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on vertical walls within
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Vertical walls of submarine canyons represent features of high conservation value

that can provide natural areas of protection for vulnerablemarine ecosystems under

increasing anthropogenic pressure from deep-sea trawling. Wall assemblages are

spatially heterogeneous, attributed to the high environmental heterogeneity over

short spatial scales that is a typical feature of canyons. Effective management and

conservation of these assemblages requires a deeper understanding of the

processes that affect faunal distribution patterns. Canyons are recognised as sites

of intensified hydrodynamic regimes, with focused internal tides enhancing near-

bed currents, turbulent mixing and nepheloid layer production, which influence

faunal distribution patterns. Faunal patterns also respond to broad-scale

hydrodynamics and gradients in water mass properties (e.g. temperature, salinity,

dissolved oxygen concentration). Oscillating internal tidal currents can advect such

gradients, both vertically and horizontally along a canyon's walls. Here we take an

interdisciplinary approach using biological, hydrodynamic and bathymetry-derived

datasets to undertake a high-resolution analysis of a subset of wall assemblages

within Whittard Canyon, North-East Atlantic. We investigate if, and to what extent,

patterns in diversity and epibenthic assemblages on deep-sea canyon walls can be

explained by spatial and temporal variability induced by internal tides. Vertical

displacement of water mass properties by the internal tide was calculated from

autonomous ocean glider and shipboard CTDobservations. Spatial patterns in faunal

assemblage structure were determined by cluster analysis and non-metric Multi-

Dimensional Scaling plots. Canonical Redundancy Analysis and Generalised Linear
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Models were then used to explore relationships between faunal diversity and

assemblage structure and a variety of environmental variables. Our results support

the hypothesis that internal tides influence spatial heterogeneity in wall faunal

diversity and assemblages by generating both spatial and temporal gradients in

hydrodynamic properties and consequently likely food supply.
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1 Introduction

Submarine canyons are complex geomorphological features

that incise continental margins to form pathways between the

shelf and deep sea. (Huvenne and Davies, 2014; Amaro et al.,

2016). The movement of water masses, sediments and organic

matter over varying temporal scales through the canyon generates

environmental gradients of physico-chemical properties that occur

both horizontally, i.e. along or across the canyon axis, and vertically

(Obelcz et al., 2014; Fernandez-Arcaya et al., 2017; Hall et al., 2017;

Ismail et al., 2018). As a result, environmental conditions can vary

over short spatial scales, such that different branches within a single

canyon, or even opposing walls of the same branch may have

different seafloor characteristics, and experience different

hydrodynamic and sedimentary regimes (McClain and Barry,

2010; Aslam et al., 2018; Bargain et al., 2018; Ismail et al., 2018;

Pearman et al., 2020). The high spatial and temporal heterogeneity

in environmental conditions often results in enhanced regional and

local productivity, biodiversity, and faunal abundance (De Leo et al.,

2010; Vetter et al., 2010; De Leo et al., 2014).

Submarine canyons are listed by the FAO (2009) as topographic

features that may support vulnerable marine ecosystems (VMEs).

Vertical walls situated within submarine canyons are features of

high conservation value, providing natural areas of protection for

VMEs under increasing anthropogenic pressure from deep-sea

trawling (Huvenne et al., 2011; Johnson et al., 2013). Vertical

walls support a range of faunal assemblages (which make up

VMEs) that exhibit high diversity (Robert et al., 2015; Robert

et al., 2017; Pearman et al., 2020). Examples are walls supporting

dense aggregations of reef forming scleractinian corals, Lophelia

pertusa (recently synonymised to Desmophyllum pertusum

(Addamo et al., 2016)) (Huvenne et al., 2011; Brooke and Ross,

2014; Fabri et al., 2014) and Madrepora oculata (Fabri et al., 2014),

the stony coral Desmophyllum dianthus, the octocorals Paragorgia

arborea and Duva florida (Brooke et al., 2017), the deep-sea oyster,

Neopycnodonte zibrowii (Van Rooij et al., 2010; Fabri et al., 2014),

and the fire clam, Acesta excavata (Johnson et al., 2013). On the

other hand, other sections of vertical walls can be devoid of life

(Robert et al., 2015; Pearman et al., 2020). Consequently, vertical

walls contribute to a canyon’s habitat diversity in various ways.

Desmophyllum pertusum reefs and coral gardens are listed as

‘threatened or declining’ under Annex V of the Oslo-Paris
02
convention agreement (OSPAR, 2008), under Annex 1 of the

Habitats Directive (92/43/EEC, 1992) and as VMEs (FAO, 2008),

requiring protection. Effective spatial management and

conservation of vertical wall assemblages requires a deeper

understanding of the processes that generate the observed faunal

distribution patterns (Huvenne and Davies, 2014). However,

despite the likely importance of vertical walls in supporting and

protecting diversity hotspots and protected habitats, few ecological

studies of wall fauna have been conducted (Robert et al., 2017;

Robert et al., 2020) and our understanding of the processes that

generate spatial patterns along them is limited.

Our limited understanding is, in part, attributed to the challenge

of sampling deep-sea vertical walls and measuring the local

environmental characteristics. As a result, vertical walls stayed

largely unsampled prior to recent advancements in remote

technologies (e.g. Remotely Operated Vehicles (ROVs)) (Huvenne

and Davies, 2014). Additionally, the limitations in the resolution of

ship-borne bathymetry prevents accurate delineation of vertical

walls (Huvenne et al., 2011; Robert et al., 2017). Consequently,

despite their likely importance, vertical walls remain under-

represented and under-sampled environments of canyons,

limiting our knowledge of canyon ecology. This is further

confounded by the predominance of canyon studies which only

model the probability of epibenthic species presence-absence

(Robert et al., 2015; Bargain et al., 2018; Lo Iacono et al., 2018) or

univariate faunal responses that condense faunal information into a

single diversity index (Robert et al., 2015; Ismail et al., 2018), rather

than representing wider, multivariate species assemblage data.

In general, the responses of canyon fauna are regulated by a

complex interplay of multiple factors acting at different scales.

Environmental factors (water mass properties, seafloor

characteristics and food supply) are most likely to explain species

patterns at broader spatial scales (McClain and Barry, 2010; Robert

et al., 2015; Ismail et al., 2018) while biotic processes (e.g.

competition) more often act at finer spatial scales (Robert et al.,

2020). Stochastic events (disturbance) act at multiple scales

(Pierdomenico et al., 2016). The interaction of these processes

across different spatial and temporal scales makes identifying key

factors that drive faunal patterns within heterogeneous canyon

landscapes challenging.

Canyons are recognised as sites of intensified hydrodynamics,

including energetic internal waves and internal tides
frontiersin.org
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(Liu et al., 2010; Hall et al., 2017). Internal (baroclinic) waves occur

when there is a perturbation to the interface between layers of the

water column with different temperatures, salinities, and thus

densities. The perturbation is restored by local buoyancy, forming

oscillations (waves) that propagate along the interface. In a

continuously stratified water column, such as the open ocean, the

waves propagate vertically as well as horizontally. Internal waves

generated by tidal motions, and thus oscillating at tidal frequencies

(e.g. semidiurnal), are termed internal tides (Wunsch, 1975). In

canyons, internal tides are generated when surface (barotropic) tidal

currents flow across steep canyon topography (Allen and Durrieu

De Madron, 2009; Vlasenko et al., 2016; Hall et al., 2017). Internal

wave–topographic interactions (e.g. generation, reflection and

breaking) are determined by multiple factors, including wave

frequency, buoyancy frequency (i.e. stratification) and latitude.

These determine the slope of internal wave propagation (swave)

which can be compared to the local bathymetric slope (sbathy) to

predict wave behaviour. Canyon walls are typically steep compared

to the slope of semidiurnal internal tides (a = sbathy/swave >1), a state

known as supercritical, so these internal waves approaching a wall

are reflected back into deep water and towards the canyon floor.

Conversely, the floors of canyons often have a gentler slope than

semidiurnal internal tides (a<1), a state known as subcritical, so

these internal waves approaching from offshore are reflected up the

canyon towards its head. These processes combine to focus internal

tide energy towards the canyon boundaries (its walls and floor),

intensifying near-bed tidal currents (Hall and Carter, 2011; Hall

et al., 2014). Where the local bathymetric slope is equal or near-

equal to the internal wave slope (a ≃ 1), the wave is trapped near

the boundary, often leading to breaking – similar to surface waves

breaking on a beach – which increases the turbulent mixing of heat,

salt, nutrients, and particulate matter between the layers of the

water column.

Internal tides are increasingly advocated as key environmental

factors influencing species patterns in the deep sea (Huvenne et al.,

2011; Johnson et al., 2013; Van Haren et al., 2017; Davison et al.,

2019; Pearman et al., 2020). For example, research focussing on

scleractinian cold-water coral (CWC) assemblages has highlighted

the importance of local hydrodynamics (including internal tides) in

supplying nutrients and food to sustain CWC populations and

preventing sedimentation on the hard substratum that the corals

colonise (Frederiksen and Westerberg, 1992; Thiem et al., 2006;

Davies et al., 2009; Mienis et al., 2009; White and Dorschel, 2010).

Through interactions with sloping topography, internal tides

occurring within canyons may enhance near-bed currents and

turbulent mixing, forming efficient food supply mechanisms to

benthic communities (Johnson et al., 2013). For example, the

aggregation of organic matter by internal tide driven resuspension

and mixing is postulated to play an important role in supporting

high densities of M. oculata on the southern wall of Cap de Creus

Canyon (Orejas et al., 2009).Internal tides also influence the

resuspension and advection of suspended material in nepheloid

layers (White et al., 2005; Liu et al., 2010; Puig et al., 2014; Wilson

et al., 2015), where enhanced amounts of suspended matter

(including particulate organic matter) are observed, representing

an important food source for deep-sea fauna (Demopoulos et al.,
Frontiers in Marine Science 03
2017). Internal tide modulation of nepheloid layers can result in

replenishment of food to the benthos over the tidal cycle (Davies

et al., 2009) and has been linked to spatial distributions of

antipatharians and gorgonians in canyons of the Bay of Biscay

(Van Den Beld et al., 2017).

The vertical displacement of the water column strata, associated

with internal tides, also results in temporal variability of water mass

properties (including temperature, salinity, dissolved oxygen

concentration) along the canyon walls. Fauna respond to such

changes in water mass properties and hydrodynamics (Levin et al.,

2001; Howell et al., 2002; Dullo et al., 2008; Fabri et al., 2017). In

addition, spatial and temporal hydrodynamic variability has been

linked to species richness and assemblage patterns on the Hebrides

Terrace Seamount (Henry et al., 2014). Hydrodynamic variability of

internal tides generates environmental heterogeneity in near-bed sheer

stress and nutrient and sediment fluxes (Frederiksen and Westerberg,

1992), which are proposed to influence CWC coral mound formation

in the North-East Atlantic (White and Dorschel, 2010). On the other

hand, modelling indicates internal tide hydrodynamic variability is an

important factor influencing larval dispersal on the Rosemary Bank

Seamount (Stashchuk andVlasenko, 2021). However, to date no studies

investigating faunal responses to internal tide induced environmental

heterogeneity have been conducted in submarine canyons.

Here for the first time we investigate if spatial and temporal

gradients in hydrodynamic properties, induced by the internal tide,

can explain variation in spatial patterns of faunal diversity and

assemblage composition on deep-sea canyon walls. We utilise

biological, hydrodynamic and bathymetry-derived datasets in an

integrated approach to undertake a high-resolution analysis of wall

assemblages within Whittard Canyon, North-East Atlantic. We ask

the following questions: (1) Does epibenthic megafaunal assemblage

composition change across hydrodynamic and substratum

gradients on vertical walls and (2) which environmental variables

exert the strongest influence on epibenthic megafaunal diversity

and assemblage structure?
2 Materials and methods

2.1 Study area

Whittard Canyon extends over >200 km and incises the shelf

break of the passive Celtic Margin, south-west of the British Isles in

the Northern Bay of Biscay, starting at a depth of ~200 m (Figure 1).

It is a dendritic canyon system comprised of four main tributaries,

the Western, Western Middle, Eastern Middle and Eastern

branches that coalesce at 3700 – 3800 m water depth. The

Whittard Channel continues to a depth of ~4500 m, where it

joins the Celtic Fan that leads onto the Porcupine Abyssal Plain

(Hunter et al., 2013; Amaro et al., 2016). This study focusses on the

Eastern branch of Whittard Canyon (Figure 1).

Several water masses occur in the region, defined by absolute

salinity (SA) and conservative temperature (Q). These include:

Eastern North Atlantic Water (ENAW) (~100 – 600 m, SA = 35.8

– 36.3 g kg -1,Q = 12.2 – 14.8°C), the Mediterranean OutflowWater

(MOW) (800 – 1200 m, SA = 36.35 – 36.65 g kg -1,Q = 9.5 – 10.5°C)
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and the Northeast Atlantic Deep Water (NEADW) (1500 – 3000 m,

SA = 35.11 – 35.13 g kg -1,Q = 2.6 – 3.0°C) (Pollard et al., 1996; Van

Aken, 2000). The influence of the ENAW and MOW water mass

decreases up-canyon as depth decreases and mixing increases

toward the head of the branch (Hall et al., 2017).

Intensified near-bed currents and internal tides have been

documented from Whittard Canyon (Reid and Hamilton, 1990;
Frontiers in Marine Science 04
Hall et al., 2017; Aslam et al., 2018) and attributed to generating

spatial heterogeneity in environmental conditions (Wilson et al.,

2015; Hall et al., 2017; Aslam et al., 2018; Pearman et al., 2020).

Semidiurnal internal tides with amplitudes up to 80 m have been

observed, with implications of 1°C temperature fluctuations and

dissolved oxygen concentration changes of 12 mmol kg-1 along

certain sections of the canyon’s walls (Hall et al., 2017).
FIGURE 1

Location map of (A) Whittard Canyon and (B) the Eastern branch of Whittard Canyon (C) data acquired from the Eastern branch during the J036,
JC125, 64PE421 and 64PE435 cruises. Background bathymetry from JC125 and GEBCO compilation group (2019).
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Additionally, dissipation of the observed energetic internal tide is

expected to drive enhanced turbulent mixing, which is associated

with increased concentrations of resuspended particulate organic

matter (POM) and nepheloid layer formation within the canyon

(Wilson et al., 2015; Hall et al., 2017; Aslam et al., 2018; Haalboom

et al., 2021). Resuspension by intensified near-bed currents

(including internal tides) and local slope failures within the

canyon source fine grained material (Reid and Hamilton, 1990;

Amaro et al., 2015; Amaro et al., 2016; Hall et al., 2017) which is

transported down-canyon via turbidity currents and mud-rich

sediment gravity flows (Cunningham et al., 2005; Amaro et al.,

2016; Carter et al., 2018). There is also evidence that internal tides

may act to transport material up-canyon (Wilson et al., 2015; Lo

Iacono et al., 2020).

