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Agriculture, Forestry and Fisheries, Iwate Prefectural Government, Morioka, Japan, 4Faculty of Fisheries,
Kagoshima University, Kagoshima, Japan, 5United Graduate School of Agricultural Sciences, Kagoshima
University, Kagoshima, Japan
Aquaculture of marine macroalgae (i.e. seaweeds) such as the kelpUndaria pinnatifida

is expected to contribute to future food and biomass production. Althoughmacroalgal

survival, biomass, and morphology are strongly affected by the density of individual

plants in natural environments, little is known about the cultivation density (individuals

per 1 m of cultivation rope) of macroalgae required to optimize aquaculture

production, commercial profit (sales – labor expenses for processing), and quality as

food. The present study examined the effect of increasing the cultivation density of U.

pinnatifida from 10 to 200 individuals m-1 on survival rate, biomass production, profit,

andmorphological features related to quality as food. Survival rate was almost 100% in

all treatments, indicating self-thinning did not occur. Biomass production increased

with increasing density, suggesting that the maximum density possible is in excess of

200 individuals m-1. However, although profit rose with increasing density from 10 to

120 individuals m-1, it did not rise further if density was further increased. Moreover,

somemorphological features related to quality increased or decreasedwith increasing

density. On balance, these results suggest that 80-120 individualsm-1 is an appropriate

density range to optimize production of this species in terms of both profit and quality

as food. However, only 10-30 individuals m-1 was the density best suited to enhance

production of the sporophyll form, which is known to be a nutritious food both for

humans and sea urchins.

KEYWORDS

climate change, invasive species, intraspecific competition, shade avoidance response,
Undaria pinnatifida, commercial profit, aquaculture
Introduction

Large brown macroalgae, including kelp (Order Laminariales) and fucoids (Order

Fucales), are dominant taxa in subpolar and temperate reef ecosystems and are known to be

highly productive (Steneck et al., 2002). Moreover, increasing evidence suggests their

potential for use in carbon sequestration and therefore contribution to mitigating climate
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change (Fillbee-Dexter and Wernberg, 2020; Watanabe et al., 2020;

Sato et al., 2022). However, regional kelp forests dominated by

perennial species are declining under ocean warming in temperate

areas (Smale, 2020). In contrast, aquaculture production of annual

or biennial kelp species, such as Undaria and Saccharina spp., has

been increasing around the world, especially in China, Korea, and

Japan, to meet the demand for these products as food for humans,

feed for farmed animals, and as sources of various chemicals (Hurd

et al., 2014; Chung et al., 2017). Hence, aquaculture techniques that

enhance the biomass production of kelp species and improve

their quality as food, also enhance carbon sequestration and

commercial profit, thereby providing benefits both ecologically

and economically.

Population density (number of individuals per m2) is an

important factor affecting survival rate, individual size, and

population biomass of marine macroalgae (Schiel and Choat, 1980;

Causens and Hutchings, 1983; Reed, 1990; Creed et al., 1998; Arenas

et al., 2002; Monro and Poore, 2005; Scrosati, 2005), as well as

terrestrial plants (Schmitt and Wulff, 1993; Smith and Whitelam,

1997; Enquist et al., 1998; Deng et al., 2012). An increase in

population density generally causes decreases in survival rate (i.e.,

self-thinning), individual size, and population biomass, as a result of

intraspecific competition for resources such as light and nutrients

(Enquist et al., 1998; Scrosati, 2005; Deng et al., 2012), although the

biomass of kelp and fucoid brown algae can increase with increasing

density of individuals within the range which occurs in nature (Schiel

and Choat, 1980; Causens and Hutchings, 1983). These organisms

have strategies to avoid self-thinning, such as physiological

integration in clonal plants and low light acclimation under

crowded conditions at high densities (e.g., Scrosati and DeWreede,

1997). Moreover, raised density results in an increase in stem or stipe

length, which is described as a shade avoidance response (Reed, 1990;

Creed et al., 1998; Arenas et al., 2002; Monro and Poore, 2005).

Additionally, in terrestrial plants, shading spaces are minimized by

expansion of leaves (Givnish, 1988; Smith, 1982) and regulation of

petiole length (Takenaka, 1994; Pearcy and Yang, 1998). In

aquaculture, too, an increase in the cultivation density of

macroalgae (number of individuals per m of cultivation rope)

results in a decrease in the size of individuals (Gao et al., 2014).

