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Crabs, such as swimming crabs and mud crabs, are famous for their high nutritional

value but are difficult to preserve. Thus, the traceability of crabs is vital for food safety.

Existing deep-learning methods can be applied to identify individual crabs. However,

there is no previous study that used abdomen images to identify individual crabs. In this

paper, we provide a novel Part-basedDeep LearningNetwork (PDN) to reliably identify

an individual crab from its abdomen images captured under various conditions. In our

PDN, we developed three non-overlapping and three overlapping partitions strategies

of the abdomen image and further designed a part attention block. A swimming crab

(Crab-201) dataset with the abdomen images of 201 swimming crabs and a more

complex mud crab dataset (Crab-146) were collected to train and test the proposed

PDN. Experimental results show that the proposed PDN using the overlapping

partition strategy is better than the non-overlapping partition strategy. The edge

texture of the abdomenhasmore identifiable features than the sulciform texture of the

lower part of the abdomen. It also demonstrates that the proposed PDN_OS3, which

emphasizes the edge texture of the abdomen with overlapping partition strategies, is

more reliable and accurate than the counterpartmethods to identify an individual crab.

KEYWORDS
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1 Introduction

Both swimming crabs (Portunus trituberculatus) and mud crabs (Scylla paramamosain)

are members of the family Portunidae. They are widely distributed in the waters of China,

Japan, and Korea (Dai et al., 1986; Hamasaki et al., 2006), and are also considered critical

economic crabs with high nutritional value in China (Yu et al., 2006; Sun and Wang, 2020).

In 2019, the marine fishing production of swimming crabs was 458,380 tons, down 4.34

percent year on year (Yearbook, 2020). Recently, the pressure from a marine resources

recession has increased, and the amount of marine fishing has decreased yearly. Strong

market demand has promoted the development of aquaculture (Wu et al., 2010).
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With the development of crab farming, various food safety

problems continuously emerged. For example, the development of

the industry caused heavy metal pollution of aquatic organisms, and

crabs are the most severe aquatic products contaminated with heavy

metal cadmium (Pandiyan et al., 2021; Yang et al., 2021). Crab meat is

rich in histidine, which can produce and accumulate histamine over a

long time even after the crab death (Lipp and Rose, 1997), and its

excessive intake by humans can cause illness or poisoning (Feddern

et al., 2019; Worm et al., 2019). Crabs raised in non-standard farms

are likely to be contaminated with a large number of bacteria and have

excessive heavy metal content. Unscrupulous merchants will sell crabs

that have been dead for a long time as normal commodities; these

crabs will bring serious safety problems.

Based on the above safety concerns, the traceability of aquatic

products has become an issue. Crab traceability requires a unique

identification for each crab. The identification technologies currently

used for traceability include barcodes, QR codes, electronic tags, anti-

counterfeit crab buckles, and RFID tags (Zhao et al., 2012; Xiao et al.,

2017; Faggion et al., 2020). However, these identifiers can easily be

moved or forged. It is much more reliable to obtain characteristic

identification by computer vision (CV) technology processing images

of crabs than by physical identification.

In recent years, there has been an increasing number of studies on

applying CV technology to agriculture and aquaculture (Kumar et al.,

2018; Shen et al., 2019; Yang et al., 2020; Andrew et al., 2021; Hu et al.,

2021; Xi et al., 2021). CV can also be applied to the individual

identification of crabs. Because of heredity and living habits, the

surface of a crab’s shell has special textures and patterns, which,

similar to human fingerprints, are individually unique and provide

conditions for the individual identification of a crab. Li (2019) proposed

an anti-counterfeiting algorithm for Eriocheir Sinensis based on local

features images that analyzed images of the back of Eriocheir Sinensis

for individual identification and traceability. Tai et al. (2021) used a

Speeded Up Robust Features (SURF) algorithm to extract the back

feature points of Eriocheir Sinensis and then used the bi-direction Fast

Library for Approximate Nearest Neighbors (FLANN) algorithm to

match the feature points saved in the database. Zhang et al. (2022)

proposed an individual re-identification method based on Pyramidal

Feature Fusion Model (PFFM) for swimming crabs.

The studies mentioned above used traditional CV or deep learning

for the individual identification of crabs by using crabs’ back images.

The method of using specialist equipment to photograph and

traditional CV to process the images has poor robustness. Deep

learning algorithms designed to analyze the backs of swimming crabs

with distinguishing features are not ideal for crab species with
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inconspicuous back shell features. As shown in Figure 1, the mud

crab (b) does not have the speckled features on its back shell that the

swimming crab (a) has, while the abdomen of the mud crab (c) has

textural features that are more obvious than the back shell features (b).

Therefore, using crab abdomen images is more suitable than using crab

back images for individual crab identification. However, there is no

existing work for identifying individual crabs using abdomen images.

The proposed Part-based Deep Learning Network (PDN)

algorithm uses crabs’ abdomen images as features and applies a

deep learning algorithm based on local features to identify

individual crabs. Our PDN algorithm is improved from a classical

person re-identification (ReID) algorithm, and a Part-based

Convolutional Baseline (PCB) (Sun et al., 2018). A person’s image

can be divided into different parts (head, chest, abdomen, legs, etc.)

from top to bottom. It is reasonable for the PCB algorithm and other

part-based person ReID studies to perform a horizontal partition of a

person’s image (Wang et al., 2018). As Sun et al. (2018) mentioned,

the number of parts also affects the algorithm’s accuracy. Sun

experimented and found that dividing the images into six parts was

the most effective. The image partition strategy of the PCB algorithm

determines the local features of the image, and different partition

strategies will directly affect the effectiveness of the algorithm. After

our experiments in subsection 2.3.4, we found that simply applying

the PCB to the abdomen image of the crab’s abdomen (Figure 2) did

not give good accuracy. Therefore, our PDN algorithm improves the

partition strategy based on the features of the crab’s abdomen image

and adds an attention strategy to strengthen its feature expression.

This paper focuses on the abdomen images of swimming/mud

crabs, uses a deep learning algorithm based on local features to learn

abdomen features, and forms its unique code for each crab. Thus, it

realizes the accurate identification of individual crabs and provides an

individual identification technique for the traceability systems

of crabs.

The contributions of this paper are as follows.
(1) We provide a novel PDN method, in which a deep learning

algorithm based on local features is used to extract

representative features from crab abdomen images. It

improves the PCB by using the partition strategy based on

the features of the crab’s abdomen image and adding a Part

Attent ion block (PA) to strengthen the feature

representation.

(2) We further develop effective overlapping partition strategies

to ensure that the representative feature of the key regions is

preserved, particularly on the edges of the partitions.
B CA

FIGURE 1

Differences between swimming crabs and mud crabs. (A) The back of the swimming crab. (B) The back of the mud crab. (C) The abdomen of the mud
crab.
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(3) Two crab abdomen datasets (Crab-201 and Crab-146) were

collected, and extensive experiments were conducted on both

datasets. The experimental results demonstrate the accuracy

and robustness of our proposed method with optimal

overlapping partition strategies.
2 Materials and methods

2.1 Dataset

To verify the effectiveness of our proposed algorithm, we collected

two datasets of crab abdomen images (the swimming crab dataset

called Crab-201 and the complex mud crab dataset called Crab-146).

The raw data for the datasets were images and videos

photographed by mobile phones. The original images or frames

from the original video were fed into a trained YOLOv1 (Redmon

et al., 2016) target detection algorithm, which can identify the
tiers in Marine Science 03
abdomen of a crab to obtain the bounding boxes of the crab’s

abdomen image. The images were cropped according to the

bounding boxes.

Crab-201 All swimming crabs collected in Crab-201 were

provided by a crab farm in Ningbo (Zhejiang, China), and were

numbered after being photographed by mobile phone. Each

swimming crab was photographed several times with different light

intensities and different angles to simulate the varying effects under

different conditions. We defined 12 conditions for the abdomen

images of the swimming crabs; the conditions of an example crab

are shown in Figure 3A. The 12 conditions were standard, grainy,

clockwise rotation, low resolution, high resolution, low angle,

contrarotation, lower-left part, upper-right part, dim light, over-

exposed, and rotate with low angle. There were 2,412 images in the

dataset Crab-201. Out of these, 1716 images of 143 crabs in the

dataset were used as the training set, and the remaining 696 images of

58 swimming crabs were used as the test set. One image of each crab

in the training set was randomly selected as the validation set. The

validation set was used to verify the model, which can be continuously

adjusted according to the situation to select the best model

among them.

Modeled on the Person Re-identification dataset, the test set was

divided into Query and Gallery, where Query was the image to be

queried, and Gallery was the collection of images to be compared with

Query. One image from each category (i.e., a crab) was randomly

selected as the Query image, and the other images formed a subset of

the Gallery. Therefore, there were 58 images in the Query queue and

638 images (58*11) in the Gallery.

Crab-146 was a more complex multi-device abdomen dataset of

mud crabs (Scylla paramamosain). The mud crabs were collected

from a crab farm (130 crabs) and a seafood market (16 crabs) in

Ningbo (Zhejiang, China). The mud crab dataset was divided into a

training set and a test set in the ratio of 3:1, in which the training set

had 1,147 images with 97 categories and the test set had 681 images

with 49 categories. Images of the 16 crabs from the seafood market

were put into the test set. Images of one mud crab in the Crab-146

dataset are shown in Figure 3B. The image was named in reference to

the person ReID dataset Market-1501 (Zheng et al., 2015). Using
BA

FIGURE 3

Demo images of the two crab abdomen datasets. (A) Crab-201. (B) Crab-146.
FIGURE 2

Division of a crab’s abdomen image into horizontal parts.
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“27_4_1” as an example, “27” is the crab number, “4” is the camera

number and “1” is the image number. Figure 3 also shows that the

mud crab dataset is more complex compared to the swimming crab

dataset because multiple devices were used to photograph the mud

crabs at different times.

Similar to the Crab-201 dataset, the test set of the Crab-146

dataset consisted of a Query and a Gallery. The difference being that

there was only one image of each id in the Gallery, and the remaining

images were regarded as Query. Although this division method

slightly reduced the difficulty of matching Query and Gallery each

time, it greatly increased the number of Query. Images from the

seafood market crabs were not collected at the same time or on the

same device as other images. They were not involved in algorithm

training, which made the test set able to also verify whether the

algorithm was overfitting.

The image pixels of Crab-201 were between 385, 369 and 2418,

2131, and the image pixels of Crab-146 were between 210, 179 and

2959, 2591. The dataset was pre-processed as follows: After resizing

the image to 3*256*256, the pixel values were divided by 225 and

normalized to [0,1]. Then each channel was standardized in turn

using the formula as follows:

z = (x −mean)=std (1)

where the mean= [0.485, 0.456, 0.406], std(Standard Deviation)=

[0.229, 0.224, 0.225], and the above values were calculated from the

Imagenet dataset (Deng et al., 2009).
2.2 The proposed Part-based Deep learning
Network

In this subsection, we provide a Part-based Deep learning

Network (PDN) that can effectively extract representative abdomen

features of crabs for individual identification. In subsection 2.2.1, we

introduce the classical Person ReID algorithm PCB. In subsection

2.2.2, we develop non-overlapping partition strategies and

overlapping partition strategies for dividing the whole body of a

crab. In subsection 2.2.3, we detail the proposed PDN algorithm using

an attention mechanism to identify individual crabs.

2.2.1 The Part-based Convolutional Baseline
Person ReID is a popular CV task and most of the current animal

individual identification algorithms are improved based on pedestrian

reidentification algorithms. In the early person ReID, it takes the

overall features of the image as the reidentification target, and then
Frontiers in Marine Science 04
the target image is retrieved and matched by a hash algorithm. The

limitations of this strategy are that the features of the reidentification

target are greatly influenced by the image background and incur high

feature errors. Also, the global features cannot fully capture the

important local features and thus cannot accurately specify the

reidentification target. Therefore, more studies consider local

features extracted from key local regions to represent the features of

the reidentified targets. The local feature-based ReID can tell the

microscopic differences of the reidentified targets, and thus its

reidentification effect is significantly better than that of the global

feature-based algorithm. The target object partition is often adopted

in the local feature-based ReID methods, and its representative

algorithm is PCB, which has a simple workflow with high accuracy

and efficiency.

Figure 4 shows the PCB workflow for extracting features from the

abdomen images of crabs, where Backbone Network is used for

original feature extraction from the image. PCB divides the original

tensor T∈R2048×16×16 , into p horizontal parts and averages all column

vectors within the same part into a part-level column vector gi (i∈1,2,
…,p) using traditional averaging pooling. Then, PCB uses a 1*1

kernel-sized convolutional layer to map gi to hi (i∈1,2,…,p) (part

descriptor). Finally, hi is input into p classifiers, each consisting of a

fully connected layer and a following Softmax function. Classifiers

calculate the loss between the output prediction and the input identity

(ID). In the training phase, the PCB calculates the cross-entropy loss

for p-ID predictions and performs parameter optimization. In the

testing phase, p pieces of hi are connected to form the final

descriptor, H.
2.2.2 The Partition Strategies
The whole body of the crab is divided into cephalothorax,

abdomen, and appendages. As shown in Figure 5A, the abdomen is

located behind the abdomen surface of the cephalothorax armor,

which is called the sternum, and is covered by it. For convenience, we

called the image containing the abdomen and sternum in Figure 5B

the abdomen image of the crab. The abdomen image of the crab

adopted in this paper is shown in Figure 5B, including the sternum

and abdomen, and the texture was divided into sulciform texture and

edge texture.
2.2.2.1 The non-overlapping partition strategies

Figure 5B shows that the abdominal edge texture is obvious and

contains more characteristic information, and the sulciform texture of

the sternum is more obvious than that of the abdomen and can also be
FIGURE 4

The workflow of PCB.
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regarded as an important feature. The sulciform texture in the middle

and lower part of the abdomen is not obvious and contains relatively

less characteristic information. In order to verify the correctness of

the above observations and to improve the accuracy of the algorithm,

we developed three different non-overlapping partition strategies (i.e.,

NOS1-3) and enhanced the feature extraction of the abdominal edge

texture and sternal groove texture based on the PCB algorithm.

Figure 6 shows the three non-overlapping partition strategies

designed in this paper.

In Figure 6A, the tensor T∈R2048×16×16 is divided into 2*2 parts.

Since the abdomen of the crab is symmetrical from the left to the

right, and the upper half texture features significantly differ from the

lower half texture features, it is easier to maintain the abdomen

texture features of the crab in the image processing using the grid

partition compared to the horizontal partition strategy as shown in

Figure 2. Strategy 2 in Figure 6B emphasizes the sulciform texture of

the lower part of the abdomen of the crab. In Figure 6C, two parts are

set on the left and right sides of the abdomen, and each part contains a
Frontiers in Marine Science 05
more complete edge texture of the abdomen compared to Figures 6A,

B, so that the image features can fully express the edge texture

features. The overlapping partition strategies.
2.2.2.2 The overlapping partition strategies

In the non-overlapping partition strategies, the key region of the

image was cut into multiple parts that are independent of each other,

so, the complete features of the key region could not be extracted. We

assumed that A in Figure 7A was a key region in the image and that if

the non-overlapping partition method was applied, region A would be

divided into two independent blocks, i.e., the left part and the right

part. This produced the problem that neither of the two blocks could

fully reflect the characteristics of region A; that is, we lacked the

complete information of region A to capture the overall

characteristics of the abdomen images of crabs. To overcome this

limitation, we designed the overlapping partition strategies as shown

in Figure 7B in this paper. In Figure 7B, region A is at the edge of the
B CA

FIGURE 6

(A–C) Three non-overlapping partition strategies.
B

A

FIGURE 5

(A, B) The abdomen image of a swimming crab.
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right part, and the right part cannot contain the complete information

of region A, while region A is inside the left part, and the left part

contains the complete information of region A. Similarly, the left part

cannot contain the complete information of region B, while the right

part contains it. Therefore, the overlapping partition method could

ensure that any region in the image is inside the part, and thus

avoided the loss of key information due to the partition of key regions;

this enhanced the extraction of representative characteristics of

individual crabs. Corresponding to the non-overlapping partition

strategies in Figure 6, we designed the overlapping partition

strategies for the abdomen texture of crabs, as shown in Figure 8.

