males and older females).

R code example:

a) Excluding features with zero or near-zero variance among groups

library(caret)

library(dplyr)

## Detect features and visualize them

nzv.cpg <- nearZeroVar(age_other, saveMetrics= TRUE,

names=TRUE, freqCut = 85/15, uniqueCut = 50)

boxplot(nzv.cpg$percentUnique)

boxplot(nzv.cpg$freqRatio)

## Detect features, exclude them and save the object

nzv.cpg.list <- nearZeroVar(age_other, freqCut = 85/15,

uniqueCut = 50) filteredDescr <- age_other[, -nzv.cpg.list]

dim(filteredDescr)

b) Exclude highly correlated variables

highlyCorDescr <- findCorrelation(filteredDescr, cutoff = 0.8)

filteredDescr.cor <- filteredDescr[,-highlyCorDescr]

c) Transformation via preProcess data

preProcValues <- preProcess(filteredDescr.cor, method = c

(“center”, “scale”))

trainTransformed <- predict(preProcValues, filteredDescr.cor)

d) Imputation of missing values

Method 1 using package “mice” (Multiple Imputation by

Chained Equation)

library(mice)
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init = mice(meth.age.df, maxit=0)

meth = init$method

predM = init$predictorMatrix

colnames(meth.age.df)

predM[, c("age")]=0

meth[c("age")]=""

set.seed(100)

i m p u t e d = m i c e ( m e t h . a g e . d f , m e t h o d =m e t h ,

predictorMatrix=predM, m=5)

Method 2 using package “zoo” (Missing values replaced by the

mean or other function of its group)

library(zoo)

meth.age.df.na <- na.aggregate(meth.age.df)

3) Model tuning. The best tuning parameters for alpha and

lambda of the penalized regression algorithm are selected. Alpha

defines the type of regression with a=0 ridge, a=1 LASSO and 0<a<1
elastic net, while lambda defines the amount of shrinkage. Lambda

will be automatically selected to minimize prediction error.

Simultaneously feature selection, i.e., selection of the most

informative CpGs, is performed.

4) Model evaluation is performed using resampling techniques, k-

fold CV, repeated CV or leave-one-out CV (LOOCV). The error will

be minimized after several repeated rounds of dataset splitting and

finally, the optimal model is selected.

R code example using caret (steps 3-4):

Define resampling technique to be used. Here we choose repeated

cross-validation

fi tContro l < - t ra inContro l (method = ‘ repeatedcv ’ ,

number=10, repeats=10)

Define range of lambda to be tested

lambda <- 10^seq(-3, 3, length = 100)

Run penalized regressions. Examples of ridge, LASSO and elastic

net regressions are shown here.

Ridge regression. This regression may not be relevant in cases of

RRBS or WGBS data since it keeps all CpGs available, but may be

worth in cases of targeted methods (e.g., MBS).

set.seed(123)

ridge_model <- train(age ~., data = trainTransformed, method =

“glmnet”, trControl = fitControl, tuneGrid = data.frame(alpha = 0,

lambda = 10^seq(-3, 3, length = 100)), tuneLength = 10)

LASSO

set.seed(123)

lasso_model <- train(age ~., data = trainTransformed, method =

“glmnet”, trControl = fitControl, tuneGrid = data.frame(alpha = 1,

lambda = 10^seq(-3, 3, length = 100)), tuneLength = 10)

In Elastic net best tuning of both lambda and alpha will be

automatically selected

set.seed(123)

elastic_model <- train(age ~., data = trainTransformed, method =

“glmnet”, trControl = fitControl, tuneLength = 10)

Elastic net with alpha set to 0.5 and best tuning of lambda will be

automatically selected

set.seed(123)
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elastic_model.05 <- train(age ~., data = trainTransformed,

method = “glmnet”, trControl = fitControl, tuneGrid = data.frame

(alpha = 0.5, lambda = 10^seq(-3, 3, length = 100)), tuneLength = 10)

Compare metrics of the models

models_compare <- resamples ( l i s t (R=r idge_model ,

LM=lasso_model, EM=elastic_model, EM05=elastic_model.05))

summary(models_compare)

