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An iterative labeling method for
annotating marine life imagery
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This paper presents a labeling methodology for marine life data using a weakly

supervised learning framework. The methodology iteratively trains a deep

learning model using non-expert labels obtained from crowdsourcing. This

approach enables us to converge on a labeled image dataset through multiple

training and production loops that leverage crowdsourcing interfaces. We

present our algorithm and its results on two separate sets of image data

collected using the Seabed autonomous underwater vehicle. The first dataset

consists of 10,505 images that were point annotated by NOAA biologists. This

dataset allows us to validate the accuracy of our labeling process. We also apply

our algorithm and methodology to a second dataset consisting of 3,968

completely unlabeled images. These image categories are challenging to label,

such as sponges. Qualitatively, our results indicate that training with a tiny subset

and iterating on those results allows us to converge to a large, highly annotated

dataset with a small number of iterations. To demonstrate the effectiveness of

our methodology quantitatively, we tabulate the mean average precision (mAP)

of the model as the number of iterations increases.

KEYWORDS

iterative labeling, active learning, Faster R-CNN, NOAA, Amazon MTurk, auto-approval,
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1 Introduction

Technologies for imaging the deep seafloor have evolved significantly over the last three

decades (Durden et al., 2016). These technologies have enabled the study andmonitoring of

the spatiotemporal changes of marine life in the vast ocean space. They should ultimately

enable us to conduct more efficient fishery independent surveys, yielding improved stock

assessments and ecosystem-based management (Francis et al., 2007). Manned

submersibles, Remotely Operated Vehicles (ROVs), Autonomous Underwater Vehicles

(AUVs) (Singh et al., 2004b), towed vehicles (Taylor et al., 2008), and bottom-mounted and

midwater cameras (Amin et al., 2017) have all contributed to an explosion of data in terms

of our ability to obtain high-resolution, true-color (Kaeli et al., 2011) camera

imagery underwater.
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The reality, however, is that extracting actionable information

from our large underwater image datasets remains a challenging

task. The ability to process the data is not proportional to the rate at

which the data is acquired, as traditional methods were resource-

intensive in terms of manpower, time, and cost. Efforts are

underway to analyze the imagery with various levels of

automation using tools from machine learning for a variety of

fisheries and habitat monitoring applications, including coral reefs

(Singh et al., 2004a; Gleason et al., 2007; Purser et al., 2009; Chen

et al., 2021), starfish (Clement et al., 2005; Smith and Dunbabin,

2007), scallops (Dawkins et al., 2017), and commercially important

groundfish (Tolimieri et al., 2008).

In parallel, there have been significant developments in deep

learning (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014),

which further propelled these efforts by truly leveraging the

availability of large amounts of data. Multiple works have

explored the use of standard deep convolutional neural networks

for image segmentation and classification (Ramani and Patrick,

1992; Anantharajah et al., 2014; Boom et al., 2014; Cutter et al.,

2015; Fisher et al., 2016; Marburg and Bigham, 2016; Sung et al.,

2017; Kaveti and Singh, 2018; Wang et al., 2021). Reinforcement

learning has been used to enhance underwater imagery to improve

the performance of object detection networks, (Wang et al., 2023; yu

Wang et al., 2023). These works have helped marine biologists

analyze underwater imagery far more efficiently.
1.1 Generation of labeled
underwater datasets

The remarkable success of deep learning techniques is primarily

due to the availability of large labeled datasets. A number of public

underwater image databases, such as FathomNet (Katija et al.,

2021), EcoTaxa (Blue-Cloud, 2019), DeepFish (Saleh et al., 2020),

WildFish++ (Zhuang et al., 2021), and BIIGLE 2.0 (Langenkämper

et al., 2017), have come into existence in recent years. These works

provide a platform and tools for annotating, uploading, and

downloading annotated images, and sometimes also training or

testing machine learning models. Generating labeled datasets by

manually going through vast amounts of video and image streams is

a time-consuming task. Several efforts have been initiated toward

machine learning-assisted automation for annotating underwater

datasets. CoralNet 1.0 (Chen et al., 2021) is a data repository that

also deploys a feature extractor network pre-trained on a large

collection of data to generate annotations of coral reefs

automatically. (Zurowietz et al., 2018) propose a multi-stage

method where an auto encoder network generates training

proposals that are filtered by human observers and used to train a

segmentation network, the results of which are further

reviewed manually.

