- 1Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
- 2Consorcio de Investigación del Golfo de México (CIGoM), Ensenada, Mexico
- 3CEMIE-Océano A. C, Ciudad Universitaria, C.U., Coyoacán, Ciudad de México, Mexico
- 4Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Unidad Mérida, Mérida, Mexico
- 5Universidad Autónoma de Baja California (UABC)-Instituto de Investigaciones Oceanológicas, Ensenada, Mexico
- 6Centro de Ingeniería y Desarrollo Industrial (CIDESI), Querétaro, Mexico
- 7Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- 8Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
- 9Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
The tragic accident of the Macondo platform operated by British Petroleum (BP) unleashed in 2010 one of the largest oil spills in history, lasting over three months, spilling nearly 500 million liters of oil in one of the most biodiverse ocean regions. This accident revealed the technological deficiencies for the control of a spill in deep waters of the hydrocarbon industry. Simultaneously it showed important gaps in knowledge to predict the propagation and fate of the large volumes of hydrocarbons at depth and on the surface ocean and, more importantly, on their impact on the great ecosystem of the Gulf of Mexico. The necessity to understand and predict the transport, fate and ecosystem-level impacts of large oil spills in the southern Gulf of Mexico, a key region for oil exploration and extraction, led policymakers, scientists, and industry representatives from PEMEX (the Mexican oil company) to jointly launch an ocean observation project (2015-22) aimed to provide a multi-layered environmental baseline, develop a modern monitoring and computational modeling capacity and promote scientific understanding of the marine environment throughout the Mexican Exclusive Economic Zone (EEZ). The initiative, led by the Research Consortium for the Gulf of Mexico (CIGoM), brought together more than 300 multidisciplinary researchers from more than a two dozen institutions in Mexico and abroad, including the Centre for Scientific Research and Higher Education of Ensenada (CICESE) as the leading institution, the National Autonomous University of Mexico (UNAM), the Centre for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) in Mérida, the Autonomous University of Baja California (UABC), and the Centre for Engineering and Industrial Development (CIDESI). Financial support was provided by the National Council for Science and Technology and the Ministry of Energy Hydrocarbon Fund.
1 Introduction
During the last 6 years the project led by CIGoM assembled a multiplatform observation system of high-frequency radars, drifters, drones, gliders, met-ocean buoys and moorings, and satellite imagery to shed light on ocean and meteorological conditions, generating data that are fed to a web-based visualization platform. These activities were complemented by cruises that covered the deep-water region of the southern Gulf of Mexico, the Yucatan shelf, and the seagrass habitats of the Yucatan and Campeche coasts, in which regional communities were sampled and water and sediment samples were collected for integrating a wide range of physical, biogeochemical, and ecological parameters in space and time over at least 5 years. In addition, a group of modelers developed atmospheric and coupled ocean-biogeochemical models to generate oil spill scenarios for different locations in the Gulf and under different climate forcings. These oil spill scenarios were then further used in a multidisciplinary exercise to assess the vulnerability of ecosystems and key species groups in the Gulf, including large pelagic fishes, cetaceans, and marine turtles. Microbiologists used cutting-edge molecular tools to characterize microbial communities in the water column and sediments to evaluate their plastic and hydrocarbon-degrading capacities. The design of our observation platforms and monitoring efforts were initially focused on the needs of the hydrocarbon industry, such as the detection, monitoring and forecasting of dispersion and the arrival of oil following a spill, as well as their potential impact on ecosystems. However, these multiplatform observations are providing us with the necessary information to understand processes operating at timescales ranging from seasonal to interannual and from the mesoscale to large scale. All of them can help us to understand how the ocean is shifting in response to ocean warming in real time, and how they affect ecosystem structure and function. They will also provide key information on how climate warming is altering the ocean environment and its ecology and, help to assess the potential impacts on coastal communities and economic activities such as fisheries and tourism.
2 Achievements of the project
2.1 Ocean observation platforms
In the past 6 years we have implemented a system of oceanographic observations and satellite image analysis to continuously observe the surface ocean circulation, currents, marine meteorology, waves and some of the ocean essential variables like temperature, salinity, oxygen content, and chlorophyll, as well as the chemical conditions of the GoM using field measurement instruments, to establish an early warning system for hydrocarbon spill events. The system consists of a network of coastal oceanographic buoys (BOC) and open ocean oceanographic and marine meteorology buoys (BOMM), partially developed and designed at CICESE (Martínez-Osuna et al., 2021); a fleet of underwater gliders; a network of radio scatterometer stations on the coast (the only one in Latin America), and a multibeam underwater mapping system complemented on the surface by different types of satellite images ranging from passive (ocean color) to active (synthetic aperture radars). The operation of the BOC and BOMM buoy network allows for a real time transmission and continuous hydrographic, oceanographic and meteorological observations in coastal and oceanic regions of the GoM. BOCs are designed to operate in shallow waters on the continental shelf, while BOMMs are used to measure ocean and meteorological parameters in deep waters (Martínez-Osuna et al., 2021) (Figure 1).
Figure 1 Map of the deployed observation platforms by CIGOM in the Gulf of México. Colored circles mark the buoys locations during different years (solid blue circles); location of the 19 coastal high frequency radar (HFR) stations (solid red squares) the hachured region marks the open ocean coverage of the HFR stations; yellow lines mark the trajectories of glider missions; transparent polygons mark the satellite imagery coverage.
The gliders are observation platforms designed for continuous and autonomous sampling of the water column up to 1,000 meters deep, recording various oceanographic parameters with very high spatial resolution that are sent via satellites back to the operations center where they are further processed. The basic instrument configuration includes sensors to measure six variables, but other instruments can be added, such as the acoustic current meters implemented in some of the CIGoM gliders. Results from these glider missions have shown the nature of intrathermocline eddies embedded within an anticyclonic eddy (Meunier et al., 2018a), to characterize the vertical structure of a large Loop Current eddy (Meunier et al., 2018b), the heat content anomaly and decay of warm core rings in the Gulf (Meunier et al., 2020). Data from different observations in the Gulf have allowed to characterize the enduring Lagrangian coherence of a Loop current ring (Beron-Vera et al, 2018b) and to elaborate a Lagrangian geography in the deep water region of Gulf of Mexico (Miron et al., 2019)
Some of these results have been used to partition the open waters of the Gulf of Mexico based on the seasonal and interannual variability of chlorophyll concentrations (Damien et al., 2018); to show how maximum concentrations of chlorophyl in winter is triggered by the deepening of the mixed layer during this season further suggesting that these maxima most likely result from a vertical redistribution of subsurface chlorophyll and/or photo-acclimation processes, rather than a net increase of biomass (Pasqueron de Fommervault et al., 2017). Observations from ocean drifters and deep sea dispersion experiments have characterized surface and deep ocean circulation patterns in the GoM (Zavala-Sansón et al, 2017; Duran et al, 2018; Zavala-Sansón et al, 2018; Ohlmann et al, 2019; Romero et al., 2019; Lilly and Pérez-Brunius, 2021; Meunier et al, 2022). A network of deep-sea moorings deployed on the Yucatan and the Florida Straits have made important contributions to the understanding of the flow from the Caribbean through the Gulf of Mexico and into the North Atlantic Ocean (Candela et al., 2019).
The network of radio-scatterometers or high frequency radars (HFR) is made up of a series of high-frequency Doppler radars installed around the southern GoM coast, between Tampico to the Yucatan Peninsula, providing continuous measurements of the surface currents up to 170 km offshore over the entire Exclusive Economic Zone (EEZ) (Figure 1, Map of the HFR radars cover) (Roarty et al., 2019).
The high-resolution mapping of the seabed in the Perdido region (western GoM), from the shelf brake to the abyssal plain, was made possible through multibeam system installed in the oceanographic vessel BP/Justo Sierra of UNAM. This upgraded system capable of simultaneous emission of acoustic beams and the reception of the equivalent echo, offers different capabilities ranging from high-resolution bathymetry of the seabed as well as capturing acoustic cones in the water column, that can be used to detect gas seeps at depth.
These observational systems are complemented with the analysis of active and passive satellite imagery of sea surface temperatures, and chlorophyll-a concentrations, as well as those acquired from active sensors i.e. synthetic aperture radar (SAR) images characterizing the sea surface roughness with information on waves. The CIGoM oceanographic observation system generates data to characterize ocean circulation, waves and biogeochemical processes of surface and deep waters, essential to understand the dynamics of the ecosystem, which can be further used as an indispensable tool to track the propagation and fate of oil during a spill. Additionally, the information obtained through these platforms can constitute an early warning system in case of environmental contingencies of anthropogenic origin (e.g., detection and drift of hydrocarbons) or natural (e.g., tropical cyclones), for which it is an essential component. All of them are essential tools for the establishment of national contingency plans and mitigation of impacts due to extreme events.
2.2 Atmospheric and ocean modeling
CIGoM modeling groups achieved important strides in the Mexican scientific community on the complex problems related to the prediction of the dispersion and probable fate of oil during large-scale hydrocarbon spills in the GoM, through the development of an integrated numerical modeling system. The coordinated effort of dozens of researchers from various academic institutions (CICESE and UNAM), without precedent in the country’s scientific community, generated its own innovative modeling system for weather and air quality forecasts, ocean circulation including waves, with the addition of biogeochemical processes, and the dispersion and fate of oil spills.
A multi-model strategy was used to simulate and reproduce the main characteristics of the GoM ocean circulation and its variability, through the implementation of eight state-of-the-art models. The advantage of this strategy consists in the robustness of the results when several model outputs coincide in their results, and when they do not coincide it can shed some light into how the differences between models are projected into the results (e.g., structures subject to greater uncertainty due to the different approaches and assumptions on which each of the models have been built models and simulations used by CIGOM can be found in the following link). https://modelacion.cigom.org/ (Jouanno et al., 2018; Gómez-Valdivia and Pares-Sierra, 2020; Maslo et al, 2020; Moreles et al., 2020).
The wave-current coupled system we developed for the GoM, consists of two models: a spectral one for waves and a hydrodynamic one for currents. The coupling allows the synchronized transfer of information between both models, so that more realistic estimates of the advection of matter (e.g. oil) can be obtained for the surface ocean Furthermore, it can be used to validate the parameterizations of the effect of waves, wind and surface ocean flow in oil spill models.
The coupling of biogeochemical modeling with the physical modeling was another achievement reached when all models used were able to successfully reproduce the distribution and concentration of chlorophyll in the water column, thus providing plausible results on the spatial and temporal characteristics of primary productivity in the GoM (Estrada-Allis et al., 2020; Guerrero et al., 2020).