Count features (CpGs) kept by each model. An ideal piscine

epigenetic clock with wide application would contain as few CpGs as

possible without compromising accuracy and precision. Example

using elastic net.

sum(coef(elastic_model$finalModel, elastic_model$bestTune

$lambda)!=0)

Compare metrics in the training datasets

Ridge

predicted.age <- predict.train(ridge_model)

postResample(pred = predicted.age, trainTransformed$age)

cor.test(predicted.age, trainTransformed$age)

LASSO

predicted.age <- predict.train(lasso_model)

postResample(pred = predicted.age, trainTransformed$age)

cor.test(predicted.age, trainTransformed$age)

Elastic net

predicted.age <- predict.train(elastic_model)

postResample(pred = predicted.age, trainTransformed$age)

cor.test(predicted.age, trainTransformed$age)

5) Assembling predictions. The optimal model needs to be further

evaluated using the test dataset in order to assess how well it can

generalize. The final model will be then built using the optimal model

run on the whole training dataset.

R code example: Compare metrics in the test dataset

Ridge

predict.ridge.test <- predict(ridge_model, testTransformed)

postResample(pred = predict.ridge.test, testTransformed$age)

cor.test(predict.ridge.test, testTransformed$age)

LASSO

predict.lasso.test <- predict(lasso_model, testTransformed)

postResample(pred = predict.lasso.test, testTransformed$age)

cor.test(predict.lasso.test testTransformed$age

Elastic net

predict.enet.test <- predict(elastic_model, testTransformed)

postResample(pred = predict.enet.test, testTransformed$age)

cor.test(predict.enet.test, testTransformed$age)

Build and evaluate the final model

finalmodelCtrl <- trainControl(method = “none”)

set.seed(123)

final <- train(age ~., data = trainTransformed, method =

"glmnet", trControl=finalmodelCtrl, tuneGrid = expand.grid(alpha

= bestalpha, lambda = bestlambda))

predicted.final.train <- predict(final, trainTransformed)

cor.test(predicted.final.train, trainTransformed$age)

Evaluation of models during training as well as at the final model

is done by assessing the predictive accuracy via loss functions
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comparing predicted age vs actual age. The measures to take into

account and report include:
Fron
a) Root Mean Squared Error (RMSE) = average deviation of the

predictions from the observations.

b) Mean Absolute Error (MAE) = average of the absolute

differences between the observed and predicted values.

c) R2 = the squared correlation between the observed and

predicted values. This value shows how well the selected

variables (methylation of CpGs) explain the variability of the

dependent variable (age).
The errors should be minimized while the R2 should

be maximized.

Epigenetic clocks are considered valid if the correlation (R) is

higher than 0.80 in large independent data covering a broad age range

(Horvath and Raj, 2018). Piscine epigenetic clocks show a mean

correlation of 0.93 (Piferrer and Anastasiadi, 2023), while higher

values are also possible. Precision reported as MAE is used with actual

time units (days, months or years) and shows a mean of 0.87 years in

piscine clocks, or an average of about 3.5% of the total lifespan

(Piferrer and Anastasiadi, 2023).
4 Conclusions

Epigenetic clocks for age prediction are typically constructed using

DNA methylation sequencing technologies that involve the use of

bisulfite conversion and provide information at single nucleotide

resolution. Bioinformatic analysis of the data follows mostly standard

procedures of sequencing reads analysis, however, care should be taken to

account for C to T conversion during the alignment step. Methylation

values are extracted per base and this results in the dataset consisting of

individual fish aged samples as rows and methylation values of

interrogated CpGs as columns. This multivariate dataset is submitted

to machine learning procedures aiming to select features, i.e., CpGs the

methylation of which is enough to predict age. The machine learning

procedures used are penalized (or regularized) regressions which fit well

the structure of the multivariate dataset. At the end of the procedure, the

optimal model or “epigenetic clock” is constructed. This constitutes a

molecular resource to be implemented by scientists and managers for

accurate age prediction of fish. The simultaneous interrogation of the

methylation of a few target CpGs forming the epigenetic clock of a large

amount of samples in a ready-to-use kit constitutes the ultimate goal for

application of this HTS to fisheries and conservation.
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