However, these annotation approaches require human experts

with marine biology knowledge, which makes it difficult to

generalize and scale to huge volumes of data. In fact, there are a

large number of underwater image datasets available with no

efficient means to label them. One such example is shown in

Figure 1. The absence of well-labeled data is still a primary factor
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limiting the widespread use of machine learning techniques for

marine science research.

One simple solution is to utilize crowdsourcing platforms

involving non-expert human users, such as Mechanical Turk

(Crowston, 2012) and Zooniverse (Simpson et al., 2014)

Crowdsourcing platforms are fairly inexpensive and highly

efficient for the rapid generation of annotated datasets. But the

results for specialized imagery, such as that associated with marine

biology, are often mixed and unreliable. Our own experience has

shown that some workers annotate images with randomly placed

labels, which requires a prohibitive amount of time and effort spent

approving or rejecting these results.
1.2 Performance enhancement on
crowdsourcing platforms

Many human-machine collaboration methods have been

proposed to improve the efficiency of human in-the-loop

annotation. Branson et al. (2010) presents an interactive, hybrid

human-computer method for image classification. Deng et al.

(2014) focuses on multi-label annotation, which finds the

correlation between objects in the real world to reduce the human

computation time required for checking their existence in the

image. Russakovsky et al. (2015) asks human annotators to

answer a series of questions to check and update the predicted

bounding boxes, while Wah et al. (2011) queries the user with

binary questions to locate the part of the object. Vijayanarasimhan

and Grauman (2008) incrementally updates the classifier

by requesting multi-level annotations, ranging from full

segmentation to a present/absent flag on the image. Kaufmann

et al. (2011) and Litman et al. (2015) adapt different models from

motivation theory and have studied the effect of extrinsic and

intrinsic motivation on worker performance.

Some recent research has shown that when non-experts are

trained and clearly instructed on the annotation protocol, they can

produce accurate results (Cox et al., 2012; Matabos et al., 2017;

Langenkämper et al., 2019), thus demonstrating the potential for

combining citizen science with machine learning. Kaveti and Akbar

(2020) designed an enhanced MTurk interface and added a guided

practice test to achieve higher annotation accuracy. Bhattacharjee and

Agrawal (2021) simplified complex tasks on MTurk by combining

batches, dummy variables, and worker qualifications. Our work is

most similar to LSUN (Yu et al., 2015), in that they hid ground truth

labels in the task to verify worker performance and allowed multiple

workers to label the same image for quality control.

Thus, we propose a human-in-the-loop annotation

methodology that can label very large datasets automatically by

combining machine learning with Mechanical Turk crowdsourcing.

We utilize a unique iterative process with auto-approval that allows

us to check the quality of the workers algorithmically, precisely,

efficiently, and without any human intervention. We can also use

the same techniques for converting historical expert annotations, as

shown in Figure 2A, to quickly create labeled data sets for machine

learning that are critically required for fisheries and ecosystem-

based management applications.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1094190
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2023.1094190
In contrast to LSUN (Yu et al., 2015), we only label once per

object during the iterative labeling process if the category is not

controversial. We define our task as working with individual objects

in an image, as opposed to considering all the objects in an entire

image. Additionally, we remove qualification tests and add tutorials

to lower the barriers for workers to enter our tasks. In this way, we

can provide the simplest form of the task to Mechanical

Turk workers.
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2 The iterative labeling process

The overview of our method for the iterated labeling process for

underwater images is illustrated in Figure 3. The process begins by

building an initial deep learning model for making bounding box

predictions on a small subset of underwater images. These

predictions are then published to a crowdsourcing platform with

a well-designed assistive interface for validation. An auto-approval
FIGURE 1

Underwater image samples from one of the datasets with no annotations. There are very large marine life related image datasets that are freely
available but are not annotated. These would require significant efforts from experts in the field to label.
BA

FIGURE 2

NOAA annotation ground truth (A) Underwater images annotated by NOAA marine biologists, with dot annotations on each object. (B) Extended dot
annotations to bounding box labels with MTurk workers.
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method filters out bad labels from the crowdsourcing platform. The

filtered labels are added to the dataset and used for further training

to generate new predictions. Therefore, we start with a small set of

annotations and increase the number of annotations with each loop

until all objects in all images have been labeled. Figure 4 shows an

example of the predict-update loop for a single image.
2.1 The initial model

We start with a small seed dataset labeled by marine biologists.

This serves as our initial dataset, which we use to train our deep

learning object detection model. The seed dataset should consist of

different forms of the object that we are about to label. In our case,

this data is not large enough to completely train a high accuracy

model, but it is sufficient to make reasonable predictions to feed into

the first iteration of our process.

As the iterative labeling process does not have real-time

constraints, we chose Faster R-CNN (Ren et al., 2015) as the

object detection network in combination with ResNet-50 (He

et al., 2015) as the backbone network. Feature Pyramid Networks

(Lin et al., 2016) were applied for multi-scale object detection. We

built the network based on Detectron2 (Wu et al., 2019). We trained

the object detection network on 2 RTX 2080 GPUs with a batch size

of 2 for 60 epochs. Since the batch size is very small, group

normalization (Wu and He, 2018) was used instead of batch

normalization. Typically, we use less than 100 images for the

initial dataset, and the initial data only takes a few hours to label.

After training the initial model, we utilize it to predict the learned

object categories on new unlabeled image data. However, as there is

no ground truth available for this data, we cannot be certain if these

predictions are true positives. To address this issue, we enlist workers

from Mechanical Turk to classify and correct the predictions.
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2.2 Assistive annotation interface design

In this section, we describe the design and development of the

user interface on MTurk used to facilitate the human-in-the-loop

learning process. One of the key aspects of the interface is

presenting the user with a convenient way to determine the

accuracy of the deep learning model’s predictions, and to

annotate them if they are correct. These correct object detections

are then used as ground truth labels to continue training the deep

learning model. The fundamental idea is that through a series of

predict (using our algorithm), correct and update (with Mechanical

Turk workers), and train (using our algorithm) loops, we will end

up with a superior model.

The most common interface design for labeling object instances

in images on MTurk requires workers to detect all objects in the

image and draw bounding boxes for each object before moving on

to the next image. This process can be cumbersome when there are

a lot ( > 30) of instances per image to label and is especially

challenging when the dataset consists of unique, specialized

categories of objects. This can also affect the worker’s motivation

to perform the task (Kaveti and Akbar, 2020). We have made a few

novel design choices to construct our MTurk annotation interface,

as described below. Figure 5 shows a snapshot of our assistive

annotation interface.

2.2.1 Tutorial/examples of annotations
One of the challenges of underwater datasets is that they contain

unique and uncommon objects. Moreover, the workers on MTurk

come from diverse backgrounds with variability in experience and

expertise. To address this issue, we have dedicated a small portion of

the interface to showcase a set of labeling examples for the various

marine species encountered in the dataset. This helps to familiarize

workers with the dataset and improve the quality of their labeling.
FIGURE 3

The complete iterative labeling process: We begin by training the initial dataset with Faster R-CNN (Ren et al., 2015) in order to obtain an initial
model. Next, we use this initial model to predict objects in a new image set, and publish the prediction boxes to MTurk for correction. Auto-approval
filters the labeling results. Then, we update the labels and train on half-labeled images to obtain a new model and prediction set for the next loop.
Finally, we converge to a completely labeled dataset in 3-6 iterations.
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2.2.2 Labeling cues
Instead of asking workers to find all possible instances of

categories in a raw image, we provide several labeling cues to

make it easy for them. We show the predictions made by the

deep learning model as a dashed bounding box. The workers are

then asked to adjust it to tightly fit the object and choose the species

from a dropdown menu. These features help correct localization

and classification losses during supervision. Sometimes, the

background in images can be mistakenly predicted as a species.

To address this issue, we added a “None of the above” option to the

species dropdown menu, which corresponds to the background.

2.2.3 UI controls
The images in our underwater dataset can contain 40-50

instances of relevant objects per image. Sometimes, these instances

can be really small and occluded by other objects due to overlap, as

shown in Figure 4. Therefore, we choose to zoom in and display each

bounding box prediction individually, rather than showing all of the

boxes at the same time. This allows workers to focus on a single object

at a time, which is beneficial for labeling tiny objects and also

improves user performance when adjusting the bounding boxes.
2.3 The auto-approval process

The biggest drawback of the MTurk platform is with respect to

the quality control of workers. Although MTurk allows one to select
Frontiers in Marine Science 05
workers based on certain criteria or through a test, requesters often

end up spending a lot of time and resources reviewing annotation

results. This negates the purpose of wanting to create a fully

automated human-in-the-loop annotation process. Therefore, we

have developed an auto-approval mechanism to assess how well

workers are performing and to accept or reject annotations without

any intervention.

The auto-approval is accomplished by randomly hiding ground

truth tests in the labeling tasks. Each MTurk task consists of nine

labeling tasks and one ground truth test task. The ground truth

labels are obtained from a manual labeling, which comes from the

initial and validation datasets. We compare the worker’s labeled

bounding box to the ground truth bounding box, and compute the

intersection over union (IOU) of the two bounding boxes. We

accept the worker’s annotations only if the IoU score is higher than

the threshold of 0.75. LSUN (Yu et al., 2015) proposes a similar

method, using hidden ground truth data to validate the MTurk

labeling results. However, they use the entire image as a labeling

task, while we use every single object.

2.3.1 Double checking identifications
The incorrect classification of objects can lead to incorrect

training. Therefore, even if a sub-task has passed the hidden

ground truth test, we still need to double-check the class that is

chosen. If the selected class is different from the predicted class, we

add the sub-task to the republish list. Meanwhile, we change the

class of the predicted box to the one selected by the current worker.
B C

D E F

A

FIGURE 4

An example of the iterative labeling process. The orange dashed boxes represent the predictions of each loop. These prediction boxes are published
to MTurk for correction. The updated labels, based on the MTurk results, are then used for the next iteration (A) Loop 1 predict, (B) Loop 2 predict,
(C) Loop 3 predict, (D) Loop 1 update, (E) Loop 2 update, (F) Loop 3 update.
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This means that the class of the object is determined only if two

consecutive workers choose the same category. Otherwise, the

prediction box would be repeatedly republished under this

mechanism. If an object is actually a background, it would be

republished at least twice to fully determine that it is

the background.

To get a sense of the efficiency and cost of the process, we

examined one representative batch of tasks that was given to MTurk

workers. In this batch, there were 4,583 tasks. Each task required 9

labels and 1 ground truth test, and cost three cents, which works out

to a cent for three labels. On average, each task took 3 minutes and 5

seconds to complete, and our tasks are easy to complete. For the

entire batch, it took about 6 hours to finish all the tasks. Out of the

4,583 tasks in this particular batch, 3,413 tasks were auto-approved

as passed, while 1,170 were rejected.
2.4 Training on half-labeled images

In the first iteration, where the prediction is based on the initial

model, not all object instances in the images will be discovered, and

the accuracy of the predictions cannot be guaranteed. This is

because the initial model is trained only on a small seed dataset,

which is insufficient to fully train the model. These predictions are

sent to MTurk for correction. The new bounding boxes are then

used to supervise the training of our deep learning model, which in

turn makes new and more accurate predictions. However, since the

object labels of the images are incomplete, some issues arise in the

training process. Therefore, we make modifications to the training
Frontiers in Marine Science 06
phase, including feeding appropriate training data and loss

functions to suit our iterative labeling process. The detailed

changes to the loss function can be found in 2.4.4.

2.4.1 Modifications to Faster R-CNN to avoid
negative mining of potential objects

During the training of an object detection model, if an object is

not labeled in the images, it will be implicitly treated as a

background class. This is especially true for algorithms such as

SSD (Liu et al., 2015) and Faster R-CNN (Ren et al., 2015), which

use negative hard sampling to train the background class. In SSD,

the top N highest confidence predictions that do not match any

ground truth are selected and trained as negative samples.

Meanwhile, Faster R-CNN randomly selects a certain percentage

of prediction boxes without matching ground truths as negative

samples. However, this can cause serious issues with our training

because if half of the objects in the image are not labeled, it will

prevent the trained model from converging.

