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The latest technological advancements in the development and production of

sensors have led to their increased usage in marine science, thus expanding data

volume and rates within the field. The extensive data collection efforts to monitor

and maintain the health of marine environments supports the efforts in data

driven learning, which can help policy makers in making effective decisions.

Machine learning techniques show a lot of promise for improving the quality and

scope of marine research by detecting implicit patterns and hidden trends,

especially in big datasets that are difficult to analyze with traditional methods.

Machine learning is extensively used on marine science data collected in various

regions, but it has not been applied in a significant way to data generated in the

Gulf of Mexico (GOM). Machine learning methods using ocean science data are

showing encouraging results and thus are drawing interest from data science

researchers and marine scientists to further the research. The purpose of this

paper is to review the existing approaches in studying GOM data, the state of the

art in machine learning techniques as applied to the GOM, and propose solutions

to GOM data problems. We review several issues faced by marine environments

in GOM in addition to climate change and its effects. We also present machine

learning techniques and methods used elsewhere to address similar problems

and propose applications to problems in the GOM. We find that Harmful Algal

Blooms (HABs), hypoxia, and sea-level rises have not received as much attention

as other climate change problems and within the machine learning literature, the

impacts on estuaries and coastal systems, as well as oyster mortality (also major

problems for the GOM) have been understudied –we identify those as important

areas for improvement. We anticipate this manuscript will act as a baseline for

data science researchers and marine scientists to solve problems in the GOM

collaboratively and/or independently.
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1 Introduction
The Gulf of Mexico was formed by plate tectonics around 300

million years ago. Shallow continental shelf waters cover nearly half

of the basin. The Gulf of Mexico’s most significant biological and

geological provinces are the coastal zone, continental shelf,

continental slope, and abyssal plain. Tidal marshes, sandy

beaches, mangrove-covered areas, and several bays, estuaries, and

lagoons make up the coastal zone. Buried salt domes occur at

varying depths on the shelf and on the slope that dips downward to

the abyssal plain that are connected with economically valuable oil

and natural gas resources. The Gulf of Mexico receives water from

more than 150 rivers and runoff from 31 of the 50 states, making it a

focus point for water quality research and improvement. The GOM

has many natural resources and is home to many species of fish.

Fishing is an important commercial activity, with red snapper,

amberjack, tilefish, swordfish, and various grouper, as well as

shrimp and crabs, being the most common catches. Many of the

bays and sounds are also used to harvest oysters on a massive scale.

Shipping, petrochemical processing and storage, military use, paper

manufacturing, and tourism are all other key sectors along the Gulf

coast (Worrall and Snelson, 1989).

The Gulf of Mexico has mixed semi-diurnal and diurnal tidal

cycles due to the unusual form of its basin. The warm water

temperature in the Gulf of Mexico can support major Atlantic

hurricanes that bring widespread human death and destruction, as

Hurricane Katrina did in 2005. The GOM approximately comprises

of 30% continental shelf which is shallower than 200 m and the

shallow waters in the northern GOM are warm temperate.

Hurricanes do intensify over shallow waters despite the low

tropical heat potential Potter et al. (2019). Although the water

temperature drops when a hurricane passes through, it quickly

recovers and becomes capable of sustaining another tropical

cyclone (NASAEarthObservatory, 2005). Due to massive fresh

water discharge from the Mississippi river and other rivers into

the Gulf, the content of nitrogen and phosphates inflow into the

Gulf has increased (Tian et al., 2020), and as a consequence led to

hypoxic zones in the Gulf (Diaz and Rosenberg, 2008). In addition,

the GOM is one of the World’s major offshore petroleum-

producing zones, accounting for one-sixth of all US output. The

GOM has suffered from catastrophic oil spills like Deepwater

Horizon and Ixotic I oil spills, and accounts for thousands of

minor oil spills every year. The oil spills, agricultural run-offs,

red-tide algae blooms, and hypoxic zones are some environmental

threats in addition to the climate change impacting the GOM.