A novel weather forecasting system was developed for the GoM consisting of two components. The first is used to estimate air quality and the second to calculate the evolution of polluting plumes associated with the volatilization and burning of hydrocarbons on the sea surface resulting from a large-scale spill. It should be noted that this is the only forecasting system developed in the project that can be used to reliably predict the evolution and impact of a large oil spill event on the atmosphere. https://pronosticos.atmosfera.unam.mx/atlasmeteorologico.gom/
We implemented three oil spill models of different complexity: OilSpill, PetroTrans (both 2D), and CIC-OIL (3D). These models, although based on other preexisting ones, have implemented different and innovative new routines, modifications and couplings, and stochastic theories or parameterizations that allow for the generation of new knowledge on the hydrocarbon weathering processes. In particular, the CIC-OIL model is highly sophisticated, since it couples a model to simulate the plume produced by the explosion of a well and its subsequent evolution by including several parameters, especially the nature and droplet size of the hydrocarbons which lead to very different dispersion trajectories (Anguiano-García et al, 2019; Duteil et al., 2019; Meza-Padilla et al, 2021).
The numerical models developed by CIGoM modeling groups reproduce the main oceanographic characteristics of the GoM and its variability, providing new knowledge about the circulation and biogeochemistry of the ecosystem (Beron-Vera et al., 2018a; Beron-Vera et al., 2018b; Jouanno et al., 2018; Parés-Sierra et al, 2018; Gough et al., 2019). The meteorological forecast system, in addition to provide typical information on atmospheric circulation, essential in planning daily activities at sea (e.g., fishing, marine operations, etc.) and for the prevention, attention and mitigation of impacts and an important reanalysis effort of the last 40 years (Díaz-García et al, 2020; Allende-Arandía et al, 2022; Rodríguez-Vera et al., 2022), provides additional information on the quality of the air and the effects of gas emissions associated with hydrocarbon spills, both of great relevance for public health issues. These oil spill models provide useful results for decision makers during oil contingencies since, by providing them with information from real-time observations of marine conditions and combining them with oceanic and atmospheric forecast models. These model outputs allow for a real time forecast of the fate of a spill, as well as to generate different scenarios affecting either the different marine ecosystems as well as the health of the communities and urban population that live on the shores of the GoM, which can be used in the necessary mitigation procedures after a major oil spill.
2.3 Baseline studies and environmental variability
Generating the baseline of the GoM Large Marine Ecosystem is one of the major achievements of the project. This major milestone provides the necessary knowledge to robustly assess the impacts generated by oil spills or other natural or anthropogenic events on the Mexican EEZ waters. These baseline studies include the description of the current state and its variability of the meteorological, hydrographic, biogeochemical, biological and ecological conditions at the surface and deep waters of the GoM (Figure 2). Generating this information required an enormous multidisciplinary and inter-institutional effort that resulted in the most extensive, complete and coherent oceanographic, geochemical and ecological characterization developed in Mexico to date. Given the diversity and complexity of the ecosystem and the topics addressed, we used a wide range of scientific disciplines and applied various methodological approaches ranging from data collection (Herzka et al., 2017), analysis in the different laboratories as well as statistical and analytical procedures (HergueraDocumento en gdocs, 2017).
Figure 2 Map of the cruises accomplished by CIGOM in the Gulf of México. Station visited during XIXIMI cruises in the deep water region of the GoM (filled purple squares); location of the stations visited during CINVESTAV-Mérida cruises on the Yucatán Platform (filled light green circles); location of the stations visited during the CINVESTAV-Mérida cruises in the Perdido region (filled red circles); location of the stations visited during ICML-UNAM cruises in the southern GoM (filled yellow triangles).
This baseline study was based on samples and data collected during 21 oceanographic cruises performed by five sampling programs executed by the different institutions associated with CIGoM (Table 1). One major challenge was the comparability of the results on the same variables by the different participating laboratories. One of the first actions was to standardize the procedures and protocols for on board sampling and processing of water and sediment samples, living organisms, as well as for the instrumentation and recording of oceanographic and biogeochemical variables. This standardization procedures with the participating institutions facilitated the reliability, reproducibility, validation and intercomparison of data, all of them essentially important for the development of the project (HergueraDocumento en gdocs, 2017), and especially for the future long-term monitoring of oceanographic variables and parameters of the GoM Large Marine Ecosystem.
Samples collected during these cruises and their analysis in CIGoM laboratories enabled us to establish the spatial and temporal patterns of the physical and geochemical variables (Damien et al., 2018; Portela et al., 2018; Medina-Gómez et al., 2020; Ochoa et al., 2021; Cervantes-Díaz et al., 2022; Hernández-Sánchez et al, 2022; Lee-Sánchez et al., 2022; Valencia-Gasti et al, 2022; Velásquez-Aristizábal et al., 2022; Romero-Arteaga et al., 2022a; Romero-Arteaga et al., 2022b) related to the carbon cycle (as well as hydrocarbons (García-Bautista et al., 2022) metals and pollutants concentrations in the water column (Arenas-Islas et al., 2019; Hernández-Candelario et al., 2019; Árcega-Cabrera et al., 2021; Dótor-Almazán et al., 2021a; Dótor-Almazán et al., 2021b; Dótor-Almazán et al., 2021b; Árcega-Cabrera F. et al, 2022; Dótor-Almazán et al., 2022a; Dótor-Almazán et al., 2022b), sediments, as well as in tissues of selected organisms.
The development of a biological catalogue required the implementation of a wide variety of sampling and analysis techniques. Taxonomic and statistical analysis of samples collected during these oceanographic cruises allowed us to characterize the distribution and abundance patterns of phytoplankton (Linacre et al., 2019; Medina-Gómez et al., 2019; Medina-Gómez et al., 2020; Linacre et al., 2021; Amé́ndola-Pimenta et al., 2021) fungi (Amend et al., 2019; Vargas-Gastélum et al., 2019), zooplankton (Hereu et al., 2021); ictyoplankton (Daudén-Bengoa et al., 2019; Daudén-Bengoa et al., 2020; Aguilar-Medrano et al., 2021; Compaire et al., 2021; Santana-Cisneros et al., 2021a; Santana-Cisneros et al., 2021b), demersal fish communities in the water column (Vega Cendejas et al, 2017; Vega-Cendejas and De Santillana, 2019; Aguilar-Medrano and Vega-Cendejas, 2019a; Aguilar-Medrano and Vega-Cendejas, 2019b; Aguilar-Medrano and Vega-Cendejas, 2020b; Aguilar-Medrano and Vega-Cendejas, 2020a), benthic infauna, and invertebrates in the sediments (Hernández-Avila et al., 2018; Rubio et al., 2018; Aguilar-Medrano and Vega-Cendejas, 2020b; Torruco et al., 2018; Cisterna-Céliz et al., 2019; Paz-Ríos and Pech, 2019; Hernández-Ávila et al, 2020; Martínez-Aquino et al., 2020; Paz-Ríos et al., 2020; Soler-Jimenez et al., 2021; Paz-Ríos et al., 2021; Suárez-Mozo et al., 2021; Chí-Espínola and Vega-Cendejas, 2022; Quintanar-Retama et al., 2022). Methods for taxonomic identification ranged from the use of morphological techniques to massive sequencing of DNA molecules (metagenomics) and bioinformatic data analysis (Martínez-Aquino et al, 2017; Puch-Hau et al., 2018a; Escobar-Zepeda et al., 2018; Batta-Lona et al., 2019; Tapia-Morales et al, 2019; Vargas-Gastélum et al., 2019; Sánchez-Soto et al., 2021; Aguilar- MedranoVega-Cendejas, 2021; Cicala et al., 2021; Martínez et al, 2021; Martínez et al., 2021; Santana-Cisneros et al., 2021b; Torres-Beltrán et al, 2021). Patterns of sediment composition, distribution, and sedimentation rates (Díaz-Asencio et al, 2019; Brooks et al., 2020; Diaz Asencio et al., 2020). Tissue damage and parasites distribution patterns in benthic demersal fishes (Escobedo-Hinojosa and Pardo-López, 2017; Vidal-Martínez and Wundedemersal fish communities in therlich, 2017; Puch-Hau et al., 2018b; Quintanilla-Mena et al., 2018; Vidal-Martínez et al, 2019; Quintanar-Retama et al, 2022; Cerqueda-García et al., 2020; González-Penagos et al, 2020; Rodríguez-González et al, 2020; Becerra-Amezcua et al, 2020; Cañizares-Martínez et al, 2021; Martinez et al., 2021; Ocaña et al., 2021; Vidal-Martínez et al., 2021; Zamora-Briseño et al, 2021; Ek-Huchim et al, 2022)
Satellite telemetry data on selected species generated during the project and through the implementation of ecological models using public databases and georeferenced sighting data from various sources (samples from boats and aerials, satellite telemetry) allowed us to identify critical habitats for conservation of marine vertebrates (turtles and cetaceans) and organisms of economic importance (large pelagic fishes) (Gallegos-Fernández et al., 2018; Sanvicente-Añorve et al., 2018; Cuevas et al, 2019; Cuevas et al., 2019; Lara-Hernández et al., 2019; Ocaña et al., 2019; Ramírez-León et al, 2020; García-Aguilar et al., 2021; Ramírez-León et al, 2021; Uribe-Martínez et al, 2021).
The studies developed to generate the GoM baseline, in addition to their invaluable contribution to the knowledge on the state of the GoM LME, are key elements based on scientific data that will help understand how natural resources and the economic activities that depend on them (e.g., commercial and recreational fishing, tourism, maritime traffic) could be affected by large-scale oil spills, but also by extreme events (e.g. tropical cyclones) and global warming. All this information generated is of great relevance to strengthen public policy and decision-making processes, not only within the context of the hydrocarbon industry, but also to support interventions for the conservation and responsible management of natural resources. Results from these studies are compiled in a 11 volume work that can be accessed through www.atlascigom.cicese.mx (Herzka et al., 2021).
2.4 Natural degradation of hydrocarbons
Another of the great achievements of CIGoM was the implementation and use of cutting-edge methodologies of metagenomics to characterize the hydrocarbon-degrading microbiota. The results show the extensive knowledge gathered on the diversity and abundance of bacteria in the Mexican EEZ of the GoM, from Tamaulipas to Yucatan including water and sediment collected between 550 and 3,200 meters deep, that includes bacterial consortia with metabolic capacity to degrade a variety of hydrocarbons (García-Cruz et al, 2018; Sánchez-Soto Jiménez et al, 2018; Rodríguez-Salazar et al., 2021) (Figure 3).
Figure 3 Bar plot of the relative abundances of the 16S rRNA amplicon taxonomic annotations at the Class level. Depth levels of collected samples in the water column in the central western margin (Perdido Region) and the southern GoM, maximum flurescence depth (MAX), relative oxygen minimum (MIN), Antarctic Intermediate Water mass (AAIW), waters below 1500 m depth (DEEP), sediment samples (SEDIMENT). Notice diversity changes with depth through the water column and in the sediments.
Samples were collected from the water column during several cruises at selected depths, i.e. maximum fluorescence, oxygen minimum, the Antarctic Intermediate Water, bottom waters and from the sediments to characterize the distribution patterns and diversity of bacterial genomes based on massive sequencing technologies such as the 16S ribosomal and shotgun. Subsequent analysis revealed the first baseline comprehensive distribution study of the bacteria that inhabit the southern Gulf of Mexico, as well as the presence of genes that code for hydrocarbon-degrading enzymes in both the Perdido region and in the Bay of Campeche, indicating an adaptation of the microbiota ecosystem to hydrocarbon environments, either from oil seeps or from oil extraction activities in the southern GoM (Gamboa-Muñoz et al, 2017; Escobar-Zepeda et al., 2018; Godoy-Lozano et al., 2018; Raggi et al., 2020).
Among the enzymes of marine origin identified and isolated are mainly hydrolases and oxidoreductases, which catalyze hydrolysis reactions of chemical bonds and oxidation-reduction reactions (Muriel-Millán et al., 2019; Moreno-Ulloa et al, 2020; Rodríguez-Salazar et al., 2020; Loza et al, 2022). In marine environments, these enzymes participate in the degradation of organic compounds, that is, they contribute to different degradation pathways of the metabolism of marine microorganisms as well as in the degradation of other toxic compounds, such as oil and plastic pollutants (Muriel-Millán et al., 2021). These enzymes are further used to process food, drugs, paper, starch, textiles and manufacture detergents by the industry.
From the perspective of the oil industry, the information can be used in an oil spill contingency to determine the presence of hydrocarbon-degrading bacteria in the affected sites and their potential for bioremediation purposes as well as biosurfactants producers. Of great interest to the hydrocarbon industry is the isolation and characterization of bacteria and bacterial consortia, as in the case of enzymes and biosurfactants discovered during the development of this research, due to their potential use in the biodegradation of contaminants (Rosas-Galván et al, 2018; Muriel-Millán et al., 2019; Curiel-Maciel et al., 2021; Morales-Guzmán et al, 2021; Rosas-Díaz et al., 2021; Rojas-Vargas et al., 2022). In addition the information on the microbiota in these environments generated can be used as indicators of the health of the oceans and can serve to guide public policy in terms of management and conservation of ecosystems. https://cruceros.cicese.mx/catalogo/
2.5 Ecological vulnerability
Quantifying and assessing the impact of an oil spill on GoM selected key species, habitats and ecoregions was another important achievement of CIGoM. This multidisciplinary work by physical oceanographers, biologists and ecologists generated large-scale oil spill scenarios in different regions, depths and climatic conditions and combined them with ecological vulnerability models and biological connectivity assessments. To achieve these results, they used a wide variety of methodological approaches at different spatial, temporal and ecological organization scales at the crossroads of different scientific disciplines https://escenarios.cigom.org/.
Results on large oil spill scenarios derived from the hydrocarbon degrading models of OilSpill, PetroTrans and CIC-OIL and atmospheric models, implemented by CIGoM, were used to determine the areas of probable impacts and the estimated times of arrival of the hydrocarbon plumes. Oceanic hydrocarbon spill models simulate the processes of transport, dispersion and weathering of oil in the sea, and atmospheric models simulate burning of oil (common practice as a measure mitigation). The procedure consisted of running hundreds of simulations of spills under similar conditions and performing a statistical ensemble of these simulations for each of the scenarios (Pérez Brunius et al., 2020b).
The identification of species and regions potentially vulnerable to oil spills was approximated through three approaches. The first consisted of evaluating the comprehensive vulnerability of sea turtles and communities of submerged aquatic vegetation, considering the multiple stressors that currently act on them. The second approach was to quantify the convergence between critical habitats of marine vertebrates (turtles, cetaceans and larger pelagic fish) and oil spill scenarios. The third one was used to determine the vulnerability of the ecosystem to oil spill scenarios considering all types of habitats that comprise up to a 100 species from different taxonomic groups (invertebrates, fish, turtles, birds and mammals) (Aguirre-Macedo et al, 2020; Liceaga-Correa et al., 2022; Romo-Curiel et al, 2022). On the other hand, the diagnosis of biological connectivity allowed the discussion on the resilience of marine populations to oil spills, with particular emphasis on the possible effects of spills in the Perdido region (Lara-Hernández et al, 2019; Sanvicente-Añorve et al., 2018; Pérez Brunius et al, 2020a; Compaire et al, 2021).
In addition to these evaluations, several experimental mesocosm protocols were implemented to determine changes in the vulnerability of phytoplankton and bacterial communities to different concentrations of oil and exposure time. These experiments were complemented with bioassays to identify indicators to evaluate vulnerability based on cellular, histological and immunological responses in two species of coastal fishes (Cañizares Martı́nez et al., 2018; Garcia-Cruz et al, 2019; Uribe-Flores et al, 2019; Valencia-Agami et al., 2019; Améndola-Pimenta et al, 2020; Couoh-Puga et al, 2020; González-Penagos et al, 2020; Quintanilla-Mena et al., 2020; Rodríguez-Salazar et al, 2020; Uribe-Flores et al., 2021; Zamora-Briseño et al, 2021).
Through a joint effort between researchers and decision makers, CIGOM led the planning for the attention of turtles and their habitats during an oil spill contingency http://geoportal.mda.cinvestav.mx/geoportal.html. The document produced is a national reference and guide to develop this type of planning for other protected species or species of ecological and environmental value.
All of this information generated lays the scientific foundations for strategic planning focused on the prevention, care and mitigation of oil spill incidents, while providing elements to strengthen public policies aimed at regulating the activities of the oil industry, not only in favor of the conservation of species and regions of high ecological and/or economic value, but also in favor of preserving human health in the air quality of urban areas and communities in the country.
2.6 Technological developments
Several technological advances were accomplished during the project generating observational tools to understand the complexity of processes that are triggered by a large-scale spill of hydrocarbons in the ocean.
These technological developments of the CIGoM can be divided into three large groups (Table 2):
Table 2 Description of the observational platforms developed by the project, technical characteristics and uses.
(1) Oceanographic observation platforms. Development of five new prototypes for real-time observations of oceanographic variables and a virtual simulator. These developments were carried out by researchers from CIDESI and the UABC Institute of Oceanographic Research (IIO).
(2) Databases and visualization platforms. Development of a cyberinfrastructure with the capacity to store large databases for viewing, downloading and analysis. This cyberinfrastructure consists of six digital platforms that bring together the data, analytical approaches and model outputs carried out by researchers from all the CIGoM institutions.
(3) Bacteria consortia capable of hydrocarbon degradation. Integration of a physical reservoir and an online catalog of samples containing bacterial consortia and the metabolic pathways involved in hydrocarbon degradation. This technological development is the result of the coordinated work of researchers from IBT-UNAM, CINVESTAV Mérida-Unit, CICESE and UAEM.
3 Final remarks
The GoM is a large and complex ecosystem that harbors and supports a great biodiversity, while being one of the most important regions in North America in terms of energy resources. The development of this industry and its expansion into even deeper regions considerably increase the potential for oil accidents thereby increasing the risk for large-scale hydrocarbon spills, such as those occurred in 1979 and 2010 after the explosions on the platforms of the Ixtoc-I and Macondo wells, respectively.
The work developed by CIGoM responds to the need to have solid scientific information for the establishment of prevention and mitigation measures in the event of large-scale spills in the GoM, so that the country is now better prepared not only to react to an incident of this nature, but to address the challenges and needs associated with offshore hydrocarbon exploration and extraction.
The project proposed the generation of a comprehensive system of observations and numerical models to generate spill scenarios and evaluate their consequences and impacts in Mexico’s EEZ of the great GoM ecosystem. The results obtained far exceeded this objective. The financing of the SENER CONACYT Hydrocarbons Fund for the development of the project allowed us to characterize the current state of the physical, chemical and biotic environment of the GoM based on real-time and continuous observations from different oceanographic observation platforms, has deepen our knowledge of ocean and atmospheric circulation, the biogeochemical and ecological processes in the water column and in the sediments, the characterization of the hydrocarbon-degrading microbiota, and the elaboration of vulnerability scenarios for key ecosystems and species. In addition, the capacity of hundreds of researchers, technicians, postdoctoral students and students was strengthened, as well as the scientific and technological infrastructure of national academic institutions, which gave rise to the generation of the largest existing scientific heritage in the Mexican EEZ waters of the GoM.
Achieving these goals in the past seven years was possible thanks to the commitment of the participating researchers, students’ postdocs and technicians, as well as the professional monitoring and management team of the project that allowed for inter-institutional liaison, linkage and communication, constant evaluation of the progress, identified and anticipated the risks and made it possible to reach the objectives and committed to results.
The multi-institutional and interdisciplinary work financed by the SENER-CONACYT Hydrocarbons Fund brought together the work of more than 300 researchers from 17 national and international institutions in a coordinated manner and with a common goal, to generate the necessary information to support decision-making, informed and rational planning and mitigation strategies in the event of a large-scale oil spill with potentially devastating effects on human communities in the coastal zone, fishery production and ecosystem health. Additionally, the knowledge and skills developed strengthen public policies oriented towards the conservation and sustainable management of the GoM’s natural resources and the ecosystem services it provides.
CIGoM achievements to address research and management issues related to the hydrocarbon industry are unprecedented in Mexico. However, given the dynamic nature of the great ecosystem of the GoM, the trends induced by global climate warming, and the continuous development and expansion of oil exploration and extraction activities towards deep waters, it is essential to continue growing and nurturing the human and infrastructure capacities generated during the project to meet the future needs of industry and society.
4 Nomenclature
4.1 Resource identification initiative
To take part in the Resource Identification Initiative, please use the corresponding catalog number and RRID in your current manuscript. For more information about the project and for steps on how to search for an RRID, please click here.
4.2 Life Science identifiers
Life Science Identifiers (LSIDs) for ZOOBANK registered names or nomenclatural acts should be listed in the manuscript before the keywords with the following format:
urn:lsid:<Authority>:<Namespace>:<ObjectID>[:<Version>]
For more information on LSIDs please see Inclusion of Zoological Nomenclature section of the guidelines.
4.3 Additional requirements
For additional requirements for specific article types and further information please refer to Author Guidelines.
Author contributions
JH wrote the article and all of the authors contributed to the review process. All authors contributed to the article and approved the submitted version.
Funding
This research has been funded by the Mexican National Council for Science and Technology - Mexican Ministry of Energy - Hydrocarbon Fund, project 201441 “Implementation of oceanographic observation networks (physical, geochemical, ecological) for the generation of scenarios in the case of possible contingencies related to the exploration and production of hydrocarbons in deep waters of the GoM”.
Acknowledgments
This study is a contribution of Project No 201441 “Implementation of oceanographic observation networks (physical, geochemical, ecological) for the generation of scenarios in the case of possible contingencies related to the exploration and production of hydrocarbons in deep waters of the Gulf of Mexico,” funded by the Hydrocarbon fund SENER-CONACyT. This is a contribution of the Gulf of Mexico Research Consortium (CIGoM). We acknowledge PEMEX specific request to the Hydrocarbon Fund to further the knowledge on the environmental effects of oil spills in the Gulf of Mexico. We further acknowledge to all the participants in this project, the crews of the BO/Justo Sierra and BO/Alpha Helix for their help during the cruises, to all the administrative staff at CIGOM which greatly aided to the success of this project.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
Aguilar-Medrano R., Blanqueto-Manzanero M. D., Vega-Cendejas M. E. (2021). Comparison of the fish functional arrangement of two contrasting localities in the Gulf of Mexico. Mar. Ecol. 42:e12680. doi: 10.1111/maec.12680
Aguilar-Medrano R., Vega-Cendejas M. E. (2019a). Implications of the environmental heterogeneity on the distribution of the fish functional diversity of the campeche bank, Gulf of Mexico. Mar. Biodiversity 49, 1913. doi: 10.1007/s12526-019-00954-y
Aguilar-Medrano R., Vega-Cendejas M. E. (2019b). Biogeographical affinities, trophodynamics, and fisheries pressure in the fish community of the Laguna madre tamaulipas. J. Appl. Ichthyology 35, Issue 4. doi: 10.1111/jai.13900
Aguilar-Medrano R., Vega-Cendejas M. E. (2020a). Size, weight, and diet of the invasive lionfish pterois volitans (Linnaeus 1758). Cienc. Marinas 46 (1), 57–64. doi: 10.7773/cm.v46i1.3012
Aguilar-Medrano R., Vega-Cendejas M. E. (2020b). Implications of the depth profile on the functional structure of the fish community of the perdido fold belt, northwestern Gulf of Mexico. Rev. Fish Biol. Fisheries. doi: 10.1007/s11160-020-09615-x
Aguilar-Medrano R., Vega-Cendejas M. E. (2021). Ichthyological sections of the coastal-wetland ecosystem of the Yucatan peninsula and campeche bank. Regional Stud. Mar. Sci. 47, 2021, 101932. doi: 10.1016/j.rsma.2021.101932
Aguirre-Macedo L., Pérez-Brunius P., Saldaña-Ruiz L. E. (2020) Vulnerabilidad ecológica del golfo de méxico ante derrames de gran escala. Available at: https://escenarios.cigom.org/.
Allende-Arandía M. E., Zavala-Hidalgo J., Romero-Centeno R., Franklin G. L., Taylor-Espinosa N., Osorio-Tai M. E. (2022). Large Diurnal wind variability over the western and northern campeche bank caused by the low latitude of the Yucatan peninsula and its interaction with easterlies. Atmospheric Res. 265, 105888. doi: 10.1016/j.atmosres.2021.105888
Amend A., Burgaud G., Cunliffe M., Edgcomb V. P., Ettinger C. L., Gutiérrez M. H., et al. (2019). Fungi in the marine environment: Open questions and unsolved problems. mBio. 10 (2), 1–15. doi: 10.1128/mBio.01189-18
Améndola-Pimenta M., Alcocer-Domínguez J. C., Sandoval-Gio J. J., González-Penagos C. E., Zamora-Briseño J. A., Ek-Huchim J. P., et al. (2021). “Differential gene expression induced by acute exposure to water accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) of light crude oil and nokomis 3-F4 in Limulus polyphemus larvae,” (Bulletin of Environmental Contamination and Toxicology) 83 (8), 313-329. doi: 10.1080/15287394.2020.1758861
Améndola-Pimenta M., Cerqueda-García D., Zamora-Briseño J. A., Couoh-Puga D., Montero-Muñoz J., Árcega-Cabrera F., et al. (2020). Toxicity evaluation and microbiota response of the lined sole achirus lineatus (Chordata: Achiridae) exposed to the light petroleum water-accommodated fraction (WAF). J. Toxicol. Environ. Health Part A 83:8, 313–329. doi: 10.1080/15287394.2020.1758861
Anguiano-García A., Zavala-Romero O., Zavala-Hidalgo J., Lara-Hernández J. A., Romero-Centeno . (2019). “High performance open source Lagrangian oil spill model,” In Torres M., Klapp J., Gitler I., Tchernykh A. (eds) Supercomputing. ISUM 2018. Communications in Computer and Information Science 948, 118-128. doi: 10.1007/978-3-030-10448-1_11
Árcega−Cabrera F. Gold−BouchotG., Lamas−Cosío E., Dótor−Almazán A., Ceja−Moreno V., Zapata−Pérez O., Oceguera−Vargas I. (2022). Vanadium and cadmium in water from the perdido area, Northwest of the Gulf of Mexico: 2 years’ monitoring and current status. Bull. Environ. Contamination Toxicol. 108, 37–42. doi: 10.1007/s00128-021-03212-9
Árcega-Cabrera F., Gold-Bouchot G., Lamas-Cosío E., Ceja-Moreno V., Mariño-Tapia I., Zapata-Pérez O., et al. (2021). Spatial and temporal variations of vanadium and cadmium in surface water from the Yucatan shelf. Bull. Environ. Contam Toxicol 108, 43–48. doi: 10.1007/s00128-021-03234-3
Arenas-Islas D., Huerta-Diaz M. A., Norzagaray-López C. O., Mejia-Piña K. G., Valdivieso-Ojeda J. A., Otero X. L., et al. (2019). Calibration of portable X-ray fluorescence equipment for the geochemical analysis of carbonate matrices. Sediment. Geol. 391, 105517. doi: 10.1016/j.sedgeo.2019.105517
Batta-Lona P. G., Galindo-Sánchez C. E., Arteaga M. C., Robles-Flores J., Jiménez-Rosenberg S. P. A. (2019). DNA Barcoding and morphological taxonomy: identification of lanternfish (Myctophidae) larvae in the Gulf of Mexico. Mitochondrial DNA Part A 30 (2), 375-383. doi: 10.1080/24701394.2018.1538364
Becerra-Amezcua M. P., Hernández-Sámano A. C., Puch -Hau C., Aguilar M. B., Collí-Dula R. C. (2020). Effect of pterois volitans (lionfish) venom on cholinergic and dopaminergic systems. Environ. Toxicol. Pharmacol 77, 103359. doi: 10.1016/j.etap.2020.103359
Beron-Vera F. J., Hadjighasem. A., Xia Q., Olascoaga M. J., Haller G. (2018a). Coherent Lagrangian swirls among submesoscale motions. Proc. Natl. Acad. Sci. Mar. 116 (37), 18251–18256. doi: 10.1073/pnas.1701392115
Beron-Vera F. J., Olascoaga M. J., Wang Y., Triñanes J., Pérez-Brunius P. (2018b). Enduring Lagrangian coherence of a loop current ring assessed using independent observations. Sci. Rep. 8, 11275. doi: 10.1038/s41598-018-29582-5
Brooks G. R., Larson R. A., Schwing P. T., Diercks A. R., Armenteros M., Diaz-Asencio M., et al. (2020). “Gulf of Mexico (GoM) bottom sediments and depositional processes: A baseline for future oil spills,” in Scenarios and responses to future deep oil spills (, Cham: Springer International Publishing), 75–95.
Candela J., Ochoa J., Sheinbaum J., López M., Pérez-Brunius P., Tenreiro M., et al. (2019). The flow through the Gulf of Mexico. J. Phys. Oceanogr. 49, 1381–1401. doi: 10.1175/JPO-D-18-0189.1
Cañizares-Martínez M. A., Quintanilla-Mena M., Del-Río-García M., Rivas-Reyes I., Patiño-Suárez M. V., Vidal-Martínez V. M., et al. (2021). Acute exposure to crude oil induces epigenetic, transcriptional and metabolic changes in juvenile Sciaenops ocellatus. Bull. Environ. Contam Toxicol. doi: 10.1007/s00128-021-03241-4
Cañizares Martínez M. A., Rivas-Reyes I., Patiño-Suárez M. V., Quintanilla-Mena M., Puch Hau C., Del Río- García M., et al. (2018). “Evaluación molecular en la corvina roja sciaenops ocellatus después de un derrame de petróleo experimental, revista del centro de graduados de investigación,”, vol. Vol. 33 NÚM. 73. (Instituto Tecnológico De Mérida) 33 (73), 244–248. Available at: http://www.revistadelcentrodegraduados.com/2019/08/evaluacion-molecular-en-la-corvina-roja.html
Cerqueda-García D., Améndola-Pimenta M., Zamora-Briseño J. A., González-Penagos C. E., Árcega-Cabrera F., Ceja-Moreno V., et al. (2020). Effects of chronic exposure to water accommodated fraction (WAF) of light crude oil on gut microbiota composition of the lined sole (Achirus lineatus). Mar. Environ. Res. 161, 105116. doi: 10.1016/j.marenvres.2020.105116
Cervantes-Díaz G. Y., Hernández-Ayón J. M., Zirino A., Herzka S. Z., Camacho-Ibar V. F., Norzagaray O., et al. (2022). Understanding upper water mass dynamics in the Gulf of Mexico by linking physical and biogeochemical features. J. Mar. Syst 225, 103647. doi: 10.1016/j.jmarsys.2021.103647
Chí-Espínola A. A., Vega-Cendejas M. E. (2022). Trophic dynamics and properties of the marine ecosystem of campeche bank. Mar. Biol. 169, 14. doi: 10.1007/s00227-021-03999-5
Cicala F., Arteaga M. C., Herzka S. Z., Hereu C., Jiménez-Rosenberg S. P. A., Saavedra-Flores A., et al(2021) Environmental conditions drive zooplankton community structure in the deep-water region of the southern Gulf of Mexico: a molecular approach. Mol. Ecology. 31, 546–561. doi: 10.1111/mec.16251
Cisterna-Céliz J. A., Marcelino-Barros M., Herguera J. C., Rocha-Olivares A. (2019). Metacommunity analysis of meiobenthos of deep-sea sediments from the Gulf of Mexico. Mar. Biodiv 49, 1217. doi: 10.1007/s12526-018-0899-0
Compaire J. C., Pérez-Brunius P., Jiménez-Rosenberg S. P. A., Rodríguez-Outerelo J., Echeverri-García L. P., Herzka S. Z. (2021). Connectivity of coastal and neritic fish larvae to the deep waters of the perdido region (western Gulf of Mexico) inferred from in situ sampling and ocean circulation modeling. Limnology Oceanography. 9999, 1–19. doi: 10.1002/lno.11762
Couoh-Puga E. D., Vidal-Martínez V. M., Ceja-Moreno V., Árcega-Cabrera F., Puch-Hau C., Rodriguez-González A., et al. (2020). Histological effects of light crude oil on sciaenops ocellatus under experimental conditions. Bull. Environ. Contam Toxicol 108, 71–77. doi: 10.1007/s00128-021-03172-0
Cuevas E., Liceaga-Correa M. A., Uribe-Martínez A. (2019). Ecological vulnerability of two sea turtle species in the Gulf of Mexico: an integrated spatial approach. Endang Species Res. 40, 337–356. doi: 10.3354/esr00984