Whittard Canyon is characterised by complex geomorphology

and variable substrata that differ along the canyon axis and between

branches (Stewart et al., 2014; Robert et al., 2015; Amaro et al., 2016;

Ismail et al., 2018). The distribution of substrata is linked to the

canyon geomorphology: increasingly finer-grained sedimentary

substrata are associated with flat terrain whilst hard substrata are

mostly associated with steep slopes (Stewart et al., 2014; Ismail et al.,

2018). The hard substrata constitute bedrock outcrops and

escarpments (vertical walls) as well as boulders and smaller

fractions of hard rock originating from slope failures (Carter

et al., 2018). Due to the remobilisation and deposition of

sediment in the canyon, hard substratum is often coated in a

sediment veneer of varying thickness.
2.2 Data acquisition

Data used in this study were acquired during a number of cruises

(Table 1) and derived from global and regional ocean models.
Frontiers in Marine Science 05
2.2.1 Acoustic data acquisition and processing,
and extraction of terrain derivatives

Multibeam echosounder (MBES) data were acquired during the

MESH, JC035 and JC125 cruises (Table 1) (Davies et al., 2008;

Masson, 2009; Huvenne et al., 2016). Bathymetry data were

processed utilising CARIS HIPS & SIPS v.8 and combined

utilising the mosaic to new raster tool in ArcGIS 10.4.1(RRID:

SCR_011081), to produce a new grid at a resolution of 50 m

(WGS1984, UTM Zone 29N). The terrain derivatives slope,

aspect and rugosity were derived from the bathymetry data using

the ArcGIS extension Benthic Terrain Modeler v. 3.0 (Walbridge

et al., 2018) with a neighbourhood of 3 x 3 pixels. Rugosity is the

ratio of the surface area to the planar area (Wilson et al., 2007).

Slope is a measure of change in elevation over distance. Aspect

(subsequently converted to eastness and northness) measures the

compass orientation of the direction of maximum slope. The terrain

derivatives were chosen as they have previously been shown to be

informative explanatory variables of canyon fauna distribution

within Whittard Canyon (Robert et al., 2015; Price et al., 2019;

Pearman et al., 2020). Bathymetric slope criticality to the dominant

semidiurnal internal tide (a) was calculated from INFOMAR

bathymetry (INFOMAR, http://www.infomar.ie ) gridded at 200

m and potential density derived from a ship-based CTD cast during

JC125 interpolated to 50 m resolution by kriging using the Spatial

Analyst toolbox in ArcGIS (Supplementary materials 1.1). The

environmental variables were exported as rasters at 50 m

resolution (Supplementary Materials Figure 1).

2.2.2 Model-derived hydrodynamic variables
Tidal current variables were extracted from a 500 m horizontal

resolution regional hydrodynamic model (a modified version of the

Princeton Ocean Model) used to simulate the semidiurnal internal

tide in Whittard Canyon (see Aslam et al. (2018) for further details).
TABLE 1 Details of data used in this study, acquired from different cruises within Whittard Canyon.

Cruise Vessel Cruise
Dates Data type Description

MESH
R.V. Celtic
Explorer

June 2007
Multibeam
echosounder

Multibeam bathymetry acquired with shipboard Kongsberg Simrad EM1002 MBES system at 25
m resolution

JC035_JC306
RRS James
Cook

June 2009
Multibeam
echosounder

Multibeam bathymetry acquired with shipboard Kongsberg Simrad EM120 MBES at 50 m
resolution

ROV footage ROV footage: dive 116

JC125
RRS James
Cook

August-
September 2015

Multibeam
echosounder

Multibeam bathymetry acquired with shipboard Kongsberg Simrad EM120 MBES at 50 m
resolution

Ocean Glider
data

1 station: Temperature, salinity, dissolved oxygen concentration (µmol kg-1), and optical
backscatter at two wavelengths (470 nm and 700 nm)

Shipboard CTD
data

3 stations: Temperature, salinity, dissolved oxygen concentration (µmol kg-1) and turbidity
(NTU)

ROV footage ROV footage: dive 250, 262 and 263

64PE421 R.V. Pelagia May 2017
Shipboard CTD
data

9 stations: Temperature, salinity, dissolved oxygen concentration (µmol kg-1) and turbidity
(NTU)

64PE453 R.V. Pelagia June 2019
Shipboard CTD
data

2 stations: Temperature, salinity, dissolved oxygen concentration (µmol kg-1) and turbidity
(NTU)
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Three variables were extracted: barotopic current speed, near-

bottom baroclinic current speed, and near-bottom total

(barotropic plus baroclinic) current speed. In each case, the

variable is the root mean squared (r.m.s.) speed over a single

semidiurnal tidal cycle. To match the resolution of the terrain

derivatives, tidal current speeds were horizontally interpolated into

rasters with 50 m resolution (Supplementary Figure 1).

Interpolation was undertaken by kriging using the Spatial Analyst

toolbox in ArcGIS, and based upon spatial variograms calculated in

Golden Software Surfer V 8. To account for discrepancies in

bathymetric depth over small topographic features between the

hydrodynamic model grid and the 50 m MBES bathymetry,

modelled current speed values were extracted from the vertical

level nearest to that of the MBES bathymetry.

2.2.3 Observed hydrodynamic variables
Hydrographic data along the Eastern canyon branch were

collected using an autonomous ocean glider and shipboard CTD

surveys (Figure 1). The glider data were acquired with an iRobot

1KA Seaglider operating in virtual mooring mode around station

VM5 (Figure 1) for 43 hours, during which it completed 22 full-

depth dive cycles (see in Hall et al. (2017) for further details).

During each dive two profiles of temperature, salinity and dissolved

oxygen concentration (µmol kg-1), were measured. Temperature

and salinity were sampled every 5 seconds; oxygen concentration

was sampled every 5 seconds in the upper 200 m and every 30

seconds between 200 m and 1000 m (or the seabed). All the glider

data were quality controlled and averaged (median value) in 5 m

depth bins before further analysis. The CTD data were acquired

with a Seabird Electronics Sea-Bird SBE 911plus at 14 stations

within the Eastern branch (Figure 1). Profiles of temperature,

salinity and dissolved oxygen concentration were sampled at 24

Hz and averaged in 1 m depth bins. Accurate oxygen concentration

measurement with a CTD is difficult and data was not calibrated by

Winklers. However, the observed variability, which is the focus of

this study, is accurate. Conservative temperature (°C), absolute

salinity (g kg-1), and potential density (kg m-3), were calculated

from the glider and CTD data using the Gibbs Sea Water

Oceanographic Toolbox in Matlab (McDougall and Barker, 2011)

(RRID: SCR_001622).

The CTD data were used to assess spatial and temporal

variability within the dataset and confirm consistency between

stations in close proximity but occupied at different times. As all

ROV dives went below the seasonal thermocline, consistency at

these depths allowed multiple CTD casts in close proximity to an

ROV dive (Figure 1) to be averaged and linearly extrapolated to the

maximum depth of the dive (Supplementary Figures 2 and 3). The

averaged and extrapolated profiles were then used to derive

environmental variables at the ROV dive sites for the

multivariate analysis.

2.2.3.1 Semidiurnal vertical isopycnal displacement and
water mass property variability

Both the glider and CTD data were used to calculate vertical

isopycnal displacement caused by the semidiurnal internal tide. At
Frontiers in Marine Science 06
sites toward the canyon head, above 900 m depth, glider data from

VM5 were used; at mid-canyon sites, below 900 m CTD data from

stations JC125_05, JC125_06 and JC125_19, deployed on the 16/08/

2016, 20/8/2015 and 6/9/2015, were used. Density anomaly, r'(z, t)
= r(z, t) – r(z), where r is measured potential density and r is time-

average potential density, is calculated first, followed by vertical

isopycnal displacement, x(z, t) =-r'(∂r/∂z)-1. An M2 (the dominant

semidiurnal tidal constituent, with a period of 12.42 hours)

harmonic analysis was applied to vertical isopycnal displacement

on each depth level using t-tide (Pawlowicz et al., 2002) to yield M2

amplitudes for vertical isopycnal displacement (xM2
A ). To justify the

use of vertical isopycnal displacement derived from different

datasets, consistency between the density profiles was confirmed

(Supplementary Figures 2, 3).