Oceans being the largest ecosystem on Earth are heavily

impacted by climate change. On a local to global scale, oceans

significantly affect the weather, and changes in climate can adversely

impact many of the ocean’s qualities. The primary indicators of

climate change on oceans are the sea surface temperatures, sea-level

rise, coastal flooding, and ocean acidity. The GOM has shown these

primary indicators and hence is vulnerable to climate change

(Epstein, 2005). Rising surface ocean temperatures, freshwater

and nutrient imports, and CO2 levels in the atmosphere will

further aggravate these problems. Increase in ocean acidity and
Frontiers in Marine Science 02
freshwater run-off also exacerbate the hypoxic zones and algae

blooms. The Deepwater Horizon oil spill was a catastrophicevent

which led to expanding our knowledge of the GOM and restoration

efforts. However, there is still much to be learned and we should not

wait for any further disasters to happen.

Today, we are flooded with data originating from several

sources in a wide range of application areas. It is now relevant to

say that we are in an era of “big data (Data, 2008)”. With the

abundance of data, the decisions that were previously relying on

mere speculation or simulated models can now be based on facts.

Big data is revolutionizing scientific research and several sectors are

benefiting by using historic and real-time data for better analysis.

However, oceanography has yet to properly embrace the era of big

data. Ocean data comes from models, satellites, buoys, research

vessels, sensor networks, unmanned maritime vehicles, and others,

but the majority of it comprises of remote sensing and model data.

Most of the ocean data is hosted by regional and global ocean

observation platforms like OceanCube (Stanic et al., 2020), the U.S.

Integrated Ocean Observing System Program (IOOS), The Gulf of

Mexico Coastal Ocean Observing System (GCOOS), etc. Several

researchers, modelers, and industries use ocean observation

platforms to get the data and make better use of it. However, our

capacity for data analysis has not kept pace, and the rising gap is

becoming a major bottleneck for making efficient use of the data

available, as well as a roadblock to expanding data collecting

even further.

Machine learning which itself is a subfield of artificial

intelligence, is broadly used in various fields, such as

epidemiology (Appice et al., 2020), physics (Carleo et al., 2019),

ecology (Huang et al., 2018), data science (Huang et al., 2016),

agriculture (Liakos et al., 2018), and language processing (Iliev et al.,

2022), but is newly adapted by marine science. With the amplitude

of ocean science data available, machine learning has great potential

to answer several problems and expand marine science research.

Machine learning techniques are used in addressing climate change,

climate analysis, ecological environments, natural disasters, and

global patterns Rasouli et al. (2012); Kim et al. (2014); Deo and

Sahin (2015); Mosavi et al. (2018); Xiao et al. (2019); Mansfield et al.

(2020); Rosso et al. (2020). However, climate change being a global

problem and oceans covering more than 70% of land on Earth,

machine learning is yet to be fully adapted by marine science to

address any local and global problems using available ocean data.

While machine learning is a hot topic engaged by numerous

researchers from different fields it is not being utilized to its

fullest with data available for the GOM region to address any

climate change and regional problems.

This paper aims to provide an overview of critical problems in

the GOM that need attention of machine learning experts to utilize

the available ocean science data originating in the GOM.We discuss

innovative engineering efforts and ocean observing platforms in the

GOM that provide historical and real time data from several sources

to marine researchers and data scientists to use the data to better

understand the GOM.We highlight topics including but not limited

to climate change and its impacts, CO2 emissions, ocean

acidification, algal blooms, oyster reefs, severe weather events,

ports/coastal resilience, etc.
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2 Climate change and other concerns
for the Gulf of Mexico
The Gulf of Mexico is a vast ecological system with

environmental and economic salience. It supports diverse

ecosystems that provide significant benefits like wildlife habitat,

erosion prevention, stable shorelines, hurricane buffer, fish

nurseries, improved water quality, and tourism. The major sectors

of the GOM’s economy directly and indirectly rely on the coastal

ecosystems. However, global warming and climate change are

having a drastic impact on these ecosystems posing a serious

threat and hence needs more attention from diverse researchers

to understand, analyze, and mitigate any future impacts.

Many of the fundamental elements that regulate algal

development, such as water temperature, nutrients, light, and

grazers, are controlled by climate, and hence can be predicted to

affect changes in the species composition, trophic structure, and

function of aquatic ecosystems. Global temperatures are rising, a

fact now widely acknowledged to be linked to human activity (Lee,

2007). Over the next century, average sea surface temperatures are

anticipated to rise by up to 5°C, resulting in ice melt and altered

precipitation in many maritime locations (Scavia et al., 2002; Levina

et al., 2007; Doney, 2010; Hoegh-Guldberg and Bruno, 2010; Doney

et al., 2012). The regional minimal and maximum temperatures

have already increased by 0.8°C and 0.4°C since 1950 (Levina et al.,

2007), with estimated warming rate of the GOM sea surface

temperature of 0.19°C per decade (Wang et al., 2023). In the

future climate, coupled model simulations show weakening of the

Loop Current in the GOM during the 21st century (Liu et al., 2012).

The study by 0 Misra et al. (2019) suggests that in the projected

climate, the warming of the GOM will be enhanced as a result of the

increase in heat flux from the atmosphere to the ocean and the

increase in anomalous advective heat flux convergence due to the

slowing of the heat transport across the Loop Current. Seasonal

warming of ocean surfaces intensified by global warming and rising

carbon dioxide levels in the atmosphere likely increase the water

stratification and worldwide deoxygenation, aggravating red tides,

hypoxia, aquatic species migration, and illnesses (Keeling et al.,

2010; Cheng et al., 2017). At the same time, anthropogenic CO2

intake is predicted to lower ocean pH and carbonate saturation

levels (Sarmiento et al., 1998; Feely et al., 2009). This confluence of

stressors could have serious consequences for ocean ecosystems and

fisheries, particularly in coastal areas where eutrophication has

already resulted in hypoxic and acidic conditions (Boyd and

Doney, 2003; Bopp et al., 2013; Melzner et al., 2013; Altieri and

Gedan, 2015; Breitburg et al., 2015; Flynn et al., 2015; Levin et al.,

2015; Laurent et al., 2018).

Climate change is poised to exacerbate impacts of coastal

eutrophication in the northern Gulf of Mexico (Laurent et al.,

2018). Coastal eutrophication is often accompanied by hypoxia

(Howarth, 1995; Nixon et al., 1995; Vitousek et al., 1997; Caraco

and Cole, 1999; Bennett et al., 2001). The increase in frequency of

hypoxia and anoxia formations in shallow, coastal and estuarine

areas is highly likely a result of human activities (Diaz et al., 1995).

One of the key stresses affecting estuarine and coastal ecosystems is
Frontiers in Marine Science 03
nutrient over-enrichment from anthropogenic sources (Bricker,

1999; Howarth et al., 2000; Cloern, 2001). In many parts of the

world, there is growing worry that an abundance of nutrients from

various sources is having widespread biological repercussions on

shallow coastal waters. Reduced light penetration, increased

abundance of nuisance macroalgae, loss of aquatic habitat like

seagrass or macroalgal beds, noxious and toxic algal blooms,

hypoxia and anoxia, disruptions in trophic interactions and food

webs, and impacts on living resources are just a few of the

consequences (Vitousek et al., 1997; Schramm, 1999; Anderson

et al., 2002; Rabalais, 2002; Rabalais et al., 2002). Excessive nitrogen

inputs from rivers drive algae development and subsequent

decomposition in bottom waters in many coastal locations. In

combination with stratified waters, the ensuing oxygen

consumption and dissolved inorganic carbon generation

frequently result in hypoxic ([O2] < 62.5 mmol O2 m3) and

acidified situations (Rabouille et al., 2008; Cai et al., 2011).

Hypoxic conditions caused by eutrophication are a common and

growing problem that will most likely be aggravated by global

warming (Diaz and Rosenberg, 2008; Rabalais et al., 2010).

Anthropogenic nutrient overabundance, combined with rising

temperatures and a growing frequency of extreme hydrologic events

(storms and droughts), is hastening eutrophication and

encouraging the spread of harmful algal blooms (HABs) across

the freshwater-to-marine continuum (Paerl et al., 2018). Water

resources, fisheries, recreational usage, tourism, and property values

are all threatened by cyanobacterial blooms. Climate change makes

predicting changes in HABs frequency, intensity, and proliferation

much more difficult (Paerl and Huisman, 2009; Havens and Paerl,

2015; Wells et al., 2015; Paerl et al., 2018). Changes in ocean and

lake circulation, stratification, and upwelling, wind speed, and

cyclone frequency and intensity, as well as global warming,

altered precipitation patterns, and sea level rise, all play

prominent roles in modulating HABs dynamics (Paerl and Paul,

2012). When combined with excessive fertilizer loading, hydrologic

changes and climate change allow HABs to grow in size and remain

longer (Paerl et al., 2016; Paerl, 2017). (Hu et al., 2011) suspects the

rise of chl-a content after oil spills and provided results stating that

the northeastern Gulf of Mexico became greener after the

Deepwater Horizon oil spill. The GOM experiencing 1000s of oil

spills every year may also be contributing to growth of chl-a. Within

days after Hurricane Isabel in 2003, a large phytoplankton bloom

developed in Chesapeake Bay, linked to increased nutrient loads

(Miller et al., 2005). Algal blooms and extensive hypoxia/anoxia

occurred shortly after several hurricanes affected the lagoon of the

Neuse River Estuary in the 1990s (Burkholder and Glibert, 2006;

Burkholder et al., 2006). A bloom of the picocyanobacterium

Synechococcus in eastern Florida Bay, lasting more than 18

months, followed an input of nutrients from the highfreshwater

discharge caused by Hurricanes Katrina, Rita, and Wilma in 2005

(Glibert et al., 2009).

Human actions have altered the atmosphere and ocean

environment in ways that affect storms and extreme climate

occurrences. Changes in extremes, which are outside the bounds

of prior weather, are the most common way that climate change is

perceived. Trenberth (2012) and Solomon et al. (2007) state severe
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weather events are also a result of climate change. Intensity of

hurricanes and storm occurrences increased in the past decade.

Increasing hurricanes and storm frequency can increase the loss of

wetlands and coastal erosion. According to published assessments

of tide gauge data, the average worldwide sea-level rise rate over the

20th century was 1.7 mm/yr (Bindoff et al., 2007). Climate scientists

project a 0.25 to 0.5 m global sea level rise by 2100, which is more

than double the pace of rise during the 20th century under some

carbon emission scenarios (Meehl et al., 2007). Sea-level rise

projections and impacts in coming years, global and regional sea-

level rise scenarios, and the climate change impacts are very well

documented in the reports (Reidmiller et al., 2017; Fox-Kemper

et al., 2021; Sweet et al., 2022) generated by the National

Oceanic and Atmospheric Administration (NOAA) and the

Intergovernmental Panel on Climate Change. Assessments of

coastal vulnerability indexes can reveal the relative risk of coastal

change as a result of future sea-level rise. Barrier islands are

dynamic habitats that experience both gradual and quick change

as a result of waves, tides, and currents, as well as rapid change as a

result of catastrophic storms. Due to increased sea-level rise and

changes in the frequency and intensity of storm occurrences, these

islands are likely to alter dramatically during the next century.

Because of the dynamic nature of barrier islands and the

importance of these areas, natural resource managers must

understand how habitats on barrier islands are changing or may

change over time in order to identify when and where management

activities are necessary (Enwright et al., 2021). The findings of

nearly three decades of marine geological research in the northwest

Gulf of Mexico have been compiled in an effort to better understand

the factors (e.g., sea-level rise, sediment supply, subsidence, and

antecedent topography) that influenced coastal evolution during the

last eustatic cycle (120 ka to present). The geological record shows

that the northwestern Gulf of Mexico’s low-gradient coastal

ecosystems will continue to be adversely impacted by continuous

sea-level rise, decreasing sediment supply, and human interference

(Anderson et al., 2014).

The aquatic and wild life are also suffering the impacts of

climate change. The GOM has around 22 percent of the world’s

nonarctic tidal marsh, accounting for about 62 percent of North

America’s tidal marsh habitat. These tidal marshes, which cover

around 9,880 square kilometers of Gulf coast (Greenberg and

Maldonado, 2006), feature both riverine and marine-dominated

habitats with varied tidal effect, freshwater and sediment input, and

plant species diversity. The biology and ecology of tidal marsh birds

along the GOM are little understood, especially in comparison to

Atlantic coast populations (Rush et al., 2009, 2010a; 2010b), and we

have limited information on current population status and trends

for most marsh birds (Conway, 2011). Despite the potential fragility

of tidal marshes along the northern Gulf Coast, little is known about

the life histories, behavior, distribution, and ecological affinities of

the many marsh bird species. Predicting the future of tidal habitats

and indigenous marsh bird species in the context of global climate

change is difficult given current information gaps. Regional

environmental changes that affect marine ecosystems will be

brought on by a warming climate. These changes will include

variations in ocean circulations, rising ocean acidity, changes in
Frontiers in Marine Science 04
riverine discharge, variations in precipitation and evaporation rates,

and loss of coastal habitat due to flooding (Scavia et al., 2002;

Roessig et al., 2004). Because of physiological and behavioral

reactions to environmental gradients, fish and fisheries are likely

to be impacted by changes to species ranges, loss or degradation of

nearshore fish habitat, modification of larval dispersal pathways,

and loss of nearshore fish habitat (Scavia et al., 2002; Perry et al.,

2005; Hare et al., 2010). The Atlantic bluefin tuna (BFT) is a highly

migratory species that feeds in frigid North Atlantic waters before

migrating to tropical areas to reproduce. Projected future warmer

climate will cause the upper ocean temperatures in the western

Atlantic spawning habitat in GOM to rise dramatically, which may

have an impact on the temporal and spatial range of BFT spawning

activities. An ensemble of 20 climate models simulations were

studied in (Muhling et al., 2011) to predict the mean temperature

variations within GOM, in combination with larval BFT data to

understand the effects of warming on the suitability of GOM as a

spawning ground. The effects of climate, fishing, and other

anthropogenic disturbances on three species (Atlantic Goliath

grouper, red grouper, and tilefish) that are economically

important to GOM and called habitat engineers are presented in

(Coleman and Koenig, 2010). The intricate vertical (benthic-pelagic

coupling) and horizontal (inshore to offshore) links between

habitats, species, and marine strata are shown by the habitat

engineers at various geographical and temporal scales. Oceanic

currents connect them physically, and ontogenetic migrations and

trophic interactions connect them biologically (Coleman and

Koenig, 2010). Rising temperatures and decreasing freeze

frequency/intensity may characterize climate change at temperate

latitudes, potentially shifting the latitudinal limits of vegetation and

animals (Bakkenes et al., 2002; Walther et al., 2002; Loarie et al.,

2008). (Comeaux et al., 2012) examined the implications of

mangrove expansion into coastal wetlands. Heavy rain and

snowmelt in the Midwest prompted catastrophic flooding of the

Mississippi River in the spring and summer of 2019, necessitating

two openings of the Bonnet Carre Spillway (BCS) to relieve pressure

on New Orleans’ levees. That allowed a massive amount ´ of

freshwater to flow into Lake Pontchartrain and then into the

Mississippi Sound. If the frequency or duration of BCS openings

increases as a result of increased precipitation, oyster populations in

Mississippi may become unsustainable for harvesting unless future

freshwater intrusions are factored into management plans (Gledhill

et al., 2020). Although oyster reefs around the world are essential for

maintaining healthy ecosystems, most of them have disappeared

over the past 200 years (Beck et al., 2011; Grabowski et al., 2012).

About 69 percent of the US commercial wild eastern oyster harvest

is produced by the GOM, which is home to the greatest remaining

wild oyster fisheries (Beck et al., 2011; NOAA, 2022).

Changing coastlines and rising sea levels may necessitate the

relocation of highways, rail lines, or airport runways in the long run,

with significant implications for port facilities and coastal

infrastructure. Increased hurricanes and other extreme weather

events could have ramifications for emergency evacuation

planning, facility maintenance, and safety management for

surface transportation, maritime vessels, and aviation. Rain and

snowfall patterns, as well as periodic flooding patterns, may have an
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impact on safety and maintenance. Storms, sea level rise,

sedimentation and erosion rates and mechanisms, and changes in

critical variables such as prevailing winds, waves, currents, and

precipitation rates must all be addressed in order to gain a better

understanding of the possible effects on ports and maritime

shipping. Enhancing climate models to replicate storm events,

determining the impact of severe events on ports and shipping,

and simulating local sea level rise near ports and shipping channels

are all research priorities. A summary of the literature cited in this

section is presented in Figure 1 showing the proportion of the

literature under specific categories.
3 Ocean of data

Data about America’s seas and coasts comes from a variety of

sources across several sectors and is used for a wide range of

purposes. They are utilized to manage ocean ecosystems and

fisheries, promote the blue economy’s sustainable and equitable

growth, conserve endangered marine species, and assist the global

community in mitigating and preparing for climate change. Ocean

science data, climate, and hydrodynamic models aid in the

protection of endangered species by identifying acceptable areas

for offshore wind energy production facilities, improving storm

prediction models, understanding marine species migration/habitat

change, warming waters, and planning for sea level rise and other

climate change impacts on coastal populations to name a few. With

newtechnology, new uses, and renewed national pledges to

understanding and managing our oceans, ocean science data

collection and access is undergoing a revolution. We have an

unrivaled ability to gather and evaluate data on our environment

and human usage of marine natural resources, as well as to provide

enormous potential for scientific and decision-making

improvement. The ability of government organizations to

interpret and incorporate ocean data from new sources, including

new technology, into decision-making is currently limited.

Specifically, the data management infrastructure has not kept up

with the virtually exponential increase in data being collected by the
Frontiers in Marine Science 05
public and private sectors. In this section, we discuss the ocean

science data originating from the Gulf of Mexico, where this data is

available, and present some characteristics of ocean science data.
3.1 Ocean data categories

Ocean science data is collected by several entities for various

purposes. Academia, government agencies both state and federal,

and private industries collect most ocean science data to fulfill their

project requirements. Ocean data can be broadly categorized into

five types: physical data, biological data, chemical data, geological

data, and socioeconomic data (Trice et al., 2021).

3.1.1 Physical ocean data
Physical ocean data represents the physical attributes and

dynamic processes of the oceans including ocean currents, coastal

dynamics, internal waves and tides, temperature and salinity

structure, and more. This data is captured by variables such as

sea-surface temperature, sea surface salinity, ocean surface heat flux,

wave conditions, surface and subsurface currents, bathymetry, and

seabed forms. Physical ocean data is important in helping many

industries and government agencies relying on oceans. Sea surface

temperature and wave conditions are extensively used in weather

prediction models. Physical data are also used to study climate

change and also include atmospheric data such as heat and

hydrological fluxes. Physical ocean data are also used by ports,

research and commercial vessels in navigation as they face

challenges due to shifting currents and tides and variable water

levels. Physical ocean data collection is made by in-situ ocean

instruments such as sensors and unmanned marine vehicles, and

some datasets can also be collected remotely by satellites.

3.1.2 Biological ocean data
Biological data is more related to marine organisms, their

ecology, and how marine organisms interact with the ocean

environment. Biological ocean data is used to track and protect

endangered species, maintain and boost ecosystem health,
FIGURE 1

Illustration of the major categories of climate change based studies, represented per the proportion of the literature covered under each category in
this article.
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minimize and mitigate the impacts of human activities on marine

wildlife, and study climