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absorption-based model
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University, Nanjing, China, 2College of Oceanography, Hohai University, Nanjing, China, 3State Key
Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of
Natural Resources, Hangzhou, China
Seasonal patterns of marine net primary production (NPP) are crucial for

understanding the marine ecosystem and biogeochemical cycles. Uncoupling of

seasonal variations between NPP and phytoplankton chlorophyll-a over different

areas has attracted much attention. In this study, following a review of previous

studies, monthly climatological NPP data from 2003 to 2020, estimated using the

Size-fractioned Phytoplankton Pigment Absorption (aph)-based NPP Model

(SABPM), were selected to study the seasonal variability of NPP in the South

China Sea (SCS). Results showed the spatial differences of NPP seasonality and its

departures from climatology in extreme El Niño-Southern Oscillation (ENSO) and

Indian Ocean Dipole (IOD) years. Cluster analysis for climatological monthly data

identified significant differences of NPP seasonality in five typical regions. In coastal

regions along the northern SCS and off eastern Vietnam, NPP exhibited the most

obvious seasonal cycle with maximum (minimum) values in summer (winter),

attributable mainly to river discharge and summer upwelling. In regions off

northwestern Luzon and coast of southern SCS, NPP showed peaks in winter,

which were related to strong mixing and upwelling. In northwestern SCS, NPP was

high during May–September in phase with sea surface temperature and the

primary controlling factors were found to be shallow nutricline depth and wind-

driven mixing. Owing to the deep nutricline depth in the central basin, NPP

exhibited little seasonal variability; only a weak signal was observed in spring in

phase with photosynthetically active radiation. Local dynamics on regulating the

nutrient supply and light availability contribute to these regional differences in NPP

seasonality, which could also be affected by extreme climate events. The largest

anomalies of the NPP seasonal cycle coincide with 2015/2016 ENSO and super

IOD in 2020. During these events, enhanced (weakened) westerly winds caused fall

(rise) of SLA and increase (decrease) of NPP in coastal regions along the northern

SCS and that off eastern Vietnam. Overall, the aph-based model shows a new

perspective to study the spatiotemporal variations of NPP in the SCS.
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Introduction

Net primary production (NPP), which plays a key role in the

functioning of marine ecosystems, is influenced by complex

physicochemical conditions in the water column that include

temperature, biomass, light, and the concentrations of nutrients

(Montes-Hugo et al., 2009; Oziel et al., 2019). Given the importance

of NPP in air-sea CO2 exchange and global carbon cycle (Platt and

Sathyendranath, 1988; Brewin et al., 2021), in evaluating future fisheries

yields (Sarmiento and Gruber, 2002) as well as in regulating the climate

(Reid et al., 2009), its apparent seasonal signal has received considerable

attention from the scientific community.

Methods such as 14C incubation and oxygen evolution have

provided compelling NPP datasets for nearly 70 years (Nielsen,

1952; Williams et al., 2004). The seasonality of NPP has gradually

been explained at numerous typical stations in various areas. In the

North Pacific Subtropical Gyre region, represented by the Hawaii

Ocean Time Series station (Karl and Lukas, 1996), NPP is high in

summer and low in winter. In the North Atlantic Subtropical Gyre

region, represented by the Bermuda Atlantic Time Series Study

(Lohrenz et al., 1992), NPP is higher in winter and early spring

than in other seasons. At a subarctic station in the western Pacific,

algal blooms can result in high NPP in spring and summer, while at

subtropical stations, NPP generally shows higher values in winter

owing to the influence of subtropical mode water (Matsumoto et al.,

2016). In situ observations of NPP are often limited temporally and

spatially, and thus often only reflect local dynamic effects.

Fortunately, the development of remote sensing techniques has

enabled monitoring of NPP and exploration of its influencing

factors on large spatiotemporal scales. Seasonal variation in NPP

vary substantially among different regions owing to the strong

relationship between environmental variables and photosynthetic

parameters (Kulk et al., 2020; Kulk et al., 2021). The seasonal

pattern of NPP in the Mediterranean Sea is considered to be

generally high in winter and low in summer, consistent with the

algal biomass in the west and the influence of photosynthetically

active radiation (PAR) in the east (Bosc et al., 2004). In the Red Sea,

NPP is regionally distinct and regulated by environmental factors

such as sea surface temperature (SST), mixed layer depth (MLD), and

PAR (Li W et al., 2020). Nutrient supply has been shown to be the

main regulator of NPP in eastern boundary upwelling regions (Messié

and Chavez, 2015). NPP could also change in response to upwelling

and nutrient availability during the transition of climate events

(Behrenfeld et al., 2001).

Over the last 30 years, researchers have proposed a number of

NPP remote sensing models, which can be summarized in three main

strategies (Lee Z et al., 2015), including CHL-based approach (e.g.,

Behrenfeld and Falkowski, 1997b), carbon-based approach (e.g.,

Behrenfeld et al., 2005; Westberry et al., 2008) and phytoplankton

absorption-based approach (e.g., Ma et al., 2014; Silsbe et al., 2016;

Tao et al., 2017a). Currently, an inversion strategy for NPP that could

be used in all seas has yet to be established. A series of model

comparison exercises demonstrated that the same model has

different accuracy in different regions (Campbell et al., 2002; Carr

et al., 2006), and that some results could not simulate the variability of

NPP accurately (Lee YJ et al., 2015; Lee and Marra, 2022). In

particular, the ocean color chlorophyll-a (CHL) algorithm is
Frontiers in Marine Science 02
challenged by optically complex Case-2 waters, which could affect

the performance of NPP models (Saba et al., 2011). Therefore, testing

and applying more reliable models could help to explore seasonal

variations of NPP in local areas.

The South China Sea (SCS) is the largest tropical marginal sea in

the northwest Pacific Ocean, covering an area of 3.5 million km2. The

SCS is identified as a typical oligotrophic region where primary

productivity is limited by nutrient availability (Tang et al., 1999).