The glider and CTD data were also used to infer the temporal

variability of water mass properties due to vertical advection by the

semidiurnal internal tide. At each location and on each depth level

that harmonic analysis was applied, the resulting M2 vertical

isopycnal displacement amplitude was compared to time-average

profiles of water mass properties (conservative temperature,

absolute salinity, potential density, and dissolved oxygen

concentration). The range of water mass properties within the

vertical envelope defined by isopycnal displacement was

considered the range of properties that would be experienced by

an organism at that depth due to vertical advection.
2.2.4 Seafloor imagery
2.2.4.1 Imagery data acquisition

Video data were acquired during the JC036 and JC125 cruises

(Table 1), using the remotely operated vehicle (ROV) Isis. During

JC036 Isis was equipped with a standard definition video camera

(Pegasus, Insite Tritech Inc. with SeaArc2 400 W, Deep sea

Power&- Light illumination) and stills camera (Scorpio, Insite

Tritech Inc., 2048 x 1536 pixels). For the JC125 cruise, the ROV

Isis was equipped with a dual high definition stills and video camera

(Scorpio, Insite Tritech Inc., 1920 x 1080 pixels). Positional data

were derived from the ROV’s ultra-short baseline navigation system

(Sonardyne USBL). A total of four dives encompassing vertical walls

were completed in the Eastern branch to depths of 1420 m (Figure 1

and Table 2) (Robert et al., 2015). Epibenthic morphospecies

(visually distinct taxa) >10 mm were annotated from the video,

using a laser scale with parallel beams positioned 10 cm apart to

estimate organism size. Those sections where the seabed was out of

view for extended periods, prohibiting annotations, were noted by

time and excluded from subsequent analysis.

Composition of substrata was visually assessed and assigned a

class based on the CATAMI classification (Althaus et al., 2015)

(Table 3). Additionally, occurrences of coral reef and dead coral reef

framework were annotated (example images are provided in

Supplementary Figure 4). Due to the patchy distribution of

substrata, substratum type was coded based upon the dominant

substratum type followed by the subordinate, for example hard

substratum with coral rubble was coded as H_CR. Vertical walls

were identified visually from video data, and defined as topography

oriented at an angle >50° to horizontal, and of a height >3 m.
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2.2.4.2 Imagery data analysis

Annotations from the JC036 (previously annotated by Robert

et al. (2015)) and JC125 cruises were combined into a single data

matrix and nomenclature standardised. Transects were subdivided

into 10 m length sections and the morphospecies records within

each section consolidated. Species richness and Simpson’s

reciprocal index (1/D) (Simpson, 1949) were calculated for each

10 m section sample. A 10 m sample length was chosen after data

exploration revealed that distinct bands of fauna usually occurred in

linear events <50 m so that 10 m sample units would enable

structure in assemblages on walls to be identified (Borcard

et al., 2011).

2.2.5 ROV derived depth
ROV derived depth was calculated to provide a higher

resolution dataset than available from shipborne bathymetry

(Robert et al., 2017). For approximately horizontal terrain,

depth values for the seabed were derived by combing the

ROV’s altitude and depth records to obtain a seabed depth

value (m). The ROV attitude data were cross-referenced with

annotations to identify sections of vertical wall and for these

sections ROV depth alone was used in the calculation. A

smoothing average with a temporal window size of 3 seconds

was applied to the new depth variable.
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2.3 Statistical analyses

Univariate and multivariate analysis techniques were used to

identify spatial patterns in faunal diversity and assemblages on

canyon walls. Highly mobile taxa such as fish that can be ‘double

counted’ were removed prior to analysis. Samples with <2 taxa

present were also excluded from multivariate analysis.

Environmental data coincident with the midpoint co-ordinate of

each fauna sample were extracted from the rasters and combined

with CTD data extracted from depth profiles coincident with the

depth of the sample. Samples D263_108 and D263_109 were

removed as CTD data did not extend to the water depths of these

samples. Data exploration was undertaken following the protocol

described in Zuur et al. (2010).

Generalised Linear Models (GLMs) were used to explore the

relationships between diversity (species richness and 1/D) and the

environmental variables. Species richness and 1/D were assessed

using GLMs with link functions based on an exponential

relationship between the response variable and the environmental

predictor variables (Zuur et al., 2014b). A Poisson distribution was

assumed for species richness and a Gamma distribution was

assumed for 1/D, based upon the distribution of the response

variable, together with a log link function. Environmental

variables were selected by forward selection under parsimony
TABLE 3 Substratum classification used in annotation of image data.

CATAMI Classification Annotation classification

Level 2 Level 3 Level 4 Level 5 Substratum Description Substratum Code

Unconsolidated (soft)

Sand/mud (<2 mm)

Coarse sand (with shell fragments)
Sand S

Fine sand (no shell fragments)

Mud/silt (<64 µm) Mud M

Pebble/gravel Biogenic
Shellhash Biogenic gravel BG

Coral rubble Coral rubble CR

Consolidated (hard)

Dead coral reef framework DCRF

Coral reef CRF

Veneer V

Rock Hard H
Substratum was annotated based upon the CATAMI classification (Althaus et al., 2015). Additionally, coral reef and dead coral reef framework were added.
TABLE 2 Characteristics of ROV dives in Whittard Canyon analysed in the study: Cruise number, total transect length (m), transect length (m)
coincident with vertical walls, maximum and minimum water depth (m) coincident with vertical walls and number of samples extracted from each dive
that represent vertical walls.

Dive Cruise Total Transect
Length (m)

Transect Length (m)
(V. wall)

Min Depth (m) (V.
wall)

Max Depth (m) (V.
wall)

Samples used in models
(V. wall)

262 JC125 1205 390 486 836 21

htt250 JC125 783 400 753 895 15

116 JC036 1929 490 1291 1369 29

263 JC125 2296 552 1260 1420 50

Total 6213 1832 115
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after Pearson’s correlation and Variance Inflation Factor (VIF)

scores were used to remove highly correlated variables (absolute

correlation coefficients >0.7) (Zuur et al., 2014b). Model

assumptions were verified by plotting residuals versus fitted

values, versus each covariate in the model and each covariate not

in the model. Residuals were assessed for spatial dependency via

variograms (Zuur et al., 2014a). To further account for inherent

spatial autocorrelation in the data, the residual autocovariate (RAC)

was calculated for the optimal model. The RAC represents the

similarity between the residual from the optimal model at a location

compared with those of neighbouring locations. This method can

account for spatial autocorrelation without compromising model

performance (Crase et al., 2012).

Multivariate species data were assessed with non-metric Multi-

Dimensional Scaling (nMDS) and hierarchal cluster analysis with

group-averaged linkage, using a Hellinger dissimilarity matrix

derived from the Hellinger transformed data matrix. Data were

Hellinger transformed to enable the use of linear ordination

methods (Legendre and Gallagher, 2001; Legendre and Legendre,

2012). The optimal number of interpretable clusters was

determined with fusion level and mean silhouette widths

(Legendre and Legendre, 2012). Characteristic morphospecies

contributing to similarity among clusters were identified using the

Similarity Percentage analysis (SIMPER) routine (Clarke, 1993).

Canonical Redundancy Analysis (RDA) was used to explore

relationships between the multivariate species data and the different

environmental variables. RDA combines the outputs of multiple

regression with ordination (Legendre and Legendre, 2012). Prior to

RDA, environmental data were standardised (i.e. transformed to

zero mean, and unit variance). Forward selection was then carried

out on the environmental variables to obtain the most parsimonious

model and Pearson’s correlation together with VIF scores were used

to exclude environmental variables that showed strong collinearity

with others present within the model (absolute correlation

coefficients >0.7) (Borcard et al., 2011).

Spatial correlation in the multivariate species data was assessed

by incorporating sample coordinates into the RDA of species data

and by means of a Mantel correlogram on the detrended species

data. Variance partitioning was then performed to assess how much

of the variance explained in the species data by the environmental

variables was spatially structured. Variance partitioning was

performed using the environmental variables from the

parsimonious model and sample coordinates, after forward

selection (Legendre and Legendre, 2012).

During model selection for GLM and RDA, high collinearity

was observed between certain environmental variables and depth.

Depth per se does not influence fauna, but in canyons depth is

correlated with measured and unmeasured environmental factors

(e.g. current speed and water mass properties) that have been shown

to influence faunal patterns (Robert et al., 2015; Pearman et al.,

2020). Consequently, depth was retained in analysis, for ease of

interpretation though in later sections we also discuss potential

effects of correlated environmental factors.

All statistical analyses were conducted using the open source

software R (R_CORE_TEAM, 2014), packages “Packfor” “vegan”,

“cluster”, “ape”, “ade4”, “gclus”, “AEM”, “spdep” and “MASS”.
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3 Results

3.1 Spatial and temporal gradients in
canyon oceanography

Glider and CTD measurements showed several water masses in

the Eastern branch of Whittard Canyon (Figure 2 and

Supplementary Figure 6). The ENAW (s range: 27.1 – 2 7.25 kg

m−3) occurs below the seasonally warmed surface waters to

approximately 600 m water depth (Figure 2). The influence of the

MOW (s range 27.5 – 27.6 kg m−3), seen as a salinity maximum,

can be observed frommeasurements taken further down the canyon

axis, between 800 – 1200 m water depth, but is absent from those

towards the canyon head (Figure 2). Similarly, large gradients in

dissolved oxygen concentration that are observed from

measurements taken further down the canyon axis are absent

from those toward the canyon head (Supplementary Figure 6).

Vertical isopycnal displacement derived from the glider (Hall

et al., 2017) and CTD data showed variability along the Eastern

branch and with depth. The highest displacement amplitude from

the glider data (VM5, upper canyon) was 53 m at 617 m water depth

(Figure 3), resulting in tidal temperature variations of 0.53°C,

salinity variations of 0.004 g kg-1, potential density variations of

0.09 kg m-3 and dissolved oxygen variations of 9.2 mmol kg-1. The

highest amplitude calculated from the CTD data (mid canyon) was

140 m at 942 m water depth (Figure 3), resulting in tidal

temperature variations of 1.55°C, salinity variations of 0.1 g kg-1,

potential density variations of 0.16 kg m-3 and dissolved oxygen

variations of 5.8 mmol kg-1.
FIGURE 2

Temperature – salinity plot for 5 CTD casts along the canyon
branch axis, collected during the 64PE21 cruise. See Supplementary
Materials Figure 5 for CTD locations. The influence of the MOW
decreases toward the head of the canyon.
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3.2 Spatial patterns of faunal diversity and
assemblage composition on deep-sea
canyon walls

A total of 14701 individuals assigned to 150 morphospecies

were annotated. Most morphospecies were rare, whilst others were

abundant in specific locations and occurred at low density across

the rest of the samples. The most abundant morphospecies was

Brachiopoda sp. 1 (4440). The most common morphospecies

recorded across dives was Caryophylliidae sp. 1 (in 69.2% of total

samples). Highest species richness (29/10 m transect) and 1/D

(10.87) was observed from dive 262 on hard substratum vertical

wall with coral rubble.

Walls toward the head of the canyon (dives 262 and 250) were

steep and comprised of an alternation of geological strata resistant to

erosion, and friable, less competent sedimentary units of varying

thickness with occasional ledges, all of which was covered in a mud

veneer of varying thickness. The bivalves Neopycnodonte sp. 1 and

Acesta excavata, stony corals Madrepora oculata and Caryophylliidae

sp. 1 and crinoids were observed to aggregate beneath ledges (Figure 4).

On other sections of wall, the black coral Antipathidae sp. 1 or the

basket star Brisingidae sp.1 reached relatively high abundances

(Figure 4) and Cerianthidae sp. 1 occurred where soft sediment

accumulated (Figure 4). The walls toward the canyon head were

supercritical to the M2 tide and although the area is exposed to

relatively weaker currents 0.17 – 0.23 m s-1 (Supplementary Figure 1)

it experienced similar short-term temporal variability of water mass

properties to that of walls sampled in the mid canyon (dives 116 and

263), despite the water temperature being up to 5°C warmer.

Dense aggregations of D. pertusum framework were observed

between 1301 and 1369 m water depth (dive 116) from walls

comprised of alternations of strong and weak, thinly bedded
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sedimentary units that resulted in a ‘stepped’ relief (Figure 4) and

that were covered in a mud veneer of varying thickness. The walls

were supercritical to theM2 tide in a region exposed to high current

speeds of 0.42 – 0.46 m s-1.

Brachiopods, large erect sponges and arborescent gorgonians

were observed between 1261 – 1406 m water depth (dive 263)

from walls that comprised brown rocky strata resistant to erosion

and covered in a mud veneer of varying thickness (Figure 4). The

walls were critical to the M2 tide and experienced currents of 0.27 –

0.29 m s-1.
3.3 Statistical analysis results

High collinearity was present within the environmental dataset.

Density, temperature, salinity and current speed were highly

correlated with depth, as on occasion were values for the M2

amplitude and associated ranges in density, temperature and

salinity. As a result, only M2 amplitude, depth, criticality and

substratum type were retained for the final RDA and depth, slope

and substratum type retained in the final GLM model.

3.3.1 Species diversity
The GLM analysis of the vertical wall dataset identified slope,

depth and substratum as significant variables explaining 39%

deviance in species richness across the dives and 43% deviance in

1/D across dives. Species richness showed a weak positive

relationship with slope and a weak negative relationship with

depth and increasing soft sediment, biogenic gravel and coral reef

framework. On the other hand, 1/D showed a weak negative

relationship with slope and a weak positive relationship with

depth, increasing soft sediment (Table 4).
A B

FIGURE 3

Time series of potential density overlaid with M2 harmonically filtered vertical isopycnal displacement every 100 m calculated from (A) VM5. When
operating in virtual mooring mode the glider stayed within 2.5 km of the station, but this imperfect geolocation over the steep canyon bathymetry
resulted in a range of dive depths (white background). (B) Amplitude of M2 displacement from the harmonic analysis derived from CTD (dashed lines)
and glider data (Solid lines).
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3.3.2 Canyon wall assemblages
Hierarchical clustering identified nine clusters (Figure 5, Table 5

and Supplementary Figure 7) that separated into three regions of

the nMDS plot (Figure 5). From review of clustering (Figure 5) and

SIMPER results (Table 5 and Supplementary Table 1) it is likely that

clusters 1, 2 and 3 represent the three main assemblages with the

remaining clusters representing transitionary components.

Cluster 1 represents the D. pertusum assemblage observed from

dive 116, cluster 2 (and transitionary cluster 5) represents the

Brachiopoda sp. 1 assemblage observed from dive 263 and cluster

3 (and transitionary clusters 4, 6 and 7) represents the general

mixed assemblage comprised of Cerianthidae sp.1, Cidaris cidaris
Frontiers in Marine Science 10
and Antipathidae sp. 1 observed from dives 262 and 250 (Figures 4,

5 and Table 5). Clusters 8 and 9 were only represented by a single

sample, limiting conclusions that can be drawn and so are omitted

from further discussion (Figure 4 and Table 5).

Walls toward the head of the canyon (between 500 - 900 m)

support a wider variety of assemblages with some observed across

both dive 250 and dive 262 (Figures 5-7). In contrast, lower down

the canyon at approximately 1350 m, different single assemblage

types dominated opposite canyon walls (dives 116 and 263)

(Figures 5-7).

The RDA analysis demonstrated assemblage-environment

relationships, showing that species aggregations are driven by
FIGURE 4

Example images of vertical wall assemblages observed from ROV video data. (A) The deep water oyster Neopycnodonte sp. 1 and the deep water
bivalve Acesta excavata, the stony corals Madrepora oculata and Caryophylliidae sp. 1, the squat lobster Munididae sp. 1, the urchin Cidaris cidaris
and crinoids, were observed aggregating beneath ledges, image taken during dive 262 at 637 m. (B) The anemone Cerianthidae sp. 1 occurs
wherever there is sufficient soft sediment, image taken during dive 250 at 849 m. (C) The urchin C. cidaris and the seastar Brisingidae sp. 1, the
anemone Phelliactis sp. 1, image taken during dive 262 at 826 m. (D) The black coral Antipathidae sp. 1, the urchin C. cidaris, the anemone
Cerianthidae sp. 1, image taken during dive 262 at 733 m. (E) The stony coral Desmophyllum pertusum, the deep water bivalve A. excavata, the coral
morphospecies Anthozoa sp. 1, the anemones morphospecies Actinaria sp. 2 and Actinernus michaelsarsi, and the fish Lepidion eques, image taken
during dive 116 at 1362 m. (F) Brachiopoda sp. 1, sponge morphospecies chalice sponge, the deep water bivalve A. excavata, the holothurian Psolus
squamatus, the stony coral Caryophylliidae sp. 1 and the urchin Echinus sp. 1, image taken during dive 263 at 1344 m. Scale bars = 10 cm. Numbers
denote cluster membership after cluster analysis.
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depth, M2 amplitude, criticality of the slope and substratum type

(Adjusted R2 48%) (Figure 7 and Table 6). The first axis of the RDA

plot represents a gradient from reef to non-reef substrata and from

supercritical to critical conditions, and the second axis represents a

gradient in depth and M2 amplitude (Figure 7).

The vectors representing species scores (Figure 7) separate into

three subgroups. The upper left quadrant, characterized by the

predominance of the anemone Cerianthidae sp. 1, the urchin C.

cidaris, the deep water oyster Neopycnodonte sp. 1, the black coral

Antipathidae sp. 1, the squat lobster Munididae sp. 1, the basket star
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Brisingidae sp. 1 and the stony coralM. oculata; within which there

was further differentiation depending on the relative abundance of

Cerianthidae sp. 1, Antipathidae sp. 1, Neopycnodonte sp. 1 and

Brisingidae sp. 1. The lower right quadrant was represented by a

predominance of Brachiopoda sp. 1, the stony coral Caryophylliidae

sp. 1, Isididae sp. 3, the holothurian Psolus squamatus, the chalice

sponge and the urchin Echinus sp. 1. The lower left quadrant was

characterised by the predominance of the stony coral D. pertusum,

the deep water bivalve A. excavata, the anemone morphospecies

Actiniaria sp. 10, two coral morphospecies (Anthozoa sp. 1 and

Cnidaria sp. 129) and Crinoidea sp. 11.

The clustering and nMDS plots showed a similar trend by

identifying nine clusters that separated into three regions of

the nMDS plots (Figures 5, 7) comprised of the same

characterising morphospecies as those in the RDA plot (Table 5).

Cluster 1 relates to the lower left quadrant; cluster 2 relates to

the lower right quadrant and cluster 3 relates to the upper left

quadrant, with cluster 6 representing the increasingly Antipathidae

sp. 1 dominated assemblage to the central upper left

quadrant and cluster 4 representing the Neopycnodonte sp. 1

dominated assemblage.

Results of the spatial analysis show that fauna samples are

spatially structured showing both a general trend at a broad scale

and then greater similarity at distances <200 m and dissimilarity at

distances >450 m that represents the difference between dives

(Supplementary Figure 9). Variance partitioning shows 45.3% of

variance explained in species data by environmental variables is also

spatially structured in relation to the sample coordinates (Figure 8).

Together these results suggest spatial patterns in species are driven
TABLE 4 Results from Generalised Linear Model for species richness and the selected environmental variables.

Model Environmental Variables Deviance explained

S Slope 0.0199470 *** 0.39

Depth -0.0004673 *

RAC 1.4144485 ***

Substrate:

H_V.MS -0.2589899 **

H_V.MS_BG -0.1892338

H_V.MS_R 0.0163835

V.MS_CRF -0.9036104 **

1/D Slope -0.006666 *** 0.43

Depth 0.0001939 ***

RAC -1.767***

Substrate:

H_V.MS 0.0654 •

H_V.MS_BG 0.05817

H_V.MS_R 0.042

V.MS_CRF 0.07071
Significance of individual terms ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, • p ≤ 0.1.
FIGURE 5

nMDS plot of multivariate Hellinger transformed species data.
Samples are coloured to represent the nine clusters identified by
hierarchal clustering analysis. Shapes denote the dive from which
samples were collected.
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by environmental variables, which themselves are spatially

organised and so exhibit a degree of induced spatial dependence.
4 Discussion

A number of studies have examined environmental drivers of

faunal patterns in submarine canyons (Robert et al., 2015; Sigler

et al., 2015; Pierdomenico et al., 2016; Domke et al., 2017; Bianchelli

and Danovaro, 2019; Pierdomenico et al., 2019; Pearman et al.,

2020) but until now, no study of canyon wall assemblages

integrating both spatial and temporal oceanographic variability

induced by the internal tide has been conducted. Using a multi-

disciplinary approach, we have been able to further quantify spatial

patterns in environmental variables and wall faunal assemblages in

canyon settings.

Canyons are highly heterogeneous environments and the

influence of spatial patterns in the environmental variables,

coupled with the sample design of locations at two very different

depths, makes it difficult to pull apart the role of environment vs the

role of location (as illustrated by the strong significance of the RAC

in the GLM and the overlap in variance partitioning in the RDA).

Still, the nMDS and RDA results illustrate that faunal assemblages

are not simply determined by ROV dive or sampling location since

several assemblage clusters were observed from multiple dives

(Figures 5, 7 and Table 5). Furthermore, the RDA analyses
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identified depth, slope, substratum and proxies of internal tide

dynamics as important factors driving faunal patterns on canyon

walls (Figure 7 and Table 6). The GLMs for species richness and 1/D

also identified slope, depth and substrate characteristics as

influencing faunal diversity, but not any of the proxies of internal

tide dynamics (Table 4). Diversity metrics condense multivariate

information (faunal composition and/or abundance) into a single

measure that is not representative of species composition. In our

data, areas of high diversity (species richness and 1/D) supported

different faunal compositions, demonstrating that the sole use of

diversity metrics to represent faunal variability may miss key

aspects of species – environment relationships in canyons and so

limit our understanding of processes driving faunal distributions.

As such these results indicate that other environmental factors (in

this case proxies of internal tide dynamics), in addition to those

traditionally highlighted by studies modelling diversity (i.e. depth,

slope and substrate) (Robert et al., 2014; Ismail et al., 2018), are

likely acting to determine assemblage composition in canyons.

Additional sampling of other vertical walls in this part of

Whittard Canyon would certainly help to obtain a clearer insight

into the role of the environmental conditions in influencing

faunal distributions.

Our spatial analysis revealed that the environmental variables

investigated were spatially organised in relation to depth which was

identified as an important factor influencing faunal patterns

(Figure 8 and Tables 4, 6). Within Whittard Canyon we found
TABLE 5 Clusters identified from multivariate hierarchal clustering analysis with associated environmental parameters, number of samples
represented by each cluster and SIMPER results identifying the morphospecies that characterise the clusters (70% accumulative contribution cut off).

Cluster Characterising Species Water
Depth
(m)

Substrate Criticality M2 Ampli-
tude (m)

Current
Speed
(ms-1)

Temp range
and AverageM2

induced daily
variation (°C)

N
samples

1

Desmophyllum pertusum, Acesta
excavata, coral morphospecies
Anthozoa sp. 1 and Cnidaria sp. 129,
Actiniaria sp. 10

1301-
1369

H.CRF.V.M Supercritical 0-58 0.42-0.46 5.6-7.1 (0.35) 26

2
Brachiopoda sp.1, Caryophylliidae sp.
1, Psolus squamatus, Isididae sp. 3,
Porifera morphospecies chalice sponge

1261-
1406

H.V.M,
H_V.MS_BG

Critical 0-42 0.27-0.29 5.7-7.3 (0.31) 47

3
Cerianthidae sp. 1, Cidaris cidaris,
Antipathidae sp. 1, Ophiuroidea

514-636
H_V.M,
H_V.M_R

Supercritical 0-44 0.17-0.23 9.6-10.9 (0.24) 27

4 Caryophylliidae sp. 1
659 and
1330

H_V.M Supercritical 27 and 45
0.19 and
0.28

5.8-6.9 (0.53)
and9.5-10.6 (0.55)

2

5 Echinus sp. 1, Acanella sp. 1
1323-
1368

H_V.M Supercritical 0-28 0.28-0.29 5.7-6.9 (0.31) 3

6

Porifera sp. 15, Antipathidae sp. 1,
Actinaria sp. 14, Cidaris cidaris,
Serpulidae sp. 1,Cyclostomatidae sp. 1,
Cerianthidae sp. 1

660-731
H_V.M_R,
H_V.M

Supercritical 44-47 0.19 9.2-10.6 (0.51) 4

7

Neopycnodonte sp. 1, Crinoidea sp. 13,
Munididae sp. 1, Caryophylliidae sp.
1, Cidaris, Madrepora oculata,
Asterinidae sp. 1, Porifera sp. 11

486-666
H_V.M_R,
H_V.M

Supercritical 32-44 0.17-0.19 9.4-11.0 (0.30) 4

8 Penatulacea sp. 1, Actinoscyphia sp. 1 1317 V.MS_CRF Supercritical 13 0.4 6.4-6.4 (0.15) 1

9 Asteriodea sp. 1, Actiniidae sp. 5 1363 H_V.M Critical 0 0.29 6.2 (0) 1
fro
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several oceanographic gradients (temperature, salinity and

dissolved oxygen) that were correlated with depth and varied in

intensity along the canyon (Figures 2, 3 and Supplementary

Figures 2, 3, 6). Broad- scale environmental gradients of physico-

chemical properties act to determine faunal patterns (Levin et al.,

2001; Kenchington et al., 2014; Mcclain and Lundsten, 2015; Robert

et al., 2015; Du Preez et al., 2016; Ismail et al., 2018) and are likely

driving the difference in assemblages observed between walls of the

upper and mid canyon (Figure 7 and Table 5). However, the

observation from our study of different assemblages from similar

depth ranges (Figures 5, 7, and Table 5) suggests that other
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processes, such as internal tides and substratum are working in

concert at smaller spatial scales to drive spatial patterns in species

assemblages on canyon walls.

Canyons are sites of intensified hydrodynamics including

internal tides, which our study has shown generate spatial and

temporal heterogeneity in water properties (temperature, salinity,

density and dissolved oxygen concentration) (Figure 3) and near-

bed current speeds (Supplementary Figure 1). In Whittard Canyon,

short term temporal variability induced by the vertical isopycnal

displacement of theM2 internal tide (represented by the variableM2

amplitude) was found to be a significant factor driving faunal
FIGURE 6

Spatial plot of sites (samples) from vertical walls across all dives plotted over bathymetric criticality to the M2 tide. Samples are coloured to represent
the nine clusters identified by hierarchal clustering analysis.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1091855
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pearman et al. 10.3389/fmars.2023.1091855
assemblages on canyon walls (Figure 7 and Table 6). Short-term

variability in temperature, salinity and oxygen also drove differences

in faunal assemblages on the Hebrides Terrace Seamount (Henry

et al., 2014). Short-term internal tide induced variability in water

properties may influence faunal distributions via species

physiological constraints that limit their bathymetric distributions

(Hutchins, 1947; Rowe and Menzies, 1969; Tietjen, 1971; Menzies

and George, 1972; Van Den Hoek, 1982; Jeffree and Jeffree, 1994;

Southward et al., 1995). The comparatively low variance explained

by the vertical isopycnal displacement of theM2 internal tide in our

study may reflect the restricted environmental range that was

sampled. For example, despite local amplitudes of up to 140 m

calculated for the M2 tide resulting in maximum tidal temperature

variations of 1.55°C, these areas of high temporal variability did not
Frontiers in Marine Science 14
coincide with data collected from vertical walls. Consequently, the

temporal variability in oceanographic variables experienced by wall

fauna was relatively consistent between dives, even if the absolute

values differed (Table 5).

The M2 vertical isopycnal elevation amplitudes diagnosed here

may also reflect spatial and temporal variation in internal tide

kinetic energy and associated turbulent mixing (Van Haren et al.,

2022). In Whittard Canyon, peaks in turbulent kinetic energy

dissipation have been linked with resuspension of material,

nepheloid formation and sediment movement (Van Haren et al.,

2022) that indirectly influences fauna by resuspending and

concentrating POM (Dell’anno et al., 2013; Demopoulos et al.,

2017; Pearman et al., 2020). Additionally, internal tide kinetic

energy influences fauna directly by elevating near-bed current
A B

C

FIGURE 7

Canonical Redundancy Analysis of Hellinger transformed species data and selected environmental variables. For clarity, the triplot is displayed in
three separate plots. (A) Environmental variables. The vector arrowheads represent high, the origin averages, and the tail (when extended through
the origin) low values of the selected continuous environmental variables, centroids of categorical variables substratum shown as points colour
coded by substratum type. (B) Species data with only species with strongest effect labelled. (C) Sites coloured by cluster following cluster analysis.
Sites close to one another tend to have similar faunal structure than those further apart. Substratum codes: BG, Biogenic gravel; CR, Coral rubble;
CRF, Coral reef framework; S, Sand; M, Mud; H, Hard; V, Veneer.
TABLE 6 Results from Canonical Redundancy Analysis of Hellinger transformed species data and selected environmental variables.

Model Environmental Variables - Significance of individual terms by ANOVA Adjusted R2 Significance of RDA Plot by
ANOVA

F-value p- value

V.Walls Depth***, M2.Amp***, Criticality ***, Substrate*** 48 14.305, df= 8,105 0.001
Significance of individual terms by analysis of variance (ANOVA) on RDA including spatial structure. ***p ≤ 0.001.
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speeds and associated physical stress (Weinbauer and Velimirov,

1996; Johnson et al., 2013; Orejas et al., 2016) and variation in

internal tide kinetic energy has been correlated with fish larvae

richness, abundance and assemblage composition in the Midrift

Archipelago Region of the Tiburon Basin, Gulf of California

(Ruvalcaba-Aroche 2019). Future observational campaigns,

including moored Acoustic Doppler Current Profilers (ADCPs)

and microstructure profiler surveys, will allow full diagnosis on

internal tide energetics and associated turbulent mixing rates to

quantitatively assess their influence on canyon fauna.

Internal tide–topographic interactions (indicated by bathymetric

slope criticality to the dominant semidiurnal internal tide) are also

linked to spatial heterogeneity in turbulent mixing (Wilson et al., 2015;

Hall et al., 2017; Van Haren et al., 2017; Aslam et al., 2018) and near-

bed current speeds both of which are linked to resuspension of POM

(Thomsen and Gust, 2000; Wilson et al., 2015; Hall et al., 2017; Aslam

et al., 2018). Deep-sea fauna predominantly rely upon the consumption

of surface derived POM and internal tides interacting with supercritical

slopes have been shown to form efficient food supply mechanisms

capable of delivering high quality POM from surface waters to benthic

assemblages at depth (Johnson et al., 2013; Mohn et al., 2014).

Conversely, internal tides interacting with critical slopes may result

in wave breaking and resuspension, and the mobilisation of older

material from the seafloor that is often degraded and reworkedmaterial

of lower quality POM. InWhittard Canyon, slope criticality was found

to be a significant factor driving faunal assemblages on canyon walls,

and it was mainly linked to assemblages that correlated with coral reef

substrata (Figure 7 and Table 5). Dives 116 and 263, conducted at

similar depths, differed in slope criticality and assemblages observed

(Figure 6). On dive 263, brachiopods, large sponges and arborescent

gorgonians were observed on walls where the slope was near critical

(Table 5 and Figures 4, 6 and 7). In contrast, on dive 116, an

assemblage characterised by D. pertusum was observed at similar

depth, from a wall that was supercritical (Table 5 and Figures 4, 6
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and 7). Isotopic analysis shows that D. pertusum has a broad trophic

niche (Mueller et al., 2014; Demopoulos et al., 2017) having been

known to feed on POM, zooplankton (Duineveld et al., 2007;

Duineveld et al., 2012), bacteria and dissolved organic matter

(Mueller et al., 2014) with a preference for high quality POM. On

the other hand, isotopic signatures indicative of lower quality POM

have been documented from brachiopods (Valls, 2017). Could the

different spatial distributions of these assemblages be driven by the

trophic niches of the characterising taxa that are able to capitalize on

heterogeneity in POM influenced by the internal tide interacting with

complex topography? Variability in the quality and amount of food

supply is known to influence canyon faunal distributions (De Leo et al.,

2010; McClain and Barry, 2010; Cunha et al., 2011; Chauvet et al.,

2018). Furthermore, hydrodynamic and geomorphological processes

have previously been proposed as factors influencing the supply and

resuspension of particulate organic carbon to canyon environments

and thus driving trophic structure, faunal assemblage composition and

diversity (Dell’anno et al., 2013; Demopoulos et al., 2017). However, to

confirm the role of the internal tide in generating spatial heterogeneity

in food availability to which fauna respond, further trophic analysis of

nepheloid layers in proximity to faunal assemblages in relation to

internal tide dynamics would be required.

Near-bed current speed is also an important factor influencing

food supply (Thomsen and Gust, 2000). Although R.M.S near-

bottom baroclinic, barotropic and total current speed was removed

from statistical analysis (due to collinearity with depth), data

exploration showed that assemblages were distributed along a

gradient of baroclinic (internal) current speed (Supplementary

Figure 8). Separation of species along a gradient of current speed

could reflect feeding and morphological adaptations. Species vary in

their feeding strategies and efficiency under different hydrodynamic

regimes (Järnegren and Altin, 2006; Van Oevelen et al., 2016).

Species may exploit exposed areas to increase food encounter rates

(Davies et al., 2009; Howell et al., 2011; Rengstorf et al., 2013; Mohn
FIGURE 8

Variation partitioning plot for the Hellinger transformed species data, the selected environmental variables (depth, substratum, bathymetric criticality
to the M2 tide and amplitude of the M2 tide) and spatial variables (sample coordinates).
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et al., 2014; Van Oevelen et al., 2016; Bargain et al., 2018), or

conversely avoid areas with high current speeds that may exceed

food capture rates, damage feeding apparatus (Johnson et al., 2013;

Orejas et al., 2016) or topple large arborescent species (Weinbauera

and Velimirov, 1996). Current speed is a primary driver of coral

distributions (De Clippele et al., 2018) and in our study the D.

pertusum assemblage occurred in an area exposed to the highest

speeds, which is consistent with published observations (Davies et

al., 2009; Rengstorf et al., 2013; Mohn et al., 2014) including those

from vertical walls (Brooke and Ross, 2014). On the other hand,

larger gorgonians and sponges were observed in areas exposed to

lower current speeds. Intensified currents are also linked to

resuspension and increased turbidity, which both brachiopods

and D. pertusum are noted to tolerate (James et al., 1992; Brooke

et al., 2009) and may enable them to exploit these conditions. Corals

also benefit from strong currents that reduce sediment settlement

on corals, which in turn reduces cost expenditure associated with

cleaning polyps (Brooke et al., 2009; Larsson and Purser, 2011).

The ability to exploit substrata may also influence faunal

distributions in canyons. Canyon walls not only vary in their

slope criticality but in their geological formation and fine scale

structural complexity provided by ledges and organisms

themselves. CWC species including arborescent gorgonians and

scleractinians are considered ecosystem engineers capable of

forming complex structures, which act to promote increased

species richness by providing substratum for settlement, refuge,

modification of local sedimentation and subsequent food

availability (Buhl-Mortensen et al., 2010; Guihen et al., 2013),

resulting in increased fine-scale environmental heterogeneity

(Buhl-Mortensen et al., 2010) and diversity of associated

species (Frederiksen and Westerberg, 1992; Henry and Roberts,

2007; Lessard-Pilon et al., 2010). In our study, species richness

was highest where coral substrata co-occurred with mud on

vertical walls with ‘step-wise’ substrata, whereby accumulations

of mud supported additional soft sediment species, further

increasing diversity (Figure 4E). The overall negative

relationship between species richness and coral reef framework

modelled by the GLM as opposed to the positive relationship

between coral reef framework and 1/D likely represents the

increased evenness among species on vertical walls that are

dominated by D. pertusum and A. excavata. Desmophylum

pertusum reefs will promote species richness to a point after

which D. pertusum dominates, so that fewer species occur but

those that do are relatively evenly represented resulting in

increased 1/D (Henry and Roberts, 2007). Small-scale

geomorphological features, such as ledges also appear to

influence faunal distributions on walls (Figures 4A, E). In our

study, certain species were observed aggregating in association

with ledges (Figures 4A, E). Similar observations have been made

from other vertical wall environments where the increased fine-

scale structural complexity provided by ledges is proposed to

contribute to fine-scale environmental heterogeneity and so

promote niche differentiation (Robert et al., 2020). The fragile

nature of the ledges has also been proposed as a limiting factor on

maximum colony size of corals observed (Brooke et al., 2017;

Robert et al., 2020). This postulation could explain the occurrence
Frontiers in Marine Science 16
of the D. pertusum assemblage on the wall with wider stronger

‘steps’, observed from dive 116 (Figure 4E) that are capable of

supporting greater weight and higher coral densities, compared to

the thinner ledges observed elsewhere (Figure 4A). However, the

existence of different communities associated with ledges in ours

(dive 262, 250 and 116) and other studies of Whittard Canyon

(Johnson et al., 2013; Robert et al., 2020), suggests that these

features act to influence species patterns at fine spatial scales

whilst other factors beyond substratum availability (e.g. depth,

food supply and internal tide dynamics) influence assemblage

patterns across walls at the canyon scale.

The findings of our research can be applied to other settings

where internal tides interact with complex topography to generate

spatial-temporal gradients in environmental conditions (i.e.

seamounts, coral mounds and ridges) (Frederiksen and

Westerberg, 1992; White and Dorschel, 2010). The importance of

internal tides in inducing temporal variability in water properties

and/or influencing food availability to sustain benthic assemblages

in otherwise hostile conditions (i.e. oxygen minimum zones) have

been reported from steep shelf (Hanz et al., 2019) and seamount

environments (Van Haren et al., 2017). Internal tides are also

considered important phenomena influencing cold-water coral

mound development (White and Dorschel, 2010). However, few

studies have explicitly incorporated the influence of internal tides

(Van Haren et al., 2017). In light of our findings research in other

complex settings should endeavour to incorporate internal tide data

into their analysis.
5 Conclusion

Our results show that faunal patterns on vertical walls in

submarine canyons are driven by broad-scale environmental

gradients that co-vary with depth, but also has highlighted the

role of the internal t ide in generating environmental

heterogenei ty at a finer scale (via vert ical isopycnal

displacement of the M2 internal tide and associated short term

temporal variability in water mass properties, topography tide

interactions and current speed) and how this might influence

faunal distributions within the context of the larger depth related

environmental gradients. As sites of intensified hydrodynamics,

where internal tides generate spatial-temporal gradients in

environmental variables, incorporating internal tide data is

necessary to fully understand the processes that influence

faunal patterns in canyons (including vertical walls).

We demonstrate that multivariate analysis of species data

provides greater sensitivity than univariate indices, providing

further insight into how the environmental factors interact at

different scales to generate variability in environmental conditions

that control species abundances and ultimately which species

become characteristic of assemblages. Specifically, we highlight

the likely link between internal tides and their associated vertical

displacement in generating both spatial and temporal gradients in

water mass properties that in turn influence faunal patterns on

canyon walls.
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