The solution to this issue is to identify unlabeled potential

objects and avoid training them as negative samples. When the

prediction confidence score of an anchor exceeds a specific

threshold and there are no ground truth objects that match that

prediction, it implies that the model thinks there may be a potential

object at that spot. Therefore, this object should be ignored in the

training process to be discovered later, as shown in Figure 6. In the

Region Proposal Network (RPN) of Faster R-CNN, we mark all the

prior anchors whose confidence score exceeds 0.5 without a ground

truth label as “ignored”. We exclude them from being selected as

negative samples for loss calculations and also prevent them from
FIGURE 5

The Assistive Interface is designed to help MTurk workers by providing them with a tool to focus on a specific object. By simply identifying the
species and fitting the bounding box, the labels’ reliability is significantly improved. The ground truth is hidden at the last task to implement auto-
approval.
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being selected to enter the next stage of the process, which is the

region of interest (ROI) layer.

2.4.2 Training background labels
In the previous section, we described how to avoid training

potential true positive predictions as a background class. In this

section, we discuss how to correctly train the false positive

(background) class. During the iterative labeling process, some

predictions are false positives and are corrected as “background”

by the MTurk workers. These background labels can be used in the

training process.

In the Region Proposal Network (RPN), instead of randomly

selecting negative samples, the boxes that are updated as the

“background” class from the MTurk auto-approval process

should be trained. When the number of negative samples is

significant, the probability of being trained as a potential object is

very low. This is valuable because it increases the precision of our

object detection model and avoids ignoring potential objects. We do

not calculate the localization loss of background labels as they are

negative samples, and their use ends with the RPN. Training

background labels properly can reduce false positives, in other

words, increasing the precision of the model.
2.4.3 Data augmentation
We also perform data augmentation to generate more training

samples. All the images are put through the following

transformations: a flip of the image horizontally and vertically,

adjustments to brightness by scaling the intensity randomly
Frontiers in Marine Science 07
between 0.8 and1.2, and a random scaling factor corresponding to

0.8 to 1.0 of the image size.
2.4.4 Loss function
Taking into account the above mentioned changes to the

training phase, the loss function can be divided into

four components:
•The classification loss, oiLcls(pi, p
*
i ), where the predicted

labels have object class ground truths associated with

them. ground truth bounding boxes are obtained from

MTurk after auto-approval. N : RPN mini-batch size

•The classification lossojLcls(pj, p
*
j ), where a background class

ground truth box is associated with the predicted label. This

ground truth is also obtained from MTurk after the auto-

approved label is selected as back-ground.

•The classification lossokLcls(pk, p
*
k )�, where the predicted box

does not have any ground truth box associated with it but

the prediction score with respect to an object class is less

than 0.5. In this case we consider this as a negative sample.

•The regression loss l 1
NoiLreg(ti, t

*
i ) which is computed for

the predicted labels which have object class ground truth

boxes associated with them.
Putting all the components together the loss function can be

written as

L( pif g, pj
� �

, pkf g, tif g) = 1
N ½o

i
Lcls(pi, p*i )+

o
j
Lcls(pj, p*j )+

o
k

Lcls(pk, p*k )�+

l 1
No

i
Lreg (ti, t*i )

The classification loss is:

Lcls = −½p* · log(p) + (1 − p*) · log(1 − p)�
The localization loss is:

Lreg =
0:5│ t − t* │2

, if   t − t*j j < 1

t − t*j j − 0:5, otherwise

(

where i is the index of an anchor in a mini-batch, whose ground

truth is an object. j is the index of an anchor, whose ground truth is

a labeled background. k is the index of an anchor, which has no

ground truth and pk is lower than the ignore threshold. pi,j,k is the

predicted probability of being an object. p*i,j,k is the ground truth

probability where 1 indicates that it is foreground. 0 means

background. Here p*i = 1, p*j,k = 0. ti is a vector representing the 4

parameterized coordinates of the prediction bounding box. t*i is the

ground truth box associated with a positive anchor. l is the

balancing parameter of object and localization loss.
FIGURE 6

Ignoring potential objects: The dashed bounding boxes represent
potential objects with a significant classification score that have not
yet been verified and labeled. These unlabeled objects may be
wrongly classified as negative samples during training iterations,
leading to an incorrect model. To avoid this, we detect potential
objects using a classification score threshold and exclude them from
the training process.
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3 Results and discussions