High values of CHL (> 2 mg m-3) generally occur near the coast, while

offshore concentrations are lower (< 0.3 mg m-3) (Yu et al., 2019).

Ecological processes in the SCS are strongly affected by atmospheric

depositions driven by season monsoons (e.g., Lin et al., 2007), in

addition to alterations driven by river discharge (Zhang et al., 2012;

Zeng et al., 2022), coastal upwelling (Shaw et al., 1996; Jing et al., 2009;

Yan et al., 2015), and Kuroshio invasion (Li L et al., 2020). During

certain specific periods, NPP in the SCS responds to environmental

events such as forest fires (Xiao et al., 2020) and climatic events such

as ENSO (Liao et al., 2012).

Study on the seasonal variation in NPP in the SCS has attracted

much attention in recent years. In situ NPP was found to be higher in

winter than in summer and higher on the shelf than in the basin in the

northern SCS (Chen and Chen, 2006). In areas near northwestern

Luzon, the central coast of Vietnam, to the southeast of Hainan

Island, and in northern parts of the Sunda Shelf, monsoon-driven

upwelling might produce high CHL concentrations, which could

further affect primary productivity (Liu et al., 2002; Ning et al.,

2004). The limitations of in situ observations are now being broken

by satellite remote sensing data, which can describe the patterns of

NPP in SCS at high spatial and temporal resolution. As an established

standard NPP model, the CHL-based Vertically Generalized

Production Model (VGPM) has been widely used in studies on the

SCS to determine the seasonal variation in NPP (Wang et al., 2008;

Tan and Shi, 2009). On the basis of the VGPM, mean primary

productivity in the entire SCS was shown to be highest in winter,

decrease gradually in spring, start to rise in early summer, reach a

smaller peak in August, and gradually increase back to winter

conditions after autumn. Further subdivision of the SCS into typical

regions reveals varying patterns in seasonal NPP (Wang et al., 2008;

Tan and Shi, 2009). For example, NPP peaks in winter in the

northwestern area of Luzon, while peaks occur in both winter and

summer in the eastern area of Vietnam and in the Mekong River

estuary. In the basin area, the magnitude of NPP variation is relatively

weak. Overall, the seasonality of VGPM NPP in the SCS exhibits a

favourable match with CHL, while being influenced by environmental

factors such as SST (Shih et al., 2021).

However, the results of the VGPM might include large errors or

even show contrasting variability in some areas of the SCS (Xie et al.,

2020; Lee and Marra, 2022). For example, Xie et al. (2020) reversed

the seasonal pattern in NPP in northern shelf waters of the SCS by

replacing the CHL-based euphotic depth with that based on the

inherent optical properties and by optimizing the model parameters

using the nearest neighbor method. This result agreed with a series of

field observations (Chen and Chen, 2006; Pan et al., 2015; Ye et al.,

2015). Moreover, the influence of the selection of the remote sensing

algorithm on the seasonal pattern of NPP cannot be ignored (Xu et al.,

2016). There studies remind us to re-investigate the spatial variability

of NPP seasonality and their influencing mechanisms in the SCS.
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Consequently, it is a critical step to choose a more suitable NPP

estimation model in advance to reveal the seasonal variations in the

various typical regions of the SCS.

In this study, four typical remote sensing models were evaluated

in terms of their suitability for application to the SCS, and NPP

calculated by the Size-fractioned Phytoplankton Pigment Absorption

(aph)-based NPP Model (SABPM) was found to be most reliable for

describing the seasonal cycle of NPP in the SCS. We performed

cluster analysis on the reconstructed NPP by a data interpolating

method (see Section 2.3 for details) and divided the SCS into five

typical regions. For each region, we analyzed the seasonality of NPP,

investigated the influence of environmental and dynamics factors,

and examined how regional differences in NPP are driven by multiple

processes. Moreover, the NPP seasonality exhibits departures from

climatology in extreme ENSO and IOD years as mainly influenced by

physical forcing in local area.
Data and methods

Data

To obtain a more accurate continuous spatiotemporal distribution of

NPP in the SCS, we considered four typical NPP products estimated from

Moderate Resolution Imaging Spectroradiometer (MODIS) data with

their separate algorithms: the VGPM (Behrenfeld and Falkowski, 1997b),

carbon-based productivity model (CbPM, Behrenfeld et al., 2005;

Westberry et al., 2008), SABPM (Tao et al., 2017a) and carbon,

absorption, and fluorescence euphotic-resolving NPP model (CAFE;

Silsbe et al., 2016). SABPM is an aph-based model developed by

considering how the size of phytoplankton affects the quantitative

production of phytoplankton photosynthesis (Tao et al., 2017a). The

above-mentioned NPP products can be downloaded from the Oregon

State Ocean Productivity website (http://sites.science.oregonstate.edu/)

and the Global Change Research Data Publishing & Repository (http://

www.geodoi.ac.cn/). The main equations and key input parameters for

each of the four NPPmodels are shown in Table 1. The main parameters

in eachmodel are also shown in Table 2. This studymainly usedmonthly

MODIS products obtained from the NASA ocean-color website (http://

oceancolor.gsfc.nasa.gov/), including SST (Kilpatrick et al., 2015), CHL

concentration (Hu et al., 2012), PAR (Frouin et al., 2012), and euphotic

zone depth (Zeu, Lee et al., 2007). All of those products covered the period

from January 2003 to December 2020 with the spatial resolution

being 9 km.

To discuss the primary factors influencing NPP, a range of

environmental dynamics parameters were also obtained: monthly

sea level anomaly (SLA) calculated from sea surface height (the

Copernicus Marine Environment Monitoring Service, https://

resources.marine.copernicus.eu/, Ducet et al., 2000), MLD obtained

from the Hybrid Coordinate Ocean Model (http://orca.science.

oregonstate.edu/, Chassignet et al., 2007), and wind speed extracted

from the 0.25° ERA-Interim reanalysis product (Dee et al., 2011),

which is the latest global atmospheric reanalysis dataset developed by

the European Centre for Medium-Range Weather Forecasts.