Cuevas E., Uribe-Martínez A., Liceaga- Correa M.Á. (2018). A satellite remote-sensing multi-index approach to discriminate pelagic sargassum in the waters of the Yucatan peninsula, Mexico. Int. J. Remote Sens. 39:11, 3608–3627. doi: 10.1080/01431161.2018.1447162
Curiel-Maciel N. F., Martínez-Morales F., Licea-Navarro A. F., Bertrand B., Aguilar-Guadarrama A. B., Rosas-Galván N. S., et al. (2021). ). characterization of enterobacter cloacae BAGM01 producing a thermostable and alkaline-tolerant rhamnolipid biosurfactant from the Gulf of Mexico. Mar. Biotechnol. (NY) 23 (1), 106–126. doi: 10.1007/s10126-020-10006-3
Damien P., Pasqueron de Fommervault O., Sheinbaum J., Jouanno J., Camacho-Ibar V. F., Duteil O. (2018). Partitioning of the open waters of the Gulf of Mexico based on the seasonal and interannual variability of chlorophyll concentration. J. Geophysical Research: Oceans 123, 2592–2614. doi: 10.1002/2017JC013456
Daudén-Bengoa G., Jiménez-Rosenberg S. P. A., Compaire J. C., Echeverri-García L. P., Pérez-Brunius P., Herzka S. Z. (2020). Larval fish assemblages of myctophids in the deep water region of the southern Gulf of Mexico linked to oceanographic conditions. Deep Sea Res. Part I: Oceanographic Res. Papers 155, 103181. doi: 10.1016/j.dsr.2019.103181
Daudén-Bengoa G., Jiménez-Rosenberg S. P. A., Compaire-Cano J., Echeverri-García L. P., Pérez-Brunius P., Herzka S. Z. (2019). Larval fish assemblages of myctophids in the deep water region of the southern Gulf of Mexico linked to oceanographic conditions. Deep-Sea Res. Part I 155, 103181. doi: 10.1016/j.dsr.2019.103181
Díaz-Asencio M., Ferreira Bartrina V., Herguera J. C. (2019). Sediment accumulation patterns on the slopes and abyssal plain of the southern Gulf of Mexico. Deep Sea Res. Part I: Oceanographic Res. Papers 146, Pages 11–23. doi: 10.1016/j.dsr.2019.01.003
Diaz Asencio M., Herguera J. C., Schwing P. T., Larson R. A., Brooks G. R., Southon J., et al. (2020). Sediment accumulation rates and vertical mixing of deep-sea sediments derived from 14C and 210Pb in the southern Gulf of Mexico. Mar. Geology 429, 106288. doi: 10.1016/j.margeo.2020.106288
Díaz-García O., Zavala-Hidalgo J., Douillet P., Contreras Ruiz-Esparza A., Fichez R., Grenz C., et al. (2020). Changes in the flooding area due to storm surge under climate change in an extensive wetland area in the southern Gulf of Mexico. Atmósfera 33 (2), 105–121. doi: 10.20937/ATM.52702
Dótor-Almazán A., Gold-Bouchot G., Lamas-Cosío E., Huerta-Diaz M.A., Ceja-Moreno V., Oceguera-Vargas I., et al. (2021a). Spatial and temporal distribution of trace metals in shallow marine sediments of the Yucatan shelf, Gulf of Mexico. Bull. Environ. Contam Toxicol 108, 3–8. doi: 10.1007/s00128-021-03170-2
Dótor-Almazán A., Gold-Bouchot G., Lamas-Cosío E., Huerta-Diaz M.A., Ceja-Moreno V., Oceguera-Vargas I., et al. (2021b). Vanadium and cadmium in shallow marine sediments: Spatial and temporal behavior in the tamaulipas continental platform, Gulf of Mexico, Mexico. Bull. Environ. Contam Toxicol. 2021, 30-36. doi: 10.1007/s00128-021-03213-8
Dótor-Almazán A., Gold-Bouchot G., Lamas-Cosío E., Huerta-Diaz M. A., Ceja-Moreno V., Oceguera-Vargas I., et al. (2022a). Spatial and temporal distribution of trace metals in shallow marine sediments of the Yucatan shelf, Gulf of Mexico. Bull. Environ. Contamination Toxicol. 108, 3–8. doi: 10.1007/s00128-021-03170-2
Dótor-Almazán A., Gold-Bouchot G., Lamas-Cosío E., Huerta-Diaz M. A., Ceja-Moreno V., Oceguera-Vargas I., et al. (2022b). Vanadium and cadmium in shallow marine sediments: Spatial and temporal behavior in the tamaulipas continental platform, Gulf of Mexico, Mexico. Bull. Environ. Contamination Toxicol. 108, 30–36. doi: 10.1007/s00128-021-03213-8
Duran R., Beron-Vera F. J., Olascoaga M. J. (2018). Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico. Sci. Rep. 8, 5218. doi: 10.1038/s41598-018-23121-y
Duteil O., Damien P., Sheinbaum J., Spinner M. (2019). Ocean currents and coastal exposure to offshore releases of passively transported material in the Gulf of Mexico. Environ. Res. Commun. 1 (8), p.081006. doi: 10.1088/2515-7620/
Ek-Huchim J. P., Árcega-Cabrera F., May-Tec A. L., Améndola-Pimenta M., Ceja-Moreno V., Rodríguez-Canul R. (2022). Red blood cell cytotoxicity associated to heavy metals and hydrocarbons exposure in flounder fish from two regions of the Gulf of Mexico. Bull. Environ. Contamination Toxicol. (BECT) 108, 78–84. doi: 10.1007/s00128-021-03176-w
Escobar-Zepeda, Godoy-Lozano E. E., Raggi L., Segovia L., Merino E., Gutiérrez-Rios M., et al. (2018). Analysis of sequencing strategies and tools for taxonomic annotation: Defining standards for progressive metagenomics. Sci. Rep. 8, 12034. doi: 10.1038/s41598-018-30515-5
Escobedo-Hinojosa W., Pardo-López L. (2017). Analysis of bacterial metagenomes from the Southwestern gulf of Mexico for pathogens detection. Pathog. Dis. 75 (5), ftx058. doi: 10.1093/femspd/ftx058
Estrada-Allis S. N., Sheinbaum Pardo J., Azevedo Correia de Souza J. J., Enríquez Ortiz C. E., Mariño Tapia I., Herrera-Silveira J. A. (2020). Dissolved inorganic nitrogen and particulate organic nitrogen budget in the yucatán shelf: driving mechanisms through a physical–biogeochemical coupled model. Biogeosciences 17 (4), pp.1087–1111. Available at: https://www.biogeosciences.net/17/1087/2020/https://doi.org/10.5194/bg-17-1087-2020
Gallegos-Fernandez S. A., Cuevas E., Liceaga-Correa M. A. (2018). Procesos metodológicos para la colocación de transmisores satelitales en tortugas marinas de caparazón. duro en playas de anidación. Rev. biol. mar. oceanogr. [online]. 53 (2), 147–156. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-19572018000200147&lng=es&nrm=iso>
Gamboa-Muñoz A. M., García-Cruz N. U., Ramos-Castillo A., Gold-Bouchot G., Aguirre-Macedo M. L. (2017). Microbial activity in marine sediments exposed to hexadecane: A laboratory study, clean, soil, air, water 45, (12). doi: 10.1002/clen.201700531
García-Aguilar M. C., Pardo M. A., Fajardo-Yamamoto A., Ramírez-León M. R., Sosa-Nishizaki O. (2021). First insights on the horizontal movements of short-finned pilot whales in the Gulf of Mexico. Mar. Ecol., 12656. doi: 10.1111/maec.12656
García-Bautista I., García-Cruz U., Pacheco N., Garcia-Maldonado J. Q., Aguirre-Macedo L. (2022). Optimization of the biodegradation of aliphatic, aromatic, and UCM hydrocarbons from light crude oil in marine sediment using response surface methodology (RSM). Bull. Environ. Contam Toxicol 108, 107–113. doi: 10.1007/s00128-021-03281-w
García-Cruz N. U., Sánchez-Avila J. I., Valdés-Lozano D., Gold-Bouchot G., Aguirre-Macedo L. (2018). Biodegradation of hexadecane using sediments from rivers and lagoons of the southern Gulf of Mexico. Mar. pollut. Bull. 128, 202–207. doi: 10.1016/j.marpolbul.2018.01.026
Garcia-Cruz N. U., Valdivia-Rivera S., Narciso-Ortiz L., Garcia-Maldonado J. Q., Uribe-Flores M. M., Aguirre-Macedo M. L., et al. (2019). Diesel uptake by an indigenous microbial consortium isolated from sediments of the southern Gulf of Mexico: Emulsion characterization. Environ. pollut. 250, 849–855. doi: 10.1016/j.envpol.2019.04.109
Godoy-Lozano E. E., Escobar-Zepeda A., Raggi L., Merino E., Gutierrez-Rios R. M., Juarez K., et al. (2018). Bacterial diversity and the geochemical landscape in the southwestern Gulf of Mexico. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.02528
Gómez Roa A., Flores-Vidal X., Avendaño Gastelum O., Núñez R., Sandoval Rangel A., Liera Grijalva C. A., et al. (2020). Long autonomy unmanned aircraft vehicle (UAV) for quick release of ocean mini-drifters. J. Atmospheric Oceanic Technol 37 (10), 1801–1809. doi: 10.1175/JTECH-D-19-0178.1
Gómez-Valdivia F., Pares-Sierra A. (2020). Seasonal upper shelf circulation along the central Western Gulf of Mexico: A preferential upcoast flow reinforced by the recurrent arrival of loop current eddies. J. Geophysical Research-Oceans 125 (1), p.135. doi: 10.1029/2019JC015596
González-Penagos C. E., Zamora-Briseño J. A., Cerqueda-García D., Améndola-Pimenta M., Pérez-Vega J. A., Hernández-Nuñez E and Rodríguez-Canul R. (2020). Alterations in the gut microbiota of zebrafish (Danio rerio) in response to water-soluble crude oil components and its mixture with a chemical dispersant. Front. Public Health 8. doi: 10.3389/fpubh.2020.584953
Gough M. K., Beron-Vera F. J., Olascoaga M. J., Sheinbaum J., Jouanno J., Duran R. (2019). : Persistent Lagrangian transport patterns in the northwestern Gulf of Mexico. J. Phys. Oceanogr. 49, 353–367. doi: 10.1175/JPO-D-17-0207.1
Guerrero L., Sheinbaum J., Mariño-Tapia I., González-Rejón J. J., Pérez-Brunius P. (2020). Influence of mesoscale eddies on cross-shelf exchange in the western Gulf of Mexico, continental shelf research Continental Shelf Research 209, 104243. doi: 10.1016/j.csr.2020.104243
Hereu C. M., Arteaga M. C., Galindo-Sánchez C. E., Herzka S. Z., Batta-Lona P. G., Jimenez-Rosenberg S. P. A. (2021). Zooplankton summer composition in the southern Gulf of Mexico with emphasis on salp and hyperiid amphipod assemblages. J. Mar. Biol. Assoc. United Kingdom. 100, 665–680. doi: 10.1017/S0025315420000715
Herguera J. C., Herzka S., Hernández Ayón J. M., Camacho Ibar V., Delgadillo F., Huerta M. A., et al. (2017). Metodología analítica y procesos de intercalibración y control de calidad de los laboratorios analíticos. Tomo 2. Consorcio de investigación del Golfo de México. Available at: https://sgeo.cicese.mx/storage/documentos/entregables/entregable_tomo_2_intercalibracion.pdf.