3.1 Labeling a ground truth dataset

We have a large dataset with dot annotations provided by

NOAA marine biologists (Figure 2A). These annotations were

made before the advent of machine learning techniques and are

unsuitable for machine learning applications due to the absence of

bounding boxes around the objects. However, this dataset is ideal

for setting up, testing, and validating our efforts. We could then

transfer to other datasets with completely unlabeled data, as we

discuss in the next section.

We publish these dot labels to MTurk workers using our

assistive interface (see Figure 5). The workers can extend the dot

annotations to create tight and accurate bounding boxes with the

help of the instructions. An example of the extended bounding

boxes is shown in Figure 2B. We consider them as ground truth

labels to validate the iterative labeling process.

We divided our dataset into two parts, using 51 images as the

initial dataset and 632 images as our validation dataset (Table 1).

We then applied our iterative labeling process to the remaining

9822 images.

Table 1 shows the iterative labeling results. We ran six iterations

to annotate the dataset. The initial dataset is very small (534 labels, 51

images), and the trained model is relatively poor (0.6 mAP). In the

first loop, most of the rockfish were labeled, as these are easy for the

deep learning model to identify. As the images were half-labeled, we

chose to ignore the threshold of 0.5 to prevent training the model on

rockfish with prediction scores over 0.5. As the loops iterated, the

mAP and recall rate increased, enabling the trained model to detect

more rockfish. In the final loop, the mAP and recall rate stopped

growing, indicating that the model was unable to detect any more

rockfish. We used this as a stopping mechanism for our iterations.

There are a reasonable number of rockfish that are very hard to

detect. Typically, these are small and have low contrast (see
Frontiers in Marine Science 08
Figure 7A). To help our algorithm cope with these issues, we crop

the large-size image (2448 x 2050) into nine sub-images, each

measuring 896 x 896. During prediction, we crop the image in

the same way to maintain scale consistency. We also adjust the

contrast of the images to perform data augmentation. In the end,

about 82% of the rockfish are labeled correctly with very few

false positives.

Along with rockfish labels, we also generate background labels

to identify false positives. These false positives typically include

starfish or invertebrates that resemble fish (see Figure 7B).

We should also point out that the NOAA dataset has been

annotated to a greater level of taxonomic resolution, including

coral, flatfish, groundfish, etc. The classification of the data to such

levels uses very detailed markings and is an interesting and open

problem beyond the scope of this work.
3.2 Labeling a dataset with sponges

Our second illustrative dataset, the Pacstorm dataset, contains

three categories of marine organisms: fish, starfish, and sponge. In

this case, we used 98 images as the initial dataset and 302 as our

validation data. We ran the iterative labeling process on the

remaining 3,568 images to generate labels (see Table 2).

In this dataset, fish and starfish are easy to identify and label, but

sponges are far more challenging. The reasons for this are manifold.

The sponges have many different forms (as shown in Figure 8A).

Some sponges have a hole on top, while others do not. Some

sponges look like white rocks, and others look like white dots.

Sponges also have different colors; while most of them are white,

some are brown, and dead sponges are black. The trickiest problem

is that the sponges can group together (as shown in Figure 8B),

making it hard to decide whether to annotate all of them with one

label or annotate them separately. Some sponges are covered in

mud, with only a small part of them exposed (as shown in
TABLE 1 NOAA dataset with ground truth validation.