Wind stress (WS) and wind stress curl (WSC) were calculated as

follows:
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~t = rC~u · ~uj j (1)

∇  �   ~t   =  
∂ ty
∂ x

  −  
∂ tx
∂ y

(2)

where u is the wind speed vector, t is the WS (direction is the

same as the direction of the wind speed vector), tx and ty are the

eastward and northward components of WS, respectively, r is air

density above the sea surface, and C is the drag coefficient for neutral

stability conditions (Hellerman, 1965).

In those products, monthly averaged data were collated uniformly

to 9 km using the optimal interpolation solution provided by

MATLAB routines.
Reconstructed data and validation

Data Interpolating Empirical Orthogonal Function (DINEOF) for

filling data gaps is based on the Empirical Orthogonal Function

(EOF), and it uses the dominant spatial patterns (EOF modes)

extracted from a time series data to reconstruct missing data

(Beckers and Rixen, 2003; Alvera-Azcárate et al., 2005). We

implemented the DINEOF approach to fill the missing data in the

SCS. Quantitative evaluation has shown that errors in DINEOF

reconstructed data are usually within 2% (Liu and Wang, 2018; Liu

and Wang, 2019). A cross-validation technique was applied in the

DINEOF for the final reconstruction. The raw input data of SABPM

included some areas of null values before the reconstruction (14%

missing data), especially in spring. We use the DINEOF software in

Fortran downloaded from the official website of DINEOF (http://

modb.oce.ulg.ac.be/mediawiki/index.php/DINEOF).
Cluster analysis

The K-means algorithm is an iterative solution-based clustering

analysis algorithm that can eliminate uncertainty generated by

empirical choices in areas with large variations. This approach regroups

pixels with seasonal cycle shapes, and then a single characteristic seasonal

cycle is determined by calculating the center (average cycle) within each

cluster that statistically represents the entire cluster. Drawing on previous

approaches to analysis of surface CHL (Foukal and Thomas, 2014;

Ardyna et al., 2017; Huang et al., 2022), we delineated ocean regions by

performing a clustered k-means analysis on the DINEOF-reconstructed

NPP products. The linkage algorithm was based on initial calculation of

the cosine distance between the objects, which has the advantage of

emphasizing mainly differences in the seasonal shape. Specifically, similar

to Xu et al. (2020), a monthly climatological time series of the NPP was

first created for each pixel of the SCS. The resulting climatological time

series were normalized to a maximum value for each specific pixel. The

normalized data were then subjected to k-means clustering, which

considers statistics of the time series dataset and produces clusters that

represent regions of similarity. One of the key challenges for the k-means

algorithm is to determine the number of clusters in a dataset. Here, the

optimal number of clusters was four, which was determined through use

of a series of evaluation indicators in our dataset.
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Similarity index and correlation coefficient

To describe the interannual stability of seasonal patterns of NPP

in different regions, we calculated a similarity index (SI, Kirkpatrick

et al., 2000) as follows:

SI = 1 − (
2� arccos½ A·Bi

Aj j� Bij j�
p

) (3)

where A is the monthly climatological mean of NPP, and Bi is the

monthly mean NPP in year i. The similarity index is also consistent

with the linkage algorithm to calculate the cosine distance for K-

cluster analysis (Torrecilla et al., 2011).

With equation (4), the correlation coefficient r is calculated for the

influencing factor of NPP, which exhibit enough dynamic range in

each of regions. A 95% confidence test was performed in the

calculation.

r(X,Y) =
Cov(X,Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var   (X) Var(Y)
p (4)

where X and Y are the two parameters for correlation, Cov (X, Y)

is the covariance of X and Y, Var (X) is the variance of X and Var (Y)

is the variance of Y.
Results

Comparison of SABPM with other NPP
models in the SCS

Spatial distributions of climatological NPP calculated by the four

models exhibit substantially different seasonality in the SCS (Figure 1). In

summer, VGPM NPP is higher (~1100 mg C m-2 d-1) at shallow depths

of 50 m with extensive low values (~260 mgC m-2 d-1) in other regions

(Figure 1A). In winter, the area with high values becomes larger (<200m)
Frontiers in Marine Science 04
in comparison with that in summer, and an area with a medium value

(~600 mgC m-2 d-1) appears between northwestern Luzon and the

northern nearshore regions of the SCS (Figure 1B). In summer, CbPM

NPP, CAFE NPP, and SABPM NPP exhibit similar spatial patterns

(Figures 1C, E, G). The SCS could be divided into a high-value area

shallower than approximately 200 m and a low-value area in deeper

water, where the high-value area of CAFE NPP is smaller. In the high-

value area, the regional averages of CbPMNPP, CAFENPP, and SABPM

NPP are 1029.3, 795.1, and 1109.9 mgC m-2 d-1, respectively; in the low-

value area, the regional averages are 622.4, 591.2, and 640.4 mgC m-2 d-1,

respectively. In winter, a low-value stripe (~200 mgC m-2 d-1) is evident

near 200-m isobath in the northern SCS in CbPM NPP (Figure 1D),

whereas this phenomenon is not found in SABPM NPP (Figure 1H).

CAFENPP is lower (376.6mgCm-2 d-1) across the northern SCS in areas

shallower than 200 m in winter (Figure 1F), which does not conform to

the general rule that inshore NPP is higher than offshore NPP (Chavez

et al., 2011). In northern and western parts of the SCS, the NPP estimated

by CbPM, CAFE and SABPM is high in summer and low in winter,

whereas the NPP estimated by VGPM shows the opposite pattern. To the

northwest of Luzon, the results of each model reveal a seasonal cycle of

high NPP in winter and low NPP in summer.