Hernández-Avila I., Guerra-Castro E., Bracho C., Martín R., Ocaña F. A., Pech D. (2018). Variation in species diversity of deep-water megafauna assemblages in the Caribbean across depth and ecoregions. PloS One 13 (8), e0201269. doi: 10.1371/journal.pone.0201269
Hernández-Ávila I., Ocaña F. A., Pech D. (2020). Testing marine regional-scale hypotheses along the Yucatan continental shelf using soft-bottom macrofauna. PeerJ 8, e8227. doi: 10.7717/peerj.8227
Hernández-Candelario I., del C., Lares M. L., Camacho-Ibar V. F., Linacre L., Gutiérrez-Mejía E., et al. (2019). Dissolved cadmium and its relation to phosphate in the deep region of the Gulf of Mexico. J. Mar. Syst. 193, 27–45. doi: 10.1016/j.jmarsys.2019.01.005
Hernández-Sánchez O. G., Camacho-Ibar V. F., Fernández-Alamo M. A., Herzka S. Z. (2022). Nitrogen sources (NO3 vs N2 fixation) inferred from bulk δ15N values of zooplankton from the deep water region of the Gulf of Mexico. J. Plankton Res 44 (1), 48–67. doi: 10.1093/plankt/fbab089
Herzka S., Aguilar-Trujillo Paola Batta A. P., Camacho-Ibar V., Delgadillo F., Galindo C. (2017). Manual de protocolos de muestreo y procesamiento de muestras durante cruceros oceanográficos; línea de acción 2: Línea base y monitoreo ambiental (Consorcio de Investigación del Golfo de Meexico), 306. Available at: https://goo.gl/ju5YdN.
Herzka S. Z., Zaragoza Álvarez R. A., Peters E. M., y Hernández Cárdenas ,. G., (Coord. Gral.) (2021). Atlas de línea base ambiental del golfo de méxico (México: Consorcio de Investigación del Golfo de México).
Jouanno J., Pallas-Sanz E., Sheinbaum J. (2018). Variability and dynamics of the Yucatan upwelling: High-resolution simulations. J. Geophysical Research: Oceans 123, 1251–1262. doi: 10.1002/2017JC013535
Lara-Hernández J. A., Zavala-Hidalgo J., Sanvicente-Añorve L., Briones-Fourzán P. (2019). Connectivity and larval dispersal pathways of Panulirus argus in the Gulf of Mexico: A numerical study. J. Sea Res. 115, 101814. doi: 10.1016/j.seares.2019.101814
Lee-Sánchez E., Camacho-Ibar V. F., Velasquez-Aristizábal J., Valencia-Gasti J. A., Samperio-Ramos G. (2022). Impacts of mesoscale eddies on the nitrate distribution in the deep-water region of the Gulf of Mexico. J. Mar. Syst. 229, 103–721. doi: 10.1016/j.jmarsys.2022.103721
Liceaga-Correa M. A., Uribe-Martínez A., Cuevas E. (2022). Ecological vulnerability of adult female marine turtles as indicators of opportunities for regional socioecosystem management in the southern Gulf of Mexico. Sustainability 14 (1), 184. doi: 10.3390/su14010184
Lilly J. M., Pérez-Brunius P. (2021). A gridded surface current product for the Gulf of Mexico from consolidated drifter measurements, earth syst. Sci. Data 13, 645–669. doi: 10.5194/essd-13-645-2021
Linacre L., Durazo R., Camacho-Ibar V. F., Selph K. E., Lara-Lara J. R., Mirabal-Gómez U., et al. (2019). Picoplankton carbon biomass assessments and distribution of prochlorococcus ecotypes linked to loop current eddies during summer in the southern Gulf of Mexico. J. Geophysical Research: Oceans 124, 8342–8359. doi: 10.1029/2019JC015103
Linacre L., Sánchez-Robles C., Mirabal-Gómez U., Lara-Lara J. R., Bazán-Guzmán C. (2021). Cell carbon content and biomass assessments of dinoflagellates and diatoms in the oceanic ecosystem of the southern Gulf of Mexico. PloS One 16 (2), e0247071. doi: 10.1371/journal.pone.0247071
Loza A., García-Guevara F., Segovia L., Escobar-Zepeda A., Sanchez-Olmos M., del C., et al. (2022). Definition of the metagenomic profile of ocean water samples from the Gulf of Mexico based on comparison with reference samples from sites worldwide. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.781497
Martínez-Aquino, Vidal-Martínez V. M., Leopoldina Aguirre-Macedo M. (2017). A molecular phylogenetic appraisal of the acanthostomines acanthostomum and timoniella and their position within cryptogonimidae (Trematoda: Opisthorchioidea). PeerJ 5, e4158. doi: 10.7717/peerj.4158
Martinez M. A., Hereu C. M., Arteaga M. C., Jiménez-Rosenberg S. P. A., Herzka S. Z., Saavedra-Flores A., et al. (2021). Epipelagic zooplankton diversity in the deep water region of the Gulf of Mexico: a metabarcoding survey. ICES J. Mar. Sci. 78 (9), 3317–3332. doi: 10.1093/icesjms/fsab090
Martínez M. A., Hereu C., Saavedra-Flores A., Robles-Flores A., Gómez R., Batta-Lona P., et al. (2021). Epipelagic zooplankton diversity in the deep water region of the Gulf of Mexico: a metabarcoding survey. ICES J. Mar. Science.doi: 10.1093/icesjms/fsab090
Martínez-Aquino A., García-The G. J., Ceccarelli F. S., Aguilar-Aguilar R., Vidal-Martínez V. M., Aguirre-Macedo M. L. (2020). New morphological and molecular data for xystretrum solidum (Gorgoderidae: Gorgoderinae) from sphoeroides testudineus (Tetraodontiformes: Tetraodontidae) in Mexican water. Zookeys ZooKeys 925, 141–161. doi: 10.3897/zookeys.925.49503
Martínez-Osuna J. F., Ocampo-Torres F. J., Gutiérrez-Loza L., Valenzuela E., Castro A., Alcaraz R., et al. (2021). Coastal buoy data acquisition and telemetry system for monitoring oceanographic and meteorological variables in the Gulf of Mexico. Measurement 183, 2021, 109841. doi: 10.1016/j.measurement.2021.109841
Maslo A., Azevedo Correia de Souza J. M., Sheinbaum J. (2020). Energetics of the deep Gulf of Mexico. J. Phys. Oceanogr 50 (6), pp.1655–1675. doi: 10.1175/JPO-D-19-0308.1
Medina-Gómez I., Cahuich-López M., Aguilar-Trujillo A., Cruz-Trejo G., Juárez M., Mariño-Tapia I., et al. (2020). Spatio-temporal patterns of chlorophyll-a in a wide and low-relief shelf sea of the Gulf of Mexico: Insights of interannual climatic patterns on the phytoplankton biomass varying behavior. Continental Shelf Res. 205, 104174. doi: 10.1016/j.csr.2020.104174
Medina-Gómez I., Trujillo A. A., Marino-Tapia I., Cruz G., Herrera-Silveira J., Enriquez C. (2019). Phytoplankton responses under a joint upwelling event and an algal bloom scenario in the southeast Gulf of Mexico. Continental Shelf Res. 184, Pages 30–43. doi: 10.1016/j.csr.2019.07.006
Meunier T., Sheinbaum J., Pallàs-Sanz E., Tenreiro M., Ochoa J., Ruiz-Angulo A. (2020). Heat content anomaly and decay of warm-core rings: The case of the Gulf of Mexico. Geophysical Res. Lett. 47 (3), p.21. doi: 10.1029/2019GL085600
Meunier T., Pallàs-Sanz E., Tenreiro M., Portela E., Ochoa J., Ruiz-Angulo A., et al. (2018b). The vertical structure of a loop current eddy. J. Geophysical Research: Oceans 123, 6070-6090. doi: 10.1029/2018JC013801
Meunier T., Perez-Brunius P., Bower A. (2022). Reconstructing the three-dimensional structure of loop current rings from satellite altimetry and in situ data using the gravest empirical modes method. preprints. Remote Sensing 14 (17), 4174. doi: 10.3390/rs14174174
Meunier T., Pérez Brunius P., Rodríguez Outerelo J., García Carrillo P., Ronquillo A., Furey H., et al. (2021). A deep-water dispersion experiment in the Gulf of Mexico. J. Geophysical Research: Oceans 126, e2021JC017375. doi: 10.1029/2021JC017375
Meunier T., Tenreiro M., Pallàs-Sanz E., Ochoa J., Ruiz-Angulo A., Portela E., et al. (2018a). Intrathermocline eddies embedded within an anti-cyclonic vortex ring. Geophysical Res. Lett. 45, 7624–7633. doi: 10.1029/2018GL077527
Meza-Padilla R., Enriquez C., Appendini C. M. (2021). Rapid assessment tool for oil spill planning and contingencies. Marine Pollution Bulletin 166 (2021), 112196. doi: 10.1016/j.marpolbul.2021.112196
Miron P., Beron-Vera F. J., Olascoaga M. J., Froyland G., Pérez-Brunius P., Sheinbaum J. (2019). Lagrangian Geography of the deep Gulf of Mexico. J. Phys. Oceanogr. 49, 269–290. doi: 10.1175/JPO-D-18-0073.1
Morales-Guzmán D., Martínez-Morales F., Bertrand B., Rosas-Galván N. S., Curiel-Maciel N. F., Teymennet-Ramírez K. V., et al. (2021). Microbial prospection of communities that produce biosurfactants from the water column and sediments of the Gulf of Mexico. Biotechnol. Appl. Biochem. 68, 1202–1215. doi: 10.1002/bab.2042
Moreles E., Zavala-Hidalgo J., Martínez-López B., Ruiz-Angulo A. (2020). Influence of stratification and Yucatan current transport on the loop current eddy shedding process. J. Geophysical Research: Oceans 126, e2020JC016315. doi: 10.1029/2020JC016315
Moreno-Ulloa A., Sicairos-Diaz V., Tejeda-Mora J. A., Macias Contreras M. I., Castillo F. D., Guerrero A., et al. (2020). Chemical profiling provides insights into the metabolic machinery of hydrocarbon-degrading deep-sea microbes. Systems 5, e00824–e00820. doi: 10.1128/mSystems.00824-20
Muriel-Millán L. F., Millán-López S., Pardo-López L. (2021). Biotechnological applications of marine bacteria in bioremediation of environments polluted with hydrocarbons and plastics. Appl. Microbiol. Biotechnol. 105, 7171–7185. doi: 10.1007/s00253-021-11569-4
Muriel-Millán L. F., Rodríguez-Mejía J. L., Godoy-Lozano E. E., Rivera-Gómez N., Gutierrez-Rios R.-M., Morales-Guzmán D., et al. (2019). Functional and genomic characterization of a pseudomonas aeruginosa strain isolated from the southwestern Gulf of Mexico reveals an enhanced adaptation for long-chain alkane degradation. Front. Mar. Sci. 6. doi: 10.3389/fmars.2019.00572
Ocaña F. A., Pech D., Simões N., Hernández-Ávila I. (2019). Spatial assessment of the vulnerability of benthic communities to multiple stressors in the Yucatan continental shelf, Gulf of Mexico. Ocean & Coastal Management 181, 104900. doi: 10.1016/j.ocecoaman.2019.104900
Ocaña F. A., Soler-Jiménez L. C., Aguirre-Macedo M. L., Vidal-Martínez V. M. (2021). The performance of taxonomic and trait-based approaches in the assessment of dusky flounder parasite communities as indicators of chemical pollution. Environmental Pollution 117622. doi: 10.1016/j.envpol.2021.117622
Ochoa J., Ferreira V., Candela V., Sheinbaum J., López M., Pérez-Brunius P., et al. (2021). Last decade warming in the abyssal Gulf of Mexico. J. Phys. Oceanography. 51 (4), 1021–1035.doi: 10.1175/JPO-D-19-0295.1
Ohlmann J. C., Romero L., Pallàs-Sanz E., Perez-Brunius P. (2019). Anisotropy in coastal ocean relative dispersion observations. Geophysical Res. Lett. 46, 879–888. doi: 10.1029/2018GL081186
Orozco-Muñiz J. P., Salgado-Jimenez T., Rodriguez-Olivares N. A. (2020). Underwater glider propulsion systems VBS part 1: VBS sizing and glider performance analysis. J. Mar. Sci. Eng. 8, 919. doi: 10.3390/jmse8110919
Parés-Sierra A., Flores-Morales A. L., Gómez-Valdivia F. (2018). An efficient markovian algorithm for the analysis of ocean currents. Environmental Modelling & Software 103, Pages 158–168. doi: 10.1016/j.envsoft.2018.02.014
Pasqueron de Fommervault O., Perez-Brunius P., Damien P., Camacho-Ibar V. F., Sheinbaum J. (2017). Temporal variability of chlorophyll distribution in the Gulf of Mexico: bio-optical data from profiling floats. Biogeosciences 14, 5647–5662. doi: 10.5194/bg-14-5647-2017
Paz-Ríos C. E., Pech P. (2019). Gammaropsis elvirae sp. nov., a widely distributed amphipod (Amphipoda: Photidae) in the Yucatan shelf, with ecological comments and a key for the genus in tropical America. Zootaxa, N. 4555, 359–371. doi: 10.11646/zootaxa.4555.3.5
Paz-Ríos C. E., Pech D., Carrera Parra L. F., Simões N. (2021). Biodiversity and biogeographic affinity of benthic amphipods from the Yucatan shelf: an analysis across the warm Northwest Atlantic ecoregions. Systematics Biodiversity. doi: 10.1080/14772000.2021.1947920
Paz-Ríos C. E., Pech D., Mariño-Tapia I., Simões N. (2020). Influence of bottom environment conditions and hydrographic variability on spatiotemporal trends of macrofaunal amphipods on the Yucatan continental shelf. Continental Shelf Res. 198, 104098. doi: 10.1016/j.csr.2020.104098
Pérez Brunius P., Compaire J. C., and García Carrillo P. (2020a) Efectos de derrames de petróleo en la región de perdido sobre la conectividad biológica del golfo de méxico. Available at: https://escenarios.cigom.org/.
Pérez Brunius P., Turrent Thompson C., García Carrillo P. (2020b) Escenarios oceánicos y atmosféricos de un derrame de petróleo en aguas profundas del golfo de méxico. Available at: https://escenarios.cigom.org/.
Portela E., Tenreiro M., Pallàs-Sanz E., Meunier T., Ruiz-Angulo A., Sosa-Gutiérrez R., et al. (2018). Hydrography of the central and western Gulf of Mexico. J. Geophysical Research: Oceans 123, 5134–5149. doi: 10.1029/2018JC013813
Puch-Hau C., Quintanilla-Mena M., Rivas-Reyes I., Patiño-Suárez V., Del Río-García M., Cañizares-Martínez A., et al. (2018a). “Clonación molecular de genes biomarcadores de contaminantes en peces que habitan el golfo de méxico,” in Revista del centro de graduados de investigación, vol. Vol. 33 NÚM. 73. (Instituto Tecnológico De Mérida), PP. 210–214. Available at: http://www.revistadelcentrodegraduados.com/2019/07/clonacion-molecular-de-genes.html.
Puch-Hau C., Quintanilla-Mena M., Rubio-Piña J., Del Río-García M., Zapata-Pérez O. (2018b). Partial mRNA sequences of the biomarkers CYP1A, GST, CAT, GR, SOD, GPx, VTG and p53 in flatfish syacium gunteri from Gulf of Mexico. Bull. Environ. Contam Toxicol. 100, 798. doi: 10.1007/s00128-018-2329-1
Quintanar-Retama O., Armenteros M., Gracia A. (2022). Diversity and distribution patterns of macrofauna polychaetes (Annelida) in deep waters of the southwestern Gulf of Mexico. Deep Sea Res. Part I: Oceanographic Res. Papers 181, 103699. doi: 10.1016/j.dsr.2022.103699
Quintanilla-Mena M., Gold-Bouchot G., Zapata-Perez O., Rubio-Pina J., Quiroz-Moreno A., Vidal-Martínez V. M., et al. (2020). Biological responses of shoal flounder (Syacium gunteri) to toxic environmental pollutants from the southern Gulf of Mexico. Environmental Pollution 258, 113669. doi: 10.1016/j.envpol.2019.113669
Quintanilla-Mena M., Rivas-Reyes I., Puch-Hau C., Cañizares-Martínez A., Patiño-Suarez V., Del Rio-García M., et al. (2018). Hipometilación del ADN en corvina roja (Sciaenops ocellatus) como respuesta ante posibles eventos de derrames petroleros. Rev. Del Centro Graduados Investigación Vol. 33 NÚM. 73, PP. 249–252.
Raggi L., García-Guevara F., Godoy-Lozano E. E., Martínez-Santana A., Escobar-Zepeda A., Gutierrez-Rios R. M., et al. (2020). Metagenomic profiling and microbial metabolic potential of perdido fold belt (NW) and campeche knolls (SE) in the Gulf of Mexico. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.01825
Ramírez-León M. R., García-Aguilar M. C., Aguayo-Lobo A., Fuentes-Allen I., Sosa-Nishizaki O. (2020). What do we know about cetaceans in the Mexican waters of the Gulf of Mexico? A review. Aquat. Mammals. 46 (6), 623–632. doi: 10.1578/AM.46.6.2020.623
Ramírez-León M. R., García-Aguilar M. C., Romo-Curiel A. E., Ramírez-Mendoza Z., Fajardo-Yamamoto and A., Sosa-Nishizaki O. (2021). Habitat suitability of cetaceans in the Gulf of Mexico using an ecological niche modeling approach. PeerJ 9, e10834. doi: 10.7717/peerj.10834
Roarty H., Cook T., Hazard L., Doug G., Harlan J., Simone C., et al. (2019). The global high frequency radar network. Front. Mar. Sci.,2296–7745. doi: 10.3389/fmars.2019.00164
Rodríguez-González A., May-Tec A. L., Herrera-Silveira J., Puch-Hau C., Quintanilla-Mena M., Villafuerte J., et al. (2020). Fluctuating asymmetry of sclerotized structures of haliotrematoides spp. (Monogenea: Dactylogyridae) as bioindicators of aquatic contamination. Ecol. Indic. 117, 2020, 106548. doi: 10.1016/j.ecolind.2020.106548
Rodríguez-Salazar J., Almeida-Juárez A. G., Ornelas-Ocampo K., Millán-López S., Raga-Carbajal E., Rodríguez-Mejía J. L., et al. (2020). Characterization of a novel functional trimeric catechol 1,2-dioxygenase from a pseudomonas stutzeri isolated from the Gulf of Mexico. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.01100
Rodríguez-Salazar J., Loza A., Ornelas-Ocampo K. Gutierrez-Rios RM and pardo-lópez l). bacteria from the southern Gulf of Mexico: Baseline, diversity, hydrocarbon-degrading potential and future applications. Front. Mar. Sci. 8. doi: 10.3389/fmars.2021.625477
Rodríguez-Salazar J., Loza A., Ornelas-Ocampo K., Gutierrez-Rios R. M., Pardo-López L. (2021). Bacteria from the southern Gulf of Mexico: Baseline, diversity, hydrocarbon-degrading potential and future applications. Front. Mar. Sci. 8. doi: 10.3389/fmars.2021.625477
Rodríguez-Vera G., Ribera. P., Romero-Centeno R. (2022). Wind-SST dipole mode in the Caribbean and Gulf of Mexico: Large-scale features and drivers. Climate Dynamics. 3207–3224. doi: 10.1007/s00382-021-06093-0
Rojas-Vargas J., González-Sánchez R., Sánchez Flores. A., Licea-Navarro A. F., Pardo-López L. (2022). Complete genome sequence of halopseudomonas aestusnigri strain GOM5, isolated from asphalt marine sediments of the Gulf of Mexico. Microbiol. Resource Announcement 11 (4). doi: 10.1128/mra.01222-21
Romero L., Ohlmann J. C., Pallàs-Sanz E., Statom N. M., Pérez-Brunius P., Maritorena. S. (2019). Coincident observations of dye and drifter relative dispersion over the inner shelf. J. Phys. Oceanogr. 49, 2447–2468. doi: 10.1175/JPO-D-19-0056.1
Romero-Arteaga A., Ruiz de Alegría-Arzaburu A. (2022b). Spatial variability of currents associated with different cold fronts along the southern Texas coast. . Ocean Dynamics 72 (2), 1–16. doi: 10.1007/s10236-022-01505-z
Romero-Arteaga A., Ruiz de Alegría-Arzaburu A., Rivas D., Juarez B. (2022a). Nearshore current variations during the passage of cold fronts in NW Gulf of Mexico. Continental Shelf Res 238 (14), 104697. doi: 10.1016/j.csr.2022.104697
Romo-Curiel A. E., Ramírez-Mendoza Z., Fajardo-Yamamoto A., Ramírez-León M. R., García-Aguilar M. C., Herzka S. Z., et al. (2022). Assessing the exposure risk of Large pelagic fish to oil spills scenarios in the deep waters of the Gulf of Mexico. Mar. pollut. Bull. 176, 113434. doi: 10.1016/j.marpolbul.2022.113434
Rosas-Díaz J., Escobar-Zepeda A., Adaya L., Rojas-Vargas J., Cuervo-Amaya D. H., Sánchez-Reyes A., et al. (2021). Paenarthrobacter sp. GOM3 is a novel marine species with monoaromatic degradation relevance. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.713702
Rosas-Galván N. S., Martínez-Morales F., Marquina-Bahena S., Tinoco-Valencia R., Serrano-Carreón L., Bertrand B., et al. (2018). Improved production, purification, and characterization of biosurfactants produced by serratia marcescens SM3 and its isogenic SMRG-5 strain. Biotechnol. Appl. Biochem. 65, 690–700. doi: 10.1002/bab.1652
Rubio J. C., Torruco D., González A., Ordaz J., Caamal. Y. (2018). Benthic megafauna of outer margins of the continental shelf of Yucatan peninsula. Regional Stud. Mar. Science. 24, 184–195. doi: 10.1016/j.rsma.2018.08.014
Sánchez-Soto M. F., Cerqueda-García D., Alcántara-Hernández R. J., et al. (2021). Assessing the diversity of benthic sulfate-reducing microorganisms in northwestern Gulf of Mexico by illumina sequencing of dsrB gene. Microb. Ecol 81, 908–921. doi: 10.1007/s00248-020-01631-5
Sánchez-Soto Jiménez M. F., Cerqueda-García D., Montero-Muñoz J. L., Aguirre-Macedo M. L., García-Maldonado J. Q. (2018). Assessment of the bacterial community structure in shallow and deep sediments of the perdido fold belt region in the Gulf of Mexico. PeerJ 6, e5583. doi: 10.7717/peerj.5583
Santana-Cisneros M. L., Ardisson P.-L., González Á.F., Mariño-Tapia I., Cahuich-López M., Ángeles-González L. E., et al. (2021a). Dispersal modeling of octopoda paralarvae in the Gulf of Mexico. Fisheries Oceanography 97 (2), 1–14. doi: 10.1111/fog.12555
Santana-Cisneros M. L., Rodríguez-Canul R., Zamora-Briseño J. A., Améndola-Pimenta M., De Silva-Dávila R., Ordóñez-López U., et al. (2021b). “Morphological and molecular identification of octopoda (Mollusca: Cephalopoda) paralarvae from the southern Gulf of Mexico,” in Bulletin of marine science (University of Miami - Rosenstiel School of Marine and Atmospheric Science) 97 (2), 281–304. doi: 10.5343/bms.2020.0027
Sanvicente-Añorve L., Zavala-Hidalgo J., Allende-Arandía E., Hermoso-Salazar M. (2018). Larval dispersal in three coral reef decapod species: Influence of larval duration on the metapopulation structure. PloS One 13 (3), e0193457. doi: 10.1371/journal.pone.0193457
Soler-Jiménez L. C., Hernández-Mena D. I., Centeno-Chalé O. A., Vidal-Martínez V.M. (2021). A new species of Neoheterobothrium Price, 1943 (Monogenea, Diclidophoridae) from Syacium papillosum (Linnaeus) (Pleuronectiformes, Paralichthyidae) in the Yucatan Shelf, with notes on the validity of the subfamilies in the Diclidophoridae. Parasitology Research 120, 887–897.
Suárez-Mozo N. Y., Vidal-Martínez V. M., Aguirre-Macedo M. L., Pech D., Guerra-Castro E., Simões N. (2021). Bivalve Diversity Continental Shelf Deep Sea Perdido Fold Belt Northwest Gulf Mexico Mexico. Diversity 13, 166. doi: 10.3390/d13040166
Tapia-Morales S., López-Landavery E. A., Giffard-Mena I., Ramírez-Álvarez N., Gómez-Reyes R. J. E., Díaz F., et al. (2019). Transcriptomic response of the crassostrea virginica gonad after exposure to a water-accommodation fraction of hydrocarbons and the potential implications in reproduction. Mar. Genomics 43, Pages 9–18. doi: 10.1016/j.margen.2018.10.004
Torres-Beltrán M., Vargas-Gastélum L., Magdaleno-Moncayo D., Riquelme M., Herguera-García J. C., Prieto-Davó A., et al. (2021). The metabolic core of the prokaryotic community from deep-sea sediments of the southern Gulf of Mexico shows different functional signatures between the continental slope and abyssal plain. PeerJ 9, e12474. doi: 10.7717/peerj.12474
Torruco D., González-Solis A., Torruco-González Á.D., Rubio Polania J. C. (2018). Invertebrate megafauna in the perdido fold belt polygon, Gulf of Mexico, Mexico. Oceanography Fisheries Open Access 8 (4), 555744. doi: 10.19080/OFOAJ.2018.08.555744
Uribe-Flores M. M., Cerqueda-Garcıa D., Hernandez-Nuñez E., Cadena S., Garcıa-Cruz N. U., Trejo-Hernandez M. R., et al. (2019). Bacterial succession and co-occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor. J. Appl. Microbiol 127 (2), 495-507. doi: 10.1111/jam.14307
Uribe-Flores M. M., García-Cruz U., Hernández-Nuñez E., Cerqueda-García D., Leopoldina Aguirre-Macedo M., García-Maldonado JQ., et al. (2021). Assessing the effect of chemical dispersant nokomis 3-F4 on the degradation of a heavy crude oil in water by a marine microbial consortium. Bull. Environ. Contam Toxicol 108, 93–98. doi: 10.1007/s00128-021-03247-y
Uribe-Martínez A., Liceaga-Correa M., Cuevas E. (2021). Critical in-water habitats for post-nesting Sea turtles from the southern Gulf of Mexico. J. Mar. Sci. Eng. 9, no. 8, 793. doi: 10.3390/jmse9080793
Valencia-Agami S. S., Cerqueda-García D., Putzeys S., Uribe-Flores M. M., García-Cruz N. U., Pech D., et al. (2019). Changes in the bacterioplankton community structure from southern Gulf of Mexico during a simulated crude oil spill at mesocosm scale. Microorganism 7, 23. doi: 10.3390/microorganisms7100441
Valencia-Gasti J. A., Camacho-Ibar V. F., Herguera J. C. (2022). Water mass structure and mixing fractions in the deepwater region of the Gulf of Mexico. J. Geophysical Research: Oceans 127, e2021JC017705. doi: 10.1029/2021JC017705
Vargas-Gastélum L., Chong-Robles J., Lago-Lestón A., Darcy J. L., Amend A. S., Riquelme M. (2019). Targeted ITS1 sequencing unravels the mycodiversity of deep-sea sediments from the Gulf of Mexico. Environ. Microbiol. 21 (11), 4046–4061. doi: 10.1111/1462-2920.14754
Vega-Cendejas M. E., De Santillana M. H. (2019). Demersal fish assemblages and their diversity on the Yucatan shelf: Gulf of Mexico. Regional Stud. Mar. Sci. 29, 10. doi: 10.1016/j.rsma.2019.100640
Vega Cendejas M. E., Hernández de S. M., Chi A. (2017). Spatial variation of demersal fish communities in the platform and channel of Yucatan. Oceanography Fisheries 5 (2), 28–35. doi: 10.19080/OFOAJ.2017.05.555658
Velásquez-Aristizábal J. A., Camacho-Ibar V. F., Durazo R., Valencia-Gasti J. A., Lee-Sánchez E., Trasviña-Castro A. (2022). Nitracentric/Hydrographic classification and prediction of nitrate profiles for oceanographic stations under the influence of mesoscale eddies in the Gulf of Mexico. Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.827574
Vidal-Martínez V. M., Ocaña F. A., Soler-Jiménez L. C., Garcia-Teh J.G., Aguirre-Macedo L., May-Tec A., et al. (2021). Functional groups of metazoan parasites of the dusky flounder (Syacium papillosum) as bioindicators of environmental health of the Yucatan shelf. Bull. Environ. Contam Toxicol 108, 24–29. doi: 10.1007/s00128-021-03177-9
Vidal-Martínez V. M., Velázquez-Abunader I., Centeno-Chalé O. A., May-Tec A. L., Soler-Jiménez L. C., Pech D., et al. (2019). Metazoan parasite infracommunities of the dusky flounder (Syacium papillosum) as bioindicators of environmental conditions in the continental shelf of the Yucatan peninsula, Mexico. Parasites Vectors 12, 277. doi: 10.1186/s13071-019-3524-6
Vidal-Martínez V. M., Wunderlich A. C. (2017). Parasites as bioindicators of environmental degradation in Latin America: A meta-analysis. J. Helminthol 91 (2), 165–173. doi: 10.1017/S0022149X16000432
Zamora-Briseño J. A., Améndola-Pimenta M., Ortega-Rosas D. A., Pereira-Santana A., Hernández-Velázquez I. M., González-Penagos C. E., et al. (2021). Gill and liver transcriptomic responses of Achirus lineatus (Neopterygii: Achiridae) exposed to water-accommodated fraction (WAF) of light crude oil reveal an onset of hypoxia-like condition. Environ. Sci. pollut. Res 28, 34309–34327. doi: 10.1007/s11356-021-12909-7
Zavala-Sansón L., Pérez-Brunius P., Sheinbaum J. (2017). Surface relative dispersion in the southwestern Gulf of Mexico. J. Phys. Oceanogr. 47, 387–403. doi: 10.1175/JPO-D-16-0105.1
Zavala-Sansón L., Sheinbaum J., Pérez-Brunius P. (2018). Single-particle statistics in the southern Gulf of Mexico. Geofísica Internacional 57 (2), 139–150. Available at: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0016-71692018000200139&lng=es&tlng=en.
Keywords: ocean observations, environmental baseline, ocean and atmospheric modeling, Gulf of Mexico, multidisciplinary project
Citation: Herguera JC, Peters EM, Sheinbaum J, Pérez-Brunius P, Herzka SZ, Licea-Navarro A, Ocampo-Torres F, Aguirre-Macedo ML, Vidal-Martínez VM, García-Nava H, Salgado T, Romero-Centeno R, Zavala-Hidalgo J, Pardo-López L and Gracia A (2023) Ocean monitoring, observation network and modelling of the Gulf of Mexico by CIGOM. Front. Mar. Sci. 10:1091372. doi: 10.3389/fmars.2023.1091372
Received: 07 November 2022; Accepted: 09 February 2023;
Published: 27 March 2023.
Edited by:
Teresa Bottari, National Research Council (CNR), ItalyReviewed by:
Alberto Sánchez-González, Instituto Politécnico Nacional (IPN), MexicoHoracio Pérez-España, Universidad de Veracruz, Mexico
Copyright © 2023 Herguera, Peters, Sheinbaum, Pérez-Brunius, Herzka, Licea-Navarro, Ocampo-Torres, Aguirre-Macedo, Vidal-Martínez, García-Nava, Salgado, Romero-Centeno, Zavala-Hidalgo, Pardo-López and Gracia. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Juan Carlos Herguera, aGVyZ3VlcmFAY2ljZXNlLm14