Specifically, we extended the edges of all the parts divided by the non-

overlapping strategy illustrated in Figure 6 by one row outwards,

which was a simple and efficient way to achieve overlapping partition

without excessive regulations. Figure 8A shows the overlapping

partition strategy corresponding to Figure 6A, dividing the crab

abdomen image equally into 2*2 parts; Figure 8B shows the

overlapping partition corresponding to Figure 6B, emphasizing the

sulciform texture of the lower part of the abdomen of the crab; while

Figure 8C shows the overlapping partitioning corresponding to

Figure 6C, emphasizing the edge texture of the abdomen.

Therefore, through the comparison of these three non-

overlapping partition strategies and three overlapping partition

strategies it was possible to explore the effect of emphasizing or not
Frontiers in Marine Science 06
different textures and overlapping partitions on the effectiveness of

the algorithm.
2.2.2.3 The attention mechanism and the architecture
of PDN

Inspired by the human visual attention mechanism, we

provided an attention mechanism in which different parts of the

input data or feature map that have different focus intensities were

given their attention weights to weigh different spatial regions. In

the proposed overlapping and non-overlapping partition strategies,

the amount of feature information of the texture in each part was

different, therefore, it was necessary to focus on the part with high

feature information for identifying individual crabs. The Part

Attention (PA) block of PDN is shown in the upper right region

in Figure 9. For hi (i∈1,2,…,p ) in the column vector h, the vector hi
is input to a fully connected layer FC1i and a sigmoid layer to

output an attention weight ai, which is multiplied by the

corresponding vector hi to obtain the weighted vector ni. Unlike

other spatial attention mechanism methods (shown in Figure 10A),

which generate weights for feature map vectors (e.g., RGA-S

(Zhang et al., 2020)), our PA block generates weights at the part-

level (shown in Figure 10B), which significantly reduces the

number of parameters in the algorithm.
BA

FIGURE 7

Difference between an overlapping and a non-overlapping partition. (A) non-overlap partition. (B) overlap partition.
B CA

FIGURE 8

(A–C) Three overlapping partition strategies.
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Figure 9 shows the architecture of the PDN. The input image is

resized to a size of 256*256, which was inputted into a backbone

network (we used the ResNet50 (He et al., 2016) as the backbone) to

obtain tensor T∈R2048×16×16 . Then tensor T was divided into p parts

by our partition strategy, in this paper p = 4. Each part was fed into an

average pooling layer to obtain column vector gi (i∈1,2,…,p ). Then,

using a 1*1 convolutional layer of 1024 filters (with stride=1,

padding=0) to reduce dimension from 2048 to 1024, we obtained

vector hi, then hi was fed into the Part Attention block to obtain the

weighted vector ni. In the inference phase, p pieces of ni concatenated

to obtain the final descriptor N.

In the training phase, vector ni was fed into a Classifier, which

outputted the predication ŷ i of the size of the training set categories

through a fully connected layer FC1 and a Softmax layer. Then we

calculated the cross-entropy loss of ŷ i and the ground truth label y:

LCE(ŷ i, y).

To further learn the discriminative features of the crab abdomen

image, we also used circle loss (Sun et al., 2020) to reduce the

similarity between vector ni of different categories and increase the

similarity between vector ni of the same category. The similarity Si is

the cosine similarity of two vectors ni of different images, as shown in

Equation (2), where the ni1 and ni2 are the vector ni of two different

images. The similarity between vectors ni of the same category was

called Suip(u ∈ 1, 2,…M), and the similarity between different ids was

called Suin(u ∈ 1, 2,…L).
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Si(ni1, ni2) =
ni1 · ni2
ni1k k ni2k k (2)

The circle loss used in this paper was as follows:

Lcircle = log½1 +o
L

j=1
exp(ga j

n(S
j
in − Dn))o

M

k=1

exp(g − ak
p (S

k
ip − Dp))� (3)

ak
p = max 1 +m − Skip, 0

n o

a j
n = max m + Sjin, 0

n o

Dp = 1 −m

Dn = m

8>>>>>>><
>>>>>>>:

(4)

The two hyperparameters g and m were set to 32 and

0.25, respectively.

The two aforementioned losses were then combined to obtain the

final loss:

Loss =o
p

i=1
(LCE(ŷ i, y) + Lcircle(Sip, Sin)) (5)

We adopted the SGDM (Stochastic Gradient Descent with

momentum) optimizer to train all models for 60 epochs with a

learning rate of 5 × 10−2, a weight decay of 5 × 10−4, and a

momentum of 0.9. The batch size was set to 32.
FIGURE 9

The architecture of the PDN.
BA

FIGURE 10

Visualization of attention mechanisms. (A) visualization of RGA-S (B) visualization of our part attention (PA) block
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3 Experiments and result

3.1 Experimental setup

The experiments of this paper were conducted on a computer

with GPU (OS: Ubuntu 18.04, GPU: NVIDIA GeForce RTX 3090,

CUDA: CUDA-11.1), and all algorithms were implemented using

Python 3.7.10 and Pytorch 1.8.1.

In this experiment, six partition strategies were implemented for

dividing the crabs’ abdomen images, including three non-overlapping

partition algorithms (PDN_NOS1, PDN_NOS2, and PDN_NOS3), as

shown in Figure 6, and three overlapping partition algorithms (PDN_OS1,

PDN_OS2, and PDN_OS3), as shown in Figure 8. PDN_NOS1 and

PDN_OS1 were uniformly divided, PDN_NOS2 and PDN_OS2

emphasized the sulciform texture of the lower half of the abdomen, and

PDN_NOS3 and PDN_OS3 emphasized the edge texture of the abdomen.

In the experiments, we studied the distribution of same-id

similarity and different-id similarity obtained by the six partition

strategies using Crab-201 in Section 3.2 and evaluated the Precision-

recall curve of the six partition strategies under different confidence

levels in Section 3.3. We also compared the Rank-1 (average accuracy

rate) and mAP (mean average precision) of the optimal partition

strategy with other algorithms on Crab-146 and visualized the

classification ability of the algorithms in Section 3.4.
3.2 Study of descriptor distinguishability

The feature encoding descriptor was the basis for individual

identification. A good algorithm can generate discriminative

descriptors and thus distinguish individual crabs. So, we evaluated

the distinguishability of the final descriptorH of the crabs to prove the

identification effect of our PDN algorithm.
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In this experiment, we compared the similarity between

descriptors H of the same ID extracted by the algorithms. In the

test phase, the higher the similarity of descriptors between the same

ID in different conditions and the lower the similarity of descriptors

between different ids, the more reliable the algorithm was.

Similar to Equation (2), the similarity between different

descriptors H was calculated as follows:

S(H1,H2) =
H1 · H2

H1k k H2k k (6)

Where theH1 andH2 are the descriptorH of two different images.

The similarity between descriptor H of the same category is called Sp,

and the similarity between different ids is called Sn.

Figure 11 shows the distribution of similarity between descriptors

H extracted by six partition strategies algorithms from the test set

images, the pink dots represent Sp and the blue dots represent Sn,

Figure 11 also shows the boxplot of the distribution of the dots.

The Sp needs to be distinguished from the Sn by a certain distance.

The overall trend in Figure 11 was that the overlapping strategy had a

larger difference between the lower quartile of the similarity with the

same ID and the upper quartile of the similarity with different IDs

compared to the non-overlapping strategy (i.e., the overlapping

partition algorithm had a greater differentiation distance for the

same ID and different ID descriptors). It could be seen from

Figure 11 that the differentiation distance of strategy 2 was the

smallest whether it was an overlapping partition or a non-

overlapping partition. In the overlapping partition algorithm,

strategy 3(OS3) had the largest distinguishing distance, which

means that the OS3 was more suitable for partitioning the

abdomen of the crab. From the data above, we also concluded that

the edge texture of the abdomen emphasized in strategy 3 had more

identifiable features than the sulciform texture of the lower part of the

abdomen of the crab emphasized in strategy 2.
FIGURE 11

The distribution of Sp and Sn of six partition strategies.
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3.3 Precision and Recall under different
confidence levels

The algorithm was tested with different confidence levels/

thresholds, and the Precision and Recall were calculated at different

confidence levels. For each query, images in the gallery with similarity

above the threshold were classified as positive and those below the

threshold were classified as negative. Positive examples that were

correctly classified were denoted as TP (true positive), negative

examples that were correctly classified were denoted as TN (true

negative); positive examples that were incorrectly classified as

negative were denoted as FN (false negative) and negative examples

that were incorrectly classified as positive were denoted as FP (false

positive). The Precision and Recall rates were calculated as follows:

Percision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

The Precision-recall curve was drawn with recall as the horizontal

coordinate and precision as the vertical coordinate, and the results are

shown in Figure 12. As can be seen from Figure 12, the performance

of PDN_OS1 and PDN_OS2 was poor and the performance of

PDN_OS3 was better compared to the other policies.
3.4 Robustness

To verify the suitability of the algorithm for real-life extension and

the generality of individual identification of different species of crabs,

we used a more complex multi-device abdomen dataset of mud crabs

(Crab-146) to train and test our model.

The algorithm evaluation metrics used in this experiment were

the Rank-1 (average accuracy rate) and the mAP (mean average

precision), which were originally used as algorithm evaluation metrics

for person re-identification. Rank-1 represented the average accuracy

rate of whether the image with the highest similarity to the query

matched the query correctly. The mAP of an algorithm was the mean
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of the average precision scores for each query of the test set. The

higher the score of Rank-1 and mAP, the more accurate the model

was in its predictions. Given a set of Query as Q = {q1, q2,…,qi,…qN}

and a set of Gallery as G = {g1, g2,…,gj,…gM}, we assumed that the

number of times the ID corresponding to qi appeared in G was Kqi .

The Query process for each query image was given as follows. The

algorithm extracted the descriptor Hqi of qi, compared it with the

descriptor Hgj of each image in G and calculated the similarity

between descriptors Hqi and Hgj . Then, the Gallery was ranked in

ascending order according to the similarity, the ranked gallery was

noted as Gqi , the set consisting of images hit by qi was noted as G0
qi =

fg 01,  g 02,  …,  g 0j ,  …,  g 0Kqi
g, which was a subset of Gqi . We assumed that

g 0j was ranked as r
qi
j  inGqi , and r

qi0
j inG0

qi , this process was repeated for

all queries in Query, and the mAP was calculated by

mAP =
1
No

N
i=1o

Kqi
j=1(r

qi0
j =rqij ) (9)

In Crab-146, Kqi=1 . So, the mAP was calculated by:

mAP =
1
No

N
i=1(r

qi 0=rqi ) (10)

In Table 1, we evaluate the PA block of PDN_OS3. Through the

ablation experiment of the PA block, it can be seen that without the

PA block, the rank1 and mAP of the proposed PDN_OS3 algorithm

decreased by 4% and 2.9%, which shows that the part attention

mechanism of this paper was beneficial for the individual

identification of the crab abdomen. We also compare the

performance of PDN_OS3 using the PA block and the PDN_OS3

using RGA-S (Zhang et al., 2020). RGA-S is a relation-aware global

attention block for spatial attention with a higher number of

parameters compared to the PA block. The rank1 and mAP of the

PDN_OS3 using RGA-S decreased by 1.6% and 1.1%. Using the PA

block as the attention block of the PDN_OS3 led to a better

performance with a smaller number of parameters.

In Table 2, we compare the rank1 and mAP of our proposed

PDN_OS3 with other counterpart algorithms. The i in PCB-i

indicates that the image is divided horizontally into i parts. To

generate the descriptors, we removed the final fully-connected layer

from all the comparison algorithms, and the feature mAP output

from the last convolutional layer was average pooled to obtain the

descriptors. Without the parameter restriction of the fully connected

layer, the input size of the algorithm can be changed as required. We

uniformly resized the input size of all comparison algorithms to the

same 256*256 as the PDN. Then the feature was fed into the average

pooling layer after being output from the final convolution layer,

where the output vector was the descriptor. In the training phase, the

descriptors were fed into the classifier for classification, and the loss

function was the final loss in section 3.1.

As shown in Table 2, the proposed PDN_OS3 achieved the best

performance in mAP and Rank-1, which indicates that our method can

capture more discriminative features than other methods. The results

also show that descriptor size is not a significant factor in the

effectiveness of the algorithm. In PCBs, finer partitions can, on the

contrary, reduce the performance of the algorithm.

We further evaluated our proposed PDN method using the T-

SNE (T-distributed Stochastic Neighbor Embedding) to visualize the

test set descriptors extracted by the algorithm. T-SNE is essentially an
FIGURE 12

Precision-recall curve under different confidence levels.
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embedding model that maps data from a high-dimensional space to a

low-dimensional space while preserving the local characteristics of the

data. Figure 13 visualizes the distribution of image descriptors from

the test set extracted by PDN_OS1 and five counterparts (Googlenet,

ResNet50, ResNeXt50, PCB-4, and PCB-6). Where points of the same

color represent descriptors of the same id, the tighter the clustering of

points of the same color represents a tighter intra-class distribution,

and the greater the distance between points of different colors

represents greater inter-class spacing. We can see from Figure 13

that PDN_OS3 generates descriptors with a greater gap between

classes and closer intra-class distribution.
4 Discussion

This paper provided a reliable PDN method with six partition

strategies to identify individual crabs from their abdomen images.

The experiments on a swimming crab dataset (Crab-201)

demonstrated that the proposed PDN algorithm can distinguish

crabs’ abdomen images with different IDs. The overlapping

partition strategy had a larger distinguishing distance and the

overlapping partition strategy 3 (PDN_OS3) had the largest

distinguishing distance, which means that the edge texture of the

abdomen emphasized in the PDN_OS3 had the most identifiable

features, and the PDN_OS3 was the most suitable for dividing the

abdomen of the crab. Using the PA block as the attention block of the

PDN_OS3 led to a better performance with a smaller number of

parameters. In a more complex mud crab dataset (Crab-146), the
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PDN_OS3 also achieved a higher rank1 and mAP compared with five

counterpart algorithms (PCB, AlexNet, VGG16, Googlenet,

ResNet50, ResNeXt50, and Densenet121) and showed the best

classification ability by separating different classes while ensuring

the closest distribution intra-classes. In summary, the proposed

PDN_OS3 algorithm achieved the best performance in individual

identification using crabs’ abdomen images.
5 Conclusion

This paper proposes a new Part-based Deep Learning Network

(PDN) to identify individual crabs from their abdomen images. In the

PDN, we also develop six partition strategies (three non-overlapping

strategies and three overlapping strategies) according to the abdomen

texture features of crabs and demonstrate that the PDN_OS3 (strategy 3

using overlapping partition) achieves the best performance. Extensive

experiments on two real-world farm crab datasets (the swimming crab

dataset Crab-201 and the complex mud crab dataset Crab-146)

demonstrate the accuracy and robustness of our PDN_OS3 algorithm

for the identification of individual crabs. The experimental results show

that the algorithm using overlapping partition strategies can distinguish

different crabs’ abdomen images with a larger distinguishing distance,

and the OS3 has the largest distinguishing distance. The edge texture of

the abdomen emphasized in OS3 has the most identifiable features. The

PDN_OS3 has the highest Rank1 and mAP compared with other

algorithms and can achieve a distinction between the classes with the

closest intra-class distribution. The results show that the PDN_OS3 is
TABLE 2 Performance comparison on the Crab-146 dataset.

Model Rank-1 mAP Descriptor size

AlexNet (Krizhevsky et al., 2012) 0.786 0.822 256

VGG16 (Simonyan and Zisserman, 2014) 0.889 0.909 512

Googenet (Szegedy et al., 2015) 0.847 0.872 1024

ResNet50 (He et al., 2016) 0.875 0.898 2048

ResNeXt50 (Xie et al., 2017) 0.848 0.875 2048

Densenet121 (Huang et al., 2017) 0.884 0.906 1024

PCB-6 (Sun et al., 2018) 0.832 0.857 12288

PCB-4 (Sun et al., 2018) 0.840 0.868 8192

PDN_OS3(w/o PA) 0.894 0.914 4096

PDN_OS3 0.934 0.945 4096
Bold indicates that the corresponding value is best in the relevant algorithm.
TABLE 1 Comparison of the attention blocks.

Model Rank-1 mAP Number of parameters of the attention block

PDN_OS3(w/o PA) 0.894 0.914 –

PDN_OS3(w/o PA)+RGA-S 0.918 0.934 1.59M

PDN_OS3 0.934 0.945 4.1K
The bold values represents the best value of the three.
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more suitable for the individual identification of crabs than the original

PCB network. The four local descriptors h of the PDN_OS3 algorithm

are connected to form a global descriptor H that can be used as the

individual identity ID of the crab in the traceability system.
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