Initial dataset

Rockfish Images mAP/50 recall precision

534 51 0.601 0.648 0.758

Iterative labeling process

Loop Rockfish Coverage mAP/50 recall precision

1 54906 0.638 0.680 0.703 0.906

2 60508 0.703 0.724 0.752 0.868

3 65084 0.756 0.778 0.803 0.864

4 67299 0.782 0.792 0.817 0.877

5 68829 0.800 0.824 0.854 0.824

6 70609 0.821 0.828 0.858 0.808
In total, we have 91,228 rockfish dot annotations spread over 10,505 images. These annotations were created by NOAAmarine biologists. We used 534 labels (51 images) as the initial dataset, and
4654 labels (632 images) as the validation dataset. We used the remaining 86,041 labels (9,822 images) to validate the iterative labeling process. NOAA originally provided dot annotations instead
of box annotations. We used the same assistive interface to generate ground truth bounding boxes. The mean average precision calculated at an IOU threshold of 0.50 (mAP/50) is a common
metric used to evaluate the performance of an object detection model, and we evaluated our work in a similar manner.
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Figure 8C). The variety of cases not only confuses the deep learning

model but also the MTurk workers. When annotating the initial and

validation dataset, these problems make it difficult to maintain

consistency in labeling patterns for sponges.

To overcome the problem of different shapes and colors, we

presented a large number of sponge examples alongside the assistive

annotation interface for worker training. By grouping the sponges

together, we can avoid predicting small sponges within a large

labeled sponge group.

In the final count, we labeled 12,660 sponges, 3,588 fish, and

2,241 starfish in 3,568 images (Table 2). The recall rate roughly

shows the coverage of the iterative labeling process. In this case,

about 90% of the fish and sponges were detected and labeled, and
Frontiers in Marine Science 09
over 83% of the sponges were well-labeled. Additionally, we trained

an efficient model with an mAP of about 0.86, corresponding to

these labels.
4 Conclusion

In this paper, we present a method for rapidly labeling large

underwater datasets. We demonstrate that this method is robust,

effective, and efficient for annotating a large number of images

containing difficult classes. We began with a small initial dataset and

utilized an iterative labeling process that gradually generates
TABLE 2 The Pacstorm dataset which consists of fish, starfish and sponges.

Initial dataset

Count Recall Precision mAP/50

Fish Starfish Sponge Fish Starfish Sponge Fish Starfish Sponge All

169 84 247 0.804 0.914 0.583 0.816 0.814 0.772 0.743

Iterative labeling process

Loop Count Recall Precision mAP/50

Fish Starfish Sponge Fish Starfish Sponge Fish Starfish Sponge All

1 3306 2233 9225 0.864 0.957 0.696 0.907 0.981 0.801 0.822

2 3586 2238 10758 0.872 0.943 0.834 0.894 0.985 0.754 0.861

3 3788 2241 12660 0.881 0.938 0.828 0.909 0.975 0.727 0.860
fro
To measure the recall and precision of trained model, we manually annotated a validation dataset of 302 images, with 611 fish, 210 starfish, and 1262 sponges.
B

A

FIGURE 7

(A) Examples of rockfish that our algorithm missed (false negatives). Usually, these specimens are very small and have low contrast. (B) Examples of
background labels (false positives) for rockfish. Usually, the false positives are either parts of starfish or other invertebrates. Training background
labels properly can increase the precision of the model.
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bounding box annotations. Our method results in a dataset with

high coverage of rockfish, starfish, and sponge annotations after

only a few iterations.

We first obtained the NOAA dataset, which only had dot

annotations. We utilized MTurk workers to extend the dots to

bounding boxes with the help of an assistive labeling interface.

Then, we used these annotations as ground truth to validate our

approach. We applied the iterative labeling process to 9,822 images

and labeled 82% of the rockfish.

Next, we applied the same process to the empty Pacstorm

dataset that we wanted to label, which included the challenging

sponge class. After three iterations, we were able to label 90% of the

fish and starfish and 83% of the sponges.

Both datasets are freely available for other researchers to use via

our website. A direct link to the website is available in the Data
Frontiers in Marine Science 10
Availability Statement below. We hope that this data, as well as the

algorithm, can serve as a benchmark for validating various machine

learning methodologies for marine biology related applications.
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B C

A

FIGURE 8

(A)Examples of different forms of sponges. Some sponges have a hole on top, while others do not. Some sponges look like white rocks, and others
look like white dots. Sponges also come in different colors. While most of them are white, some are brown, and dead sponges are black. We
presented these examples to the MTurk workers to help them identify the sponges. (B) Sometimes sponges are grouped together, which make it
very hard to label them individually. (C) Some sponges are covered in mud, with only small part of them exposed. This make us hard to determine
the labeling standard.
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