Whereas light is limited in crowded populations of upright plants and

macroalgae in natural environments, farmed macroalgae, which grow

downwards or sideways from cultivation ropes, may be able to acquire

adequate light to survive even at high densities. However, to date,

there have been no reports concerning the effect of cultivation density

on survival rate, production, profit, and quality as food in

macroalgal species.

The annual kelp Undaria pinnatifida (Harvey) Suringar is native

to Japan, China, and Korea, and has been cultivated as a major

industrial species in these countries since the 1950s (Yamanaka and

Akiyama, 1993). This species is now a cosmopolitan invasive species

outside its original native Pacific East Asian distribution, introduced

to other countries in ship ballast or with aquacultural seedlings (e.g.

oyster; Crassostrea gigas), as documented in New Zealand (Hay and

Luckens, 1987), Australia (Sanderson, 1990), Argentina (Casas and

Piriz, 1996; Dellatorre et al., 2014), France (Castric-Fey et al., 1999),

Italy (Cecere et al., 2000), and the USA (Silva et al., 2002). Although

there were some attempts to remove this invasive species from newly
Frontiers in Marine Science 02
settled coasts (Stuart, 2004; Wotton et al., 2004), several cultivation

studies have been performed in France (Perez et al., 1984) and Spain

(Pérez-Cirera et al., 1997; Peteiro and Freire, 2011; Peteiro and Freire,

2012; Peteiro et al., 2016).

Undaria pinnatifida has a life history of alternating

heteromorphic generations, with a macroscopic (edible) sporophyte

and a microscopic gametophyte (Peteiro et al., 2016). The sporophyte

has a holdfast (analogous to a rhizoid), a stipe (analogous to a stem),

edible blades (analogous to leaves), and an edible reproductive organ,

the sporophyll (Peteiro et al., 2016). In Japan, sporophytes are

generally cultivated on ropes at the sea surface from autumn to

spring at a density of 50–300 individuals m-1 (Figure 1A, Saito, 1962;

Hori, 1981; Ishikawa, 1991; Dan et al., 2015), and are harvested, boiled

(Figures 1B,C), salted (Figures 1D, E), and processed (Figure 1F)

before shipment (Yamanaka and Akiyama, 1993; Hasegawa and

Suzuki, 2005). Increasing the cultivation density of this species is

expected to enhance biomass production and sales, but it also may

raise the labor expenses for processing (and thereby decrease the

profit) because the manual effort required is the same, whatever the

size of each individual kelp.

The quality of this species as food is often evaluated from

morphological features of the edible blades. For example, thicker blades

are known to have better texture (Kusaka, 2004). Flat blades without

wrinkles are considered more valuable (Ohno et al., 1999; Nanba et al.,

2011). Individuals with blade lengths of >75, 55-75, and <55 cm are

classified into 1st, 2nd, and short grades, respectively, by the Fishermen

Cooperative Association of Iwate Prefecture, which is one of the three

most productive regions for this species, the other two being Miyagi and

Tokushima Prefectures. Additionally, sporophylls of this species are

known to be healthy and nutritious food both for human consumption

(Mak et al., 2013) and as feed for sea urchins (Takagi et al, 2020 , Takagi

et al, 2020). However, the cultivation density optimizing biomass

production, profit, edible blade quality, and sporophyll production

have not been assessed.

In the present study, increasing the cultivation density of U.

pinnatifida from 10 to 200 individuals m-1 was assessed for effects

on biomass production, commercial profit, morphological features

related to perceived quality as food, and sporophyll production.

Sporophytes were cultivated from November and in January

cultivation density was prepared at 10, 30, 50, 80, 100, 120, 200

individuals m-1. Sporophytes were harvested from these different

density treatments on five occasions during the harvesting season

between February and April to measure individual weight, blade

width, blade thickness, total length, stipe length, sporophyll weight,

biomass production, and profit. The relationships between

cultivation density and these variables were evaluated using

statistical modeling.
Materials and methods

Cultivation of Undaria pinnatifida and the
study site

The Undaria pinnatifida seedlings utilized in the cultivation test

were obtained using ordinary industrial methods from Iwate

Prefecture, in the Sanriku region, Japan (Figure 2A). The protocol
frontiersin.org
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of the producing method was described as follows and in

supplemental figure (Figures SA–G). In June 2008, mature

sporophytes with sporophylls were collected from Touni Bay

(Figure 2B). The sporophylls were derived from sporophytes and

were shade-dried overnight. They were soaked for 30 minutes in a 100

L container filled with sterilized seawater to release the zoospores, and

then seedling substrate of a palm-thread were soaked in the container

to settle spores (Figures SA–C). After soaking the substrate in the

seawater released zoospores for about 30 minutes, the substrate with

spores was immediately transferred to the Undaria cultivation site in

the sea at Touni Bay, where it was placed in a net bag and suspended

from a horizontal cultivation rope to a depth of about 10 m (Figures

SD,E). During the incubation period under the seas, zoospores on the

substrate were germinated to immature gametophytes.

In early September, the substrate with immature and mature

gametophytes were withdrawn from the bag and spread out

horizontally at the same depth in the sea (Figure SF). The substrate

was gradually raised by 2 m every 2 weeks until late October, which

adjusts the light intensity, encouraging the gametophytes growth,

male and female gametophytes maturation, fertilization and

production of embryos, and the initiation of sporophytes growth to

obtain seedlings (Figure SG). The seedlings were transferred to Okirai

Bay (Figure 2B), on October 31st, 2008 and suspended at 1 m depth

for 10 days to acclimate to cultivation conditions, seawater

temperature, wave motion, and nutrient concentration.

On November 10th, the seedlings were wound around a mother

rope (100 m length, 20 mm diameter) and cultivation began. The

number offloats attached to the mother rope was adjusted, depending

on the Undaria sporophyte growth, to maintain the cultivation depth

at 1 m. Previous studies have reported that morphological
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development of the Undaria sporophyte is complete when the total

length exceeds 70 cm (Taniguchi et al., 1981; Ishikawa, 1994).

Therefore, in the present study, surplus sporophytes were excised

randomly from 300 sporophytes m-1 or more on January 10th, 2009,

when the total length had reached about 50 cm, producing sporophyte

growth densities of 10, 30, 50, 80, 100, 120, or 200 individuals m-1 of

mother rope (treatments designated as D10, D30, D50, D80, D100,

D120, and D200, respectively). The remaining sporophytes were

almost evenly spaced with respect to the length of the mother rope.

The D10 treatment had a cultivation rope length of 30 m, but in the

other treatments it was 10 m. Small sporophytes that germinated on

the cultivation rope after excision were all removed at bimonthly

intervals so that the original cultivation density of each group

was maintained.

In November 2008, a temperature logger (Stowaway TidbiT,

Onset Computer Corporation, Boume, MA, USA) was deployed

near the sea surface (0.5 m deep) at the study site. Daily mean

water temperatures were calculated from measurements made at 1 h

intervals. The daily data were averaged for the beginning, middle, and

end of each month. These were compared to the representative

seawater temperature changes recorded at the Undaria cultivation

farm at Kirikiri Bay (Figure 2B) in Iwate Prefecture. The daily

seawater temperature data from 1979 to 2008 was averaged for the

beginning, middle, and end of each month. Surface seawater samples

were collected in 500 mL plastic bottles twice a month at the

cultivation site. The samples were filtered through 0.8 µm cellulose

acetate filters (DISMIC, 25CS080AS, Advantec, Japan) into 15 mL

acid-washed plastic vials and frozen until analysis. The NO3−N

concentrations in the water samples were measured with an auto-

analyzer (QuAAtro 2-HR, BLTEC, Japan).
A

B

D E
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FIGURE 1

Cultivation and processing of Undaria pinnatifida (‘wakame’) on the Sanriku coast of Japan. (A), Sporophytes adjusted to approximately 100 individuals
per 1 m of cultivation rope in January. (B, C), Boiling of post-harvest wakame using large vats. (D, E), Salting process: wakame is tossed with salt using a
mixer (D) and removed from the soaking tank the following day (E). (F), separating blades and stipes by manual labour. Images from Ryori Bay (A), Utatsu
Bay (B-E), and Okirai Bay (F) on the Sanriku coast.
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Measurements of morphology, biomass
production, and commercial profit

All sporophytes in the D10 and D30–D200 treatments were

collected from the 3 m and 1 m cultivation ropes, respectively, on

five occasions between February and April 2009 (i.e. during the

harvest season). On the collecting vessel, the sporophytes from each

density treatment were placed in a separate net bag and in a plastic

backet with seawater and transferred to the laboratory. The number of

harvested individuals, individual weight, total length, and stipe length

of all specimens were measured. The survival rate was calculated as a

ratio of the final number of individuals harvested each season to the

initial ones counted in January in each treatment.

The blade width, blade thickness, and sporophyll weight of the

longest 30 individuals in each density treatment were measured because

it was difficult to measure these variables of all individuals harvested

from all treatments while the samples were fresh. Blade thickness was

measured at the widest point of the intercalary region adjacent to the

central stipe. The blade was folded to achieve four times its true

thickness (Ishikawa, 1991; Sato et al., 2016) and the total thickness

was measured with an electronic caliper (NTD13, Mitsutoyo

Cooperation, Kawasaki, Kanagawa, Japan). Blade thickness was then

calculated by dividing the thickness of the folded portion by four. The

number of individuals with wrinkles was also counted.

Biomass production was calculated as the sum of individual

sporophyte weights in each density treatment. Commercial profit

was estimated by subtracting labor expenses from sales, only for the

samples harvested in April 8th and 24th (i.e. the main harvest season).

To estimate the sales value, the total biomass of first-grade

sporophytes (kg/m), with a blade length of more than 75 cm, was

multiplied by 1000 (m rope) to expand to an industrial scale; by 0.23

to convert to the amount of salt-boiled sporophytes; and by 13.64

(USD/kg) to convert to sale value (USD), based on company data at
Frontiers in Marine Science 04
Riken Food. Co. Ltd. To estimate labor expenses, the cultivation

density (individuals m-1) was multiplied by 1000 (m rope) to expand

to industrial scale; by 30 (sec individual-1) to estimate the working

time required for processing (i.e. separating the blades from their

stipes, sec/m; Hasegawa and Suzuki, 2005); by 1/3600 to convert the

time scale to hours; and by 6.51 (USD/h, the minimum wage in Iwate

Prefecture, 2016) to convert to labor expense (USD).
Statistical analyses

Before the analysis, morphological data for 20 individuals were

randomly sampled from each density treatment in order to unify the

data numbers among treatments and to ensure randomness. Because

survival rate, individual weight, sporophyll weight, blade width, blade

thickness, and biomass production decreased or increased with

increasing density, linear models were fitted to the relationship

between density (as factor) and these variables, using lm function of

the R software (R Development Core Team). These variables and the

density factor were logarithmically transformed in some cases in

order to ensure the assumption of normality and variance

homogeneity of the data, and to improve the goodness of fit of the

model based on Akaike information criterion (AIC). Differences

between a null model and the model of interest were tested using F

test. A relationship between fitted value and residuals of the model

was visually checked using autoplot function in the package ‘ggfortify’.

Since total length and stipe length peaked at a density between 10 and

200 individuals m-1, generalized additive models were fitted to the

relationship between density and these variables using gam function

in the package ‘mgcv’. These variables and the density factor were

logarithmically transformed in some cases and the goodness of fit of

the model was assessed based on AIC. Differences between a linear

model and the model of interest were tested using F test. A
A B

FIGURE 2

(A), Map of eastern Honshu and Hokkaido, Japan, showing the Sanriku coastal region. (B) Okirai Bay, on the coast of and Iwate Prefecture, which is the
main cultivation site for U. pinnatifida in this study. Touni Bay is the seedling production site of this study. Kirikiri Bay is where Iwate Fisheries Technology
Center collected the long-term water temperature data cited in this study.
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relationship between fitted value and response of the model was

visually checked using the function ‘gam.check’ in R. As number of

individuals with wrinkles was count data ranging between 0 and 30, a

generalized linear model was fitted to the relationship between

density and the variable using glm function, with binomial

distributions and logit link functions. Because profit increased with

increasing density but saturated at a certain density, like a

photosynthesis-light curve, a non-linear model based on a

Michaelis-Menten plot was fitted to the relationship between

density and profit using nls function in R by non-parametric

bootstrapping (n=500 bootstrap simulations). A relationship

between fitted value and residuals of the model was visually

checked using the function ‘nlsResiduals’ in the package ‘nlstools’.
Results

The seawater temperature at Okirai Bay decreased from 15.6°C in

November, 2008 to 6.1°C in early March, 2009, but then increased to

9.6°C by April, 2009 at the end of the cultivation period. These

seawater temperature changes were similar to those in the Kirikiri

data (1979–2008; Iwate Prefecture Fisheries Technology Center in-

house data for 1979-2008, personal communication to YS and TF),

but the values for Okirai were generally higher by 0.3–1.5°C. The

NO3-N concentration at Okirai increased from 2.36 µM in November

to a maximum of 7.34 µM at the end of February, but then decreased

to a minimum value of 0.86 µM in April when cultivation ended.

Images of representative sporophytes cultivated at each density

are shown in Figure 3. The shape differed depending on the

cultivation density: sporophytes produced at lower density tended
Frontiers in Marine Science 05
to have a shorter stipe length, larger sporophylls, and wrinkled blades;

while those at higher density had a longer stipe length, smaller

sporophylls, and fewer wrinkles on their blades.

Survival rate (Figure 4A) was almost 100% in all treatments and

was not significantly affected by density (P = 0.657) and season

(P = 0.962). No significant difference was found between a null model

and the linear model (P = 0.7382), indicating that the survival rate was

a constant value.

Individual weight (Figure 4B) was significantly affected by density

(P < 0.001) and season (P < 0.001) but there was no significant

interaction between these two factors (P = 0.541). An increased

density from 10 to 200 individual/m resulted in significant decrease

in this variable: 148.9 ± 24.5 g to 37.5 ± 4.7 g on February 9th; 235.6 ±

30.3 g to 57.7 ± 5.7 g on February 24th; 361.4 ± 38.8 g to 86.3 ± 7.1 g on

March 9th; 904.5 ± 121.7 g to 204.4 ± 21.0 g on April 8th; and 1475.2 ±

257.8 g to 323.7 ± 43.4 g on April 24th.

Total length and stipe length peaked at densities between 10 and

200 individuals m-1: the density resulting in maximum lengths

varying according to season (based on the general additive models

used; Figures 5A, B). Total length was highest at 36 individuals m-1

and lowest at 89 individuals m-1 between February and March but

highest at 89 individuals m-1 and lowest at 36 individuals m-1 in April.

Similarly, stipe length was highest at 52 individuals m-1 and lowest at

84 individuals m-1 between February and March but highest at 84

individuals m-1 and lowest at 52 individuals m-1 in April.

Blade width and thickness (Figures 6A, B) were significantly affected

by density (P < 0.001) and season (P < 0.001). There was no significant

interaction between these two factors (P = 0.078 for blade width, P =

0.318 for blade thickness). The increased density resulted in moderate

decreases in blade width from 64.5 ± 2.4 cm to 55.1 ± 2.7 cm on
A B

D E F G

C

FIGURE 3

Photographs of representative U. pinnatifida sporophytes cultivated at different densities of individuals per 1 m cultivation rope: (A), D10; (B), D30; (C),
D50; (D), D80; (E), D100; (F), D120; (G), D200. Scale bar 100 cm.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1085054
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sato et al. 10.3389/fmars.2023.1085054
February 9th, from 72.3 ± 2.1 cm to 62.1 ± 2.4 cm on February 24th,

from 83.0 ± 2.0 cm to 69.4 ± 2.2 cm on March 9th, from 110.0 ± 3.3 cm

to 88.2 ± 3.5 cm on April 8th, and from 131.4 ± 5.1 cm to 100.2 ± 5.3 cm

on April 24th. Similarly, it caused moderate decreases in blade thickness

from 0.26 ± 0.01 mm to 0.24 ± 0.01 mm on February 9th, from 0.29 ±

0.01 mm to 0.26 ± 0.01 mm on February 24th, from 0.31 ± 0.01 mm to

0.28 ± 0.01 mm on March 9th, from 0.35 ± 0.01 mm to 0.32 ± 0.01 mm

on April 8th, and from 0.38 ± 0.01 mm to 0.34 ± 0.01 mm on April 24th.

Number of individuals with wrinkles (Figure 7A) was significantly

affected by density (P < 0.001) and season (P < 0.001). There was a

significant interaction between these two factors (P = 0.046). The

increased density resulted in gradual decreases in this variable from

0.969 ± 0.336 to 0.001 ± 0.001 on February 9th, from 1.646 ± 0.451 to

0.001 ± <0.001 on February 24th, from 2.700 ± 0.657 to 0.001 ±

<0.001 on March 9th, from 7.797 ± 2.726 to <0.001 ± <0.001 on April

8th, and from 13.726 ± 6.007 to <0.001 ± <0.001 on April 24th.

Sporophyll weight (Figure 7B) was significantly affected by density

(P < 0.001) and season (P < 0.001). There was a significant interaction
Frontiers in Marine Science 06
between these two factors (P < 0.001), indicating that the effect of

density varied among seasons. The increased density resulted in slight

decreases in this variable from 2.2 ± 0.5 g to 1.0 ± 0.2 g on February 9th,

from 5.8 ± 1.1 g to 1.4 ± 0.2 g on February 24th, and from 14.1 ± 2.2 g to

1.9 ± 0.2 g on March 9th, while it caused significant decreases in the

value from 96.7 ± 19.1 g to 3.7 ± 0.6 g on April 8th and from 269.7 ±

68.5 g to 5.2 ± 1.0 g on April 24th.

Biomass production (Figure 8) was significantly affected by density

(P < 0.001) and season (P < 0.001). There was no significant interaction

between these two factors (P = 0.561). The increased density resulted in

gradual increases in this variable from 2.48 ± 0.62 kg to 12.58 ± 4.12 kg

on February 9th, from 3.85 ± 0.77 kg to 19.29 ± 5.04 kg on February

24th, from 5.82 ± 0.97 kg to 28.76 ± 6.33 kg onMarch 9th, from 14.09 ±

2.93 kg to 67.65 ± 18.44 kg on April 8th, and from 22.58 ± 6.02 kg to

106.75 ± 36.91 kg on April 24th.

Profit (Figure 9), estimated from the pooled data for April 8th and

24th, rose from US$ 41,662 ± 12,669 to 132,066 ± 9,399 with

increasing density from 10 to 152 individuals m-1. However, the

change in profit was relatively small between 80 and 200 individuals

m-1. The values at densities of 80, 100, 120, and 200 individuals m-1

were: US$ 111,132 ± 8,494; 122,157 ± 9,106; 128,696 ± 9,050; and

127,934 ± 15,888, respectively.
Discussion

Previous studies have shown that increases in the population

density of plants and macroalgae result in decreased survival rates,

which is described as self-thinning (Enquist et al., 1998; Scrosati,

2005; Deng et al., 2012). However, in the present study, survival rates

of the macroalga U. pinnatifida cultivated at different densities

between 10 and 200 individuals per m were almost 100%. Because

the farmed algae grow downwards or sideways from cultivation ropes,

they may be able to acquire adequate light to survive even at high

densities. Moreover, the strategies to avoid self-thinning is reported to

include the physiological integration of clonal plants and low light

acclimation at high densities (Scrosati and DeWreede, 1997). U.

pinnatifida is not a clonal plant, but its compensation irradiance is

very low (2.1-5.9 mmol photons m-2 s-1), especially at winter

temperature of 8 °C (2.1 mmol photons m-2 s-1, Sato et al., 2021),

which occurs during cultivation at the present study site. Moreover,

the strain of U. pinnatifida used in the present study has a relatively

high tolerance to nutrient-poor conditions, based on the comparison

of nutrient uptake kinetics among six strains derived from six

different localities in Japan (Sato et al., 2016). These traits may also

contribute to avoiding self-thinning under resource limitations at the

higher densities in the present study.

In general, an increase in population density causes a decrease in

individual size of plants and macroalgae, as a result of intraspecific

competition for resources such as light and nutrients (Enquist et al.,

1998; Scrosati, 2005; Deng et al., 2012); and an increase in stipe or

plant length, which is known as the shade-avoidance response (Reed,

1990; Creed et al., 1998; Arenas et al., 2002; Monro and Poore, 2005;

Scrosati, 2005). Gao et al. (2014) reported that increasing the

cultivation density from 5-10 to 16-20 individuals m-1 resulted in

decreases in the size of blades, stipes, and sporophylls of the

macroalga U. pinnatifida. The present study showed that increasing
A

B

FIGURE 5

Relationships (box plots) between cultivation density and (A) total
length and (B) stipe length of U. pinnatifida, harvested on five different
dates. Solid lines and grey zones indicate mean and confidence
intervals, respectively, estimated using generalized additive models.
A

B

FIGURE 4

Relationships between cultivation density and (A) survival rate and
(B) individual weight (box plots) of U. pinnatifida, harvested on five
different dates. Solid lines and grey zones indicate mean and
confidence intervals, respectively, estimated using linear models.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1085054
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sato et al. 10.3389/fmars.2023.1085054
cultivation density at an industrial scale from 10 to 200 individuals m-

1 results in decreases in individual weight, blade width, blade

thickness, and sporophyll weight. However, in contrast to previous

studies, the present study found that total length and stipe length ofU.

pinnatifida peaked at the cultivation density between 10 and 200

individuals m-1. These variables peaked at ca. 50 individuals m-1

(where individual size was 71.0 ± 5.7 g) on February 9th and, on April

24th, at ca. 80 individuals m-1 (where individual size was 514.7 ±

45.2 g). These results indicate that the shade avoidance response

occurred at these densities, while wider space for growth at the lower

densities and small individual size at higher densities suppressed

intraspecific competition and shade avoidance response.

In terrestrial plant species, population biomass is known to decrease

with increasing population density across the scale of 0.01 to 1000

individuals m-2 (Enquist et al., 1998). In contrast, Schiel and Choat

(1980) showed that the population biomass of the kelp Ecklonia radiata

and the fucoid brown alga Sargassum sinclairii increased with increasing
Frontiers in Marine Science 07
population density across the range that occurs in nature (ca. 40

individuals m-2 in Ecklonia and ca. 200 individuals m-2 in S.

sinclairii). Similarly, the present study showed that biomass

production of the kelp U. pinnatifida increased with increasing

cultivation density from 10 to 200 individuals m-1. However, the

commercial profit from U. pinnatifida aquaculture rose with

increasing cultivation density from 10 to ca. 80-120 individuals m-1

but did not rise any further in response to further increases in density

because of the raised labor expense required to process a larger number

of smaller macroalgae thalli at increasing density.

It was also found in the present study that increasing the cultivation

density from 10 to 200 individuals m-1 produced an increase in the

number of individual blades without wrinkles, which is a highly valued

feature (Ohno et al., 1999; Nanba et al., 2011). However, increasing

density also led to a decrease in blade thickness, which results in weak

product texture (Kusaka, 2004). On balance, these results suggest that

80-120 individuals m-1 is the most appropriate cultivation density of U.

pinnatifida to optimize both profit and quality as food.

In practice, U. pinnatifida should be cultivated at a density of 10-30

individuals m-1 in order to enhance sporophyll production, because the

sporophyte weight of this species decreased drastically with increasing

density from 10 to 200 individuals m-1 in the present study. The fresh
A

B

FIGURE 6

Relationships (box plots) between cultivation density and (A) blade
width and (B) blade thickness of U. pinnatifida, harvested on five
different dates. Solid lines and grey zones indicate mean and
confidence intervals, respectively, estimated using linear models.
A

B

FIGURE 7

Relationships between cultivation density and (A) number of
individuals with wrinkles and (B) sporophyll weight (box plots) of U.
pinnatifida, harvested on five different dates. Solid lines and grey zones
indicate mean and confidence intervals, respectively, estimated using
generalized linear model.
FIGURE 8

Relationships between cultivation density and biomass production of
U. pinnatifida, harvested on five different dates. Solid lines and grey
zones indicate mean and confidence intervals, respectively, estimated
using a linear model.
FIGURE 9

Relationships between cultivation density of U. pinnatifida and profit
estimated from data obtained during the main harvest season (on April
8th and 24th). Solid lines and grey zones indicate mean and
confidence intervals, respectively, estimated using a non-linear model
with bootstrap.
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sporophyll of this cosmopolitan species has been recognized recently as

an excellent feed for sea urchins (Takagi et al, 2020; Takagi et al, 2020),

which are known to induce phase shifts from highly-productive kelp

forests to barren grounds by their destructive grazing because of

increased population size and/or lowered food availability in subpolar

and temperate reef ecosystems (Steneck et al., 2002; Filbee-Dexter and

Scheibling, 2014). The adverse effects of grazing sea urchins have been

ameliorated by their removal from barren areas in order to enable kelp

forests to recover (Eger et al., 2022), and by raising these sea urchins in

aquaculture. Aquaculture of sea urchins fed on U. pinnatifida

sporophylls, produced by low-density cultivation, may contribute to

both restoration of kelp forests and raised income for fishermen (Takagi

et al, 2020; Takagi et al, 2020).

In Japan, U. pinnatifida sporophytes have been commonly

cultivated from autumn (between October and December) to spring

(April) (Peteiro et al., 2016). However, recent ocean warming may

shorten the cultivation period by a month or more, because an increase

in autumn temperature is predicted to decrease survival and growth

rates of the juvenile sporophytes of this species (Gao et al., 2013) and

increase the risk of herbivory by small isopods (Endo et al., 2021). In

this context, the present study showed that the biomass production of

U. pinnatifida was higher on April 24th than on April 8th but the profit

was almost same for these two dates of harvesting, suggesting that a

reduction of 16 days in the cultivation period did not significantly affect

profit. This finding provides new insight to maintaining the

aquaculture industry of this species in a warming world.

In addition, while aquaculture of marine macroalgae is expected

to contribute to carbon sequestration, it is pointed out that there are

significant uncertainties related to carbon flow by farmed and wild

seaweeds (Hurd et al., 2022; Troell et al., 2022). Therefore, before

getting into discussions like industrial use of carbon sequestration by

seaweeds (e.g., carbon emission trading), it is first necessary to

accumulate knowledge on how to improve the productivity of

seaweed farming and optimize the benefit of seaweed resources.

The present study showed that U. pinnatifida farming could

provide various benefits by regulation of the cultivation density; for

feed (10-30 individuals m-1), for edible food with higher profit and

quality (80-120 individuals m-1), for biomass (more than 200

individuals m-1). Therefore, for future development, it is necessary

to clarify the cultivation density of U. pinnatifida that matches the

environment and industrial needs in each region. Furthermore, it is

also necessary to estimate the concise density that maximizes biomass

production and carbon sequestration as general knowledge.

Conclusion

Morphology and biomass of Undaria pinnatifida were affected by

the density of individual plants on the rope in aquaculture conditions,

and the variables have the potential to impact the industrial

application as follows:
Fron
1. The maximum biomass production was estimated at more

than 200 individuals m-1 since increased value with

increasing density.

2. The optimum condition of both the commercial profit and the

quality as the food was estimated at 80–120 individuals m-1.
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3. The best density to obtain the sporophylls, which are available

for nutritious food for humans and sea urchins, was at 10–30

individuals m-1.

The cultivation density adjustment can be reliably controlled

artificially; hence it would be a valuable aquaculture

technology to make the seaweed aquaculture industry more

effective, which is expected to play various roles, including

from edible food to carbon sequestration in the future.
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SUPPLEMENTARY FIGURE

Photographs of seedling production. (A), Sporophylls were soaked for 30
minutes in a 100L container filled with sterilized seawater to release the

zoospores. (B,C), Seedling substrate of a palm-thread were soaked in the
container to settle zoospores for about 30 minutes. (D,E), The substrate with

zoospores was placed in a net bag and suspended from a horizontal cultivation

rope to a depth of about 10m in June. (F), In early September, the substrate with
zoospores and germinated gametophytes was withdrawn from the bag, settles

at a horizontal cultivation rope, and spread out horizontally at the same depth.
(G), The substrate with juvenile sporophytes to use cultivate as seedlings. The

substrate was gradually risen by 2 m every 2 weeks until late October, which
adjusts the light intensity, encouraging the gametophytes growth, male and

female gametophytesmaturation, fertilizing and appearing embryo, and starting

growth of sporophytes.
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