For comparison with in situ measurements obtained in the SCS

(Xie et al., 2015; Bouman et al., 2018; Xie et al., 2020), we analyzed the

averaged seasonal variation in NPP over two shelf areas in the SCS:

water depth shallower than 50 m (Figure 2A) and water depth

shallower than 200 m (Figure 2B). Estimates of NPP by VGPM

show obviously larger values in winter than in summer, while the

other models show the opposite variability. The peaks of seasonal

climatological NPP (<50 m) estimated by VGPM, CbPM, SABPM,

and CAFE are 1945.1, 1499.7, 1444.6, and 831.5 mgC m-2 d-1,

respectively, and the troughs are 1214.6, 737.4, 614.2, and 346.9

mgC m-2 d-1, respectively. For shelf waters shallower than 200 m,

the peaks of NPP values estimated by VGPM, CbPM, SABPM, and

CAFE are 1213.2, 1094.0, 1146.8, and 987.9 mgC m-2 d-1, respectively,

and the troughs are 698.2, 613.1, 564.2, and 354.0 mgC m-2 d-1,

respectively. The magnitude and seasonal pattern of variations of
TABLE 1 The main equations of NPP models.

Model Name Main Equations References

VGPM

NPP = CHL� PB
opt � Zeu � 0:66125� PAR

PAR + 4:1
� DL

PB
opt   =  o

7

i=o

hi  �  SSTi

Behrenfeld and Falkowski, 1997a

CbPM NPP=C×m×Zeu×f(PAR)
C=(bbp(443)−bbp(443)NAP)×SF

Behrenfeld et al., 2005; Westberry et al., 2008

CAFE
NPP  =  

Z 700

400
Ed(l, 0)� aph(l)=a(l)dl � fmax � tanh(EK=E)

E(t,z,l)=2p×E(0−,l)×sin(p×t)×exp(−Kd(l)×z)×Eu
Kd(l)=m0×a(l)+m1×[1−m2×exp

(−m3×a(l))]×bb(l)

Silsbe et al., 2016

SABPM
NPP(z) =

Km

Km + PAR(z)
fmax � �aph(z)� PAR(z)� exp( − n � PAR(z))

PAR(z)  =  
Z 700

400
Ed(l, 0)� exp( − Kd(l)� z)dl

�aph(z)  =  

Z 700

400
aph(l, z)� Ed(l, z)dlZ 700

400
Ed(l, z)dl

Kd(l)=M(l)(Kd(490)−Kw(490))+Kw(l)

Ma et al., 2014;
Tao et al., 2017a
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SABPMNPP are most similar with those observed by Xie et al. (2020),

which supports us choosing SABPM as the most suitable model, and

these results could also be confirmed with observations obtained in

the Taiwan Strait (Liu et al., 2007; Tseng et al., 2020).

The researchers conducted model sensitivity experiments by

Monte Carlo methods, and the results revealed that VGPM and

CbPM were strongly influenced by the accuracy of chlorophyll (Lee Z

et al., 2015; Ma et al., 2014). Meanwhile the aph-based model which

avoids the use of chlorophyll was found to be more accurate than

other kinds of models (Tao et al., 2017b). This result is supported by

previous studies comparing the application of NPP models in global

ocean and regional areas, and the aph-based models always maintain

good performances (Hirawake et al., 2012; Barnes et al., 2014; Ma

et al., 2014; Silsbe et al., 2016; Tao et al., 2017b; Robinson et al., 2017;

Wu et al., 2022). Given this strong generalization capability,

extending an aph-based model such as SABPM to more unproven

regions represent the most reliable approach at present.
Frontiers in Marine Science 05
Seasonality of NPP and its relations with
environmental factors

Four regions were divided according to the cosine similarity of

seasonal variation (Figure 3A). Owing to the geographical distance and

potential for different influencing factors, we split yellow area into two

parts, and further divided the SCS into five regions: the coastal ocean

along the northern SCS (NC), coastal waters to the east of Vietnam (VE),

area off northwestern Luzon and the southern SCS (LS), northwestern

parts of the SCS (NW), and the central basin area (CB). Area NC & VE

includes the shallow area (water depth of<200m) in the north of the SCS,

most of the Beibu Gulf, and the southern coast of Vietnam (10.2% of the

SCS area). Area LS is the region near Luzon Island and the southern coast

(5.3%). Areas NW (23.5%) and CB (61.0%) separate the remainder of the

SCS from the southwest to the northeast. Area NW includes the western

part of the SCS and the area around the 200-m isobath in the north, while

area CB covers the remaining area including the basin. Figures 3B–E
TABLE 2 List of Symbols.

Data source symbol Description Unit

PAR Daily integrated photosynthetic active radiation Ein m-2 d-1

CHL Chlorophyll-a concentration mg m-3

DL Day length hour

Zeu Euphotic zone depth m

SST Sea surface temperature °C

PB
opt

Maximum biomass-normalized photosynthesis parameter
(Empirical parameters, a seventh-order polynomial function of SST) mgC (mgCHL)-1 h-1

C Phytoplankton carbon biomass mg

m Phytoplankton community growth rate d-1

f Empirical formulae relating to PAR /

bbp(443) Particle backscattering coefficient at 443 nm m-1

bbp(443)NAP Backscattering coefficient of non-algal particles (= 0.00035) m-1

SF Scale factor (= 13000) /

Ed Quantum scalar irradiance Ein m-2 nm-1

PAR(z) Integration of Ed (l, z) over the wavelength range 400~700 nm Ein m-2 d-1

aph Phytoplankton pigment absorption m-1

a Absorption coefficient m-1

fmax Maximum value of the quantum yield mol C Ein-1

EK Light saturation parameter Ein m-2 d-1

E(t, z, l) Irradiance at time t, depth z, and wavelength l Ein m-2 nm-1

Eu A conversion factor (about 1.4) /

bb Backscattering coefficient m-1

Kd Diffuse attenuation coefficient Ein m-2 d-1

Km Irradiance where the quantum yield reaches half of its maximum value mW cm-2 nm-1

�aph Spectrally averaged absorption coefficient over 400~700 nm m-1

v Photoinhibition parameter (=0.01) (Ein m-1 d–1)-1

Kw Diffuse attenuation coefficient of pure water m-1
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shows the seasonal variations of NPP in these regions (discussed further

in section 3.3), and the data are normalized by the maximum value.

Simpson 0 s   diversity   index =  1 −oS
i=1(

ni
N
)2 (5)
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A simplified form of Simpson’s diversity index was used to indicate

the stability of seasonal variation (Simpson, 1949; Huang et al., 2022). In

equation 5, S is the number of climatological clustering partitions (S = 4),

N is the number of years in this study (N = 18), ni s the number of times

that pixel has been clustered into region i by a single year. At this point a

larger Simpson’s diversity index indicates that the pixel is divided into

different partitions more often. As shown in Figure 3F, lower values of

Simpson’s diversity index indicate less variable seasonality. The

boundaries of the regions are plotted as green lines. The accuracy in

relation to the Beibu Gulf is questionable owing to the serious amount of

missing original NPP data (over 60% in winter), and this region is not

considered in further discussion. Overall, the partition stability is high

(average: 0.16, standard deviation: 0.16). A relatively less stable band

exists from the southwest to the northeast as the boundary between

regions NW and CB, and the widest part is in the central part of the SCS

(Simpson index = 0.29 ± 0.16 in the blue box as shown in Figure 3F).

To quantify the difference between the SABPM NPP seasonality

and the traditional results, the VGPM NPP is given simultaneously as

a comparison. Figure 4 shows that the results of VGPMNPP correlate

well with CHL and always have a seasonal cycle of high values in

winter and low values in summer, except for region VE. However,

uncoupling of seasonality variations between CHL and NPP in region

NC has been investigated by Xie et al. (2020). They considered that

the noncorresponding seasonal cycle is determined by river input.

The seasonality of SABPM NPP is described as independent of CHL

in regions NC and CB, and even negatively correlated in region NW.

In region VE, the presence or absence of a winter peak is the main

difference between CHL and SABPM NPP. On average, SABPM NPP

is 170.9 and 312.9 mgC m-2 d-1 higher than VGPM NPP in regions

NW and CB, respectively. This finding corresponds to the VGPM

NPP being substantially lower than the field value measurements in

the basin of the SCS (Tan and Shi, 2009; Huang et al., 2018);
A

B D

E

F

G

H

C

FIGURE 1

Climatological ocean NPP in summer and winter during 2002–2020 in the study area produced using four algorithms: (A, B) VGPM, (C, D) CbPM,
(E, F) CAFE, and (G, H) SABPM. The grey lines are the 50 m isobaths and the black lines are the 200 m isobaths. The location of the Pearl River (PR) and
the Mekong River (MR) is indicated in (A).
A

B

FIGURE 2

Monthly average variations of mean NPP calculated by the four algorithms
in nearshore water: (A) less than 50 m and (B) less than 200 m.
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moreover, it suggests that, at least in parts of the SCS, NPP seasonality

cannot be characterized simply by CHL.

In comparison with VGPM NPP and CHL, SABPM NPP exhibits

more seasonal variability in the SCS (Figure 4). In region NC, NPP is

high in summer and low in winter, with a peak value in July (1367.5

mgC m-2 d-1). In region NW, NPP is higher during May–September

with values in the range of 738.3–739.4 mgC m-2 d-1. In region CB,

NPP does not exhibit evident seasonal variability (range: 611.0–682.3

mgC m-2 d-1), and there is only a weak signal in spring. In region LS,

NPP is high in winter and low in summer with a peak value in January

(933.7 mgC m-2 d-1). Region VE is similar to region NC with peak

NPP in August (1379.3 mgC m-2 d-1).

In comparison with the seasonal clustering results for the surface

CHL (Xu et al., 2020), there are relatively few typical subdivisions of
Frontiers in Marine Science 07
the NPP in the deeper than 200 m region. Under the same clustering

conditions, only northwestern Luzon was the common characteristic

area, and the seasonality of surface CHL was far more complex (three

more feature areas) in deeper water than the seasonality of NPP. This

suggests that phytoplankton surface biomass and phytoplankton

photosynthetic production capacity do not respond to the

environment in exactly the same way. The role of environmental

factors on NPP and the main driving processes of NPP in the SCS will

be further discussed in this study.

Correlation coefficients between monthly climatological NPP

values and the monthly climatological values of multiple parameters

are shown in Figure 5, and the regional average correlation

coefficients are listed in Table 3. Regions where the linear trend is

not significant at the 95% confidence level are masked in Figure 5.
FIGURE 3

(A) Cluster-derived regions based on the climatological NPP seasonality during 2003–2021. (B–E) Temporal evolution of the centroid of four clusters
obtained from k-means analysis. The colors of the curves correspond to those in (A). Light color shading in (B–E) indicates ± one standard deviation.
(F) The Simpson diversity index for measuring the stability of NPP seasonality (the closer to 0 the more stable). Larger values indicate less variable
seasonality. Borders of these regions are shown in green for reference. A low-value area is framed by the blue box.
A B

D E

C

FIGURE 4

(A–E) Monthly average variations of mean NPP based on SABPM (red line), NPP based on VGPM (green line), and CHL (blue line) in the five regions
shown in Figure 3A.
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PAR exhibits positive correlation with NPP in most of the SCS, except

for region LS, region VE, and a small area in the central part. CHL

does not directly characterize NPP in the SCS. The correlation

coefficients are positive in the coastal waters adjacent to Pearl River

estuary, region LS, and region VE and negative in region NW. The

relationship between MLD and NPP shows negative correlation,

which is most significant in central and northern parts of the SCS.

The relationship between SST and NPP is significantly positive in

northern and western nearshore areas of the SCS, but negative in

region LS. In region LS, southwestern and southeastern areas of the

SCS, and western nearshore parts, SLA is correlated negatively with

NPP, while a small area with positive correlation exists in the central

part of the SCS. Zeu is defined as 1% of the PAR depth, which has

almost the opposite effect on NPP to that of CHL. Wind speed and its

mixing effect are described by the 10-m zonal wind speed (U10). In

regions NC, VE, and NW, U10 is correlated positively with NPP,

indicating increase in NPP when the southwesterly wind strengthens.

Conversely, in region LS, U10 is correlated negatively with NPP,

indicating increase in NPP when the northeasterly wind strengthens.

Positive correlation between WSC and NPP is found at various

nearshore locations in the SCS, corresponding to the location of

upwelling occurrence. In order to describe the main influences of

NPP in each region, we ranked them by the averaged correlation

coefficient and took the top three: SST, PAR, and U10 in region NC;

U10, SST, and CHL in region LS; U10, WSC, and MLD in region VE;

SST, U10, and MLD in region NW; PAR, MLD, and SLA in region CB.

Interannual variations of seasonal patterns
of NPP in different regions

Section 3.2 revealed the regional seasonality of NPP in the SCS;

however, concerns over whether this division strategy has stability
Frontiers in Marine Science 08
and whether there will be specific years that do not satisfy this division

need further study. Figure 6 reveals the interannual differences in

NPP seasonal clustering, where the years have similar seasonal cycle

shapes and the separation of each partition is also relatively stable

interannually. On average, the similarity index values for the regions

ranged from 0.92 to 0.97. Some relatively obvious outliers are evident

in 2016 and 2020. In 2016 (2020), NPP exhibits relatively strong

intraregional seasonal variability in each of regions, with similarity

index values of 0.90 (0.91), 0.92 (0.88), 0.89 (0.88), 0.94 (0.93), and

0.97 (0.95) in regions NC, LS, VE, NW, and CB, respectively. All

regions except NC exhibit the lowest similarity index values in 2020,

indicating that the seasonal variations in this year are significantly

different from the climatic average. In these years, NPP is considered

to be influenced by the local and remote forcing of large-scale climatic

modes such as the El Niño–Southern Oscillation (ENSO)/Indian

Ocean Dipole (IOD) (Kong et al., 2019; Kuo and Tseng, 2020).

Discussion

Factors influencing regional differences in
NPP seasonality

Except for the region LS, the spatial distribution of NPP

seasonality differs from both the surface CHL (Yu et al., 2019) and

surface carbon-to-CHL ratio (Xu et al., 2020) at least in waters deeper

than 200 m in the SCS. This study suggests that there are two main

reasons for this discordance: on the one hand, unlike NPP, surface

CHL and surface carbon-to-CHL ratio do not contain vertical

information, while there are still some errors in these two

parameters obtained by satellite remote sensing. On the other hand,

light conditions and nutrient availability are equally decisive factors

for NPP. Therefore, the aim of this section is to discuss the direct and
A B D

E F G H

C

FIGURE 5

Correlation coefficients between monthly climatological NPP and (A) PAR, (B) CHL, (C) MLD, (D) SST, (E) SLA, (F) Zeu, (G) 10-m zonal wind speed (U10),
and (H) WSC. Locations with nonsignificant correlations are plotted in white.
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indirect influence of environmental parameters and dynamical

processes on light conditions and nutrient supply.

In region NC, two areas of wind-driven summer upwelling are

enhanced remarkably to the east of Guangdong and Qiongdong (Jing

et al., 2009), while the peak of the Pearl River discharge occurs in

July–August (Zhang et al., 2012; Xie et al., 2020). Together, they

deliver nutrient-rich water to this region and PAR at this time is also
Frontiers in Marine Science 09
higher than in winter, in accordance with the summer peak of NPP.

The seasonal cycle of NPP in the VE region is the same as in the NC

region, resulting in a higher NPP in summer than in winter. In

addition to the upwelling driven by the alongshore wind stress

(Wyrtki, 1961), nutrients transported by the Mekong River were

also found to have a crucial impact on the summer peak of NPP (Zeng

et al., 2022).
TABLE 3 Regional means of correlation coefficients with standard deviation shown in Figure 5.

Region NC LS VE NW CB

PAR 0.87 (0.08) -0.04 (0.36) -0.06 (0.22) 0.60 (0.35) 0.70 (0.24)

CHL -0.26 (0.51) 0.61 (0.20) 0.52 (0.22) -0.50 (0.41) -0.21 (0.37)

MLD -0.43 (0.39) 0.29 (0.34) -0.74 (0.23) -0.68 (0.35) -0.57 (0.22)

SST 0.96 (0.03) -0.64 (0.20) 0.70 (0.08) 0.87 (0.12) 0.18 (0.38)

SLA -0.32 (0.20) -0.29 (0.57) -0.64 (0.10) -0.26 (0.48) -0.53 (0.47)

Zeu 0.50 (0.27) -0.58 (0.20) -0.31 (0.30) 0.51 (0.37) 0.28 (0.36)

U10 0.84 (0.10) -0.68 (0.19) 0.91 (0.06) 0.79 (0.29) -0.00 (0.43)

WSC 0.45 (0.40) 0.40 (0.47) 0.75 (0.26) 0.12 (0.59) -0.14 (0.36)
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C

FIGURE 6

Quartile diagrams of similarity index between the seasonal variation of NPP for each year (2003–2020) and monthly climatology mean in typical regions:
(A) NC, (B) LS, (C) VE, (D) NW and (E) CB. The rectangles, black lines, and black dots indicate the interquartile range, average, and median, respectively.
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The local dynamical processes are more complex in region LS.

During winter and spring, a zone of weak wind stress is formed in the

direction downwind (west) of Luzon owing to the barrier effect of

island against the northeasterly winds, resulting in generation of

positive wind stress vorticity (He et al., 2015). Strong winter upwelling

during November–January is observed in this region (Hu and Wang,

2016), driven by a combination of local wind and basin-scale

circulation. Similarly, the seasonal cycle of NPP in the southern

SCS is synchronized with that resulting from the influence of

winter coastal upwelling off northwestern Borneo (Yan et al., 2015).

Large amounts of nutrients are transported upward by the winter

upwelling, when more phytoplankton could participate in

photosynthetic reactions (surface CHL ~ 1.58 mg m-3, above annual

average of 42.0%), positively correlating with NPP. Meanwhile, both

low SST (~ 27.9°C, below 5.7% of annual average) and strong

northeasterly winds in winter further enhance nutrient mixing. In

summary, NPP in region LS is higher in winter than in summer.

No obvious dynamical processes are evident in region NW except

for southwesterly wind mixing, and the seasonality of light and

nutrients is the decisive factor affecting the seasonality of NPP.

Recent results (Du et al., 2021) show that nutrients exhibit a

gradational distribution from the northwest to the southeast in

summer, with a maximum value (up to 7.0 mmol L-1 at 0 to 50 m)

in the northwestern SCS and a nutricline depth of approximately

20 m. Meanwhile, higher SST and a shallower MLD in summer

contribute to reduction in CHL concentration in this region. In region

NW, owing to oligotrophic environmental conditions, the effect of

lower CHL concentration on NPP is not directly positively correlated,

but it is affected by light penetration (Lee et al., 2005). Compared with

the annual mean data, the lower CHL (~ 0.34 mg m-3, below 7.4%) in

summer leads to a higher diffuse attenuation coefficient (~ 0.05 m-1,

above 7.9%), which in turn produces stronger light penetration and

deeper Zeu (~ 87.3 m). Overall, the greatest PAR in summer is

accompanied by the strongest light penetration, which allows more

energy to penetrate into the nutrient layer, leading to a level of NPP

that is consistently higher than in other seasons.

The obvious difference between region CB and region NW is the

vertical distribution of nutrients (Du et al., 2021). In region CB, the

annual nutricline depth is >60 m, where available light is almost

dissipated. Therefore, in this region, NPP variation is minimal and the

effects of all the environmental factors are almost insignificant. A weak

signal of high NPP is evident in spring, corresponding to the highest PAR

values. There is an area of low PAR correlation near the border between

the northwest of region CB and region NW (the central SCS basin). An

area of high nutrient concentration at approximately 50 m in autumn

could help explain this discordant seasonality between NPP and PAR.

Moreover, negative correlation between SLA and NPP occurs in an area

extending southwestward from the Luzon Chanel to region CB, which

might be related to mesoscale processes (Chelton et al., 2011).

SABPM is based on the radiative transfer theory of ocean optics,

where the NPP is first calculated in layers and then integrated (Tao

et al., 2017a; Tao et al., 2017b). This approach is strictly a physical

process rather than an empirical relationship, except for the

acquisition of light quantum yields (Lee Z et al., 2015). The CHL

obtained by satellite remote sensing may cause two-step errors in the

VGPM, but the uncertainty of input ocean color data in the aph-based
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model mainly originate from the remote-sensing reflectance (Lee Z et

al., 2015). Based on the model comparison and the above analysis, we

believe that the SABPM results are distinctive and provide a new

perspective for NPP studies in the SCS. However, the seasonality of

SABPM in the region NW and CB are still not validated by a large

amount of field data and uncertainties exist. It is important to

emphasize that the NPP seasonality is weak due to the lack of

significant dynamics driving the CB region and may be subject to

uncertainty caused by the model’s own inputs.

In summary, the seasonality of NPP is influenced by a variety of

environmental dynamics, but it fundamentally depends on the

combined regulation of light conditions, nutrient concentration, and

CHL concentration. In the future, as studies of the physiological state

and vertical structures of phytoplankton deepens, estimation of NPP

with more accurate size-fractionated models were expected to improve

this understanding (Sathyendranath et al., 2020; Liu et al., 2022; Deng

et al., 2022).
Factors influencing interannual variations in
NPP seasonality

Interannual variation of NPP in the SCS is jointly regulated by

ENSO and IOD (Kong et al., 2019). ENSO events produce

thermocline/nutricline anomalies that alter the nutrient supply to

the true euphotic zone, which in turn affect primary productivity (Hu

et al., 2021; Li et al., 2022). Moreover, the fractions of micro- and

nano-phytoplankton in the SCS tend to rise during La Nina events (Li

et al., 2017). Section 3.4 revealed those years in which the seasonal

patterns exhibited large differences from the climatological monthly

mean. We suppose that such interannual variations is also related to

the large-scale climate events and we discuss the following two

special cases.

A maximum positive (negative) seasonal variability occurred

along the coastal area of NC and VE in October 2016 (2020),

resulting in the highest NPP of 1323.1 mgC m-2 d-1 (lowest NPP of

885.7 mgCm-2 d-1). In October 2016 (2020), NPP above 32.2% (below

11.5%) of the climatology in these regions (Figures 7A, B, E)

corresponded to a value of SLA that was 25.2% below (91.9%

above) that of climatology (Figures 7C, D, F). In October 2016, the

enhanced westerly winds (Figure 7G) in these regions (0.83 m s-1

higher than normal) favored the occurrence of upwelling,

characterized by strong offshore Ekman transport and positive SLA

(4 cm). Conversely, in October 2020, the westerly winds (Figure 7G)

dropped by 1.38 m s-1, depressing the upwelling along the shelf. As a

result, the offshore Ekman transport was weakened and the SLA

decreased (14 cm). During these extreme events, anomalous NPP was

associated with the negative SLA, indicating the important role of

ENSO-related or IOD-related upwelling (Shu et al., 2018; Kong

et al., 2019).

Also, this study found that 2020 was a special year with the most

exceptional seasonal variation in NPP in the SCS. After a series of

analyses similar to the process described above, NPP in each region

was found to be low in March–April and November. We speculate

that this is related to the low MLD in the SCS from 2019 onwards
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(super IOD from 2019 onwards may be the cause of the MLD and

SLA anomalies, Utari et al., 2022), as the shallower MLDmay have led

to a compression of the nutrient-rich season. However, further

analysis and more data are needed in the future to support

this speculation.
Conclusion

Among the various NPP models available, including VGPM,

CbPM, CAFE, and SABPM, the latter was found most reliable in

describing the seasonal variation of NPP in the SCS. On the basis of a

MODIS data product estimated using SABPM, this study investigated

the seasonality of NPP by considering the spatial differences and the

interannual variations. The main findings include the following. 1)

NPP estimated with SABPM exhibits more spatial features of

seasonality in the SCS. NPP is higher in summer than in winter in

regions NC and VE, whereas it is higher in winter than in summer in

region LS. The magnitude of NPP variability is relatively small in

regions NW and CB, with relatively high values throughout summer

in region NW and a weak signal of high NPP in spring in region CB.

2) Because nutrient limitation is one of the determinants of NPP in

the SCS, high values in coastal areas are well matched with the

occurrence of upwelling or river-derived input, while the main

difference between regions NW and CB might be related to the

depth of the nutricline. Other environmental factors including PAR,

SST, MLD, and wind speed could also regulate the seasonal patterns

in NPP by affecting the available light and nutrient distribution within

the euphotic zone in different regions. 3) The interannual departures

of NPP seasonality from climatology were observed with the largest
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anomalous changes coincides with the 2015–2016 ENSO and 2020

IOD events. Specific case analyses indicate that anomalous latitudinal

wind speeds and SLA during these climate events could promote or

hinder nutrient availability and then cause NPP anomalies. As

SABPM shows potential for identifying annual signals, further

applications for interannual NPP variability analysis are expected in

the future.
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FIGURE 7

Spatial distribution of NPP in the SCS in October from (A) 2016 subtracted from the climatology and (B) 2020 subtracted from the climatology. Spatial
distribution of SLA in the SCS in October from (C) 2016 subtracted from the climatology and (D) 2020 subtracted from the climatology. Vectors in
(C) and (D) are the anomalous winds in 2016 and 2020. Seasonality of mean (E) NPP, (F) SLA and (G) U10 in the SCS for the climatology (green), 2016
(red), 2020 (blue) and other years (gray).
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Messié, M., and Chavez, F. P. (2015). Seasonal regulation of primary production in
eastern boundary upwelling systems. Prog. Oceanogr. 134, 1–18. doi: 10.1016/
j.pocean.2014.10.011

Montes-Hugo, M., Doney, S. C., Ducklow, H. W., Fraser, W., Martinson, D.,
Stammerjohn, S. E., et al. (2009). Recent changes in phytoplankton communities
associated with rapid regional climate change along the western Antarctic peninsula.
Science 323 (5920), 1470–1473.

Nielsen, E. S. (1952). The use of radio-active carbon (C14) for measuring organic
production in the sea. ICES J. Mar. Sci. 18 (2), 117–140. doi: 10.1093/icesjms/18.2.117

Ning, X. R., Chai, F., Xue, H., Cai, Y., Liu, C., Shi, J., et al. (2004). Physical-biological
oceanographic coupling influencing phytoplankton and primary production in the south
China Sea. J. Geophys. Res.: Oceans 109 (C10).

Oziel, L., Massicotte, P., Randelhoff, A., Ferland, J., Vladoiu, A., Lacour, L., et al. (2019).
Environmental factors influencing the seasonal dynamics of spring algal blooms in and
beneath sea ice in western Baffin bay. Elementa: Sci. Anthropocene 7.

Pan, X., Wong, G. T. F., Tai, J. H., and Ho, T. Y. (2015). Climatology of physical
hydrographic and biological characteristics of the northern south China Sea shelf-sea
(NoSoCS) and adjacent waters: Observations from satellite remote sensing. Deep Sea Res.
Part II: Topic. Stud. Oceanogr. 117, 10–22. doi: 10.1016/j.dsr2.2015.02.022

Platt, T., and Sathyendranath, S. (1988). Oceanic primary production: estimation by
remote sensing at local and regional scales. Science 241 (4873), 1613–1620.

Reid, P. C., Fischer, A. C., Lewis-Brown, E., Meredith, M. P., Sparrow, M., Andersson,
A. J., et al. (2009). Impacts of the oceans on climate change. Adv. Mar. Biol. 56, 1–150. doi:
10.1016/S0065-2881(09)56001-4

Robinson, C. M., Cherukuru, N., Hardman-Mountford, N. J., Everett, J. D.,
McLaughlin, M. J., Davies, K. P., et al. (2017). Phytoplankton absorption predicts
patterns in primary productivity in Australian coastal shelf waters. Estuar. Coast. Shelf
Sci. 192, 1–16. doi: 10.1016/j.ecss.2017.04.012

Saba, V. S., Friedrichs, M. A. M., Antoine, D., Armstrong, R. A., Asanuma, I.,
Behrenfeld, M. J., et al. (2011). An evaluation of ocean color model estimates of marine
primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8 (2),
489–503. doi: 10.5194/bg-8-489-2011

Sarmiento, J. L., and Gruber, N. (2002). Sinks for anthropogenic carbon. Phys. Today
55 (8), 30–36. doi: 10.1063/1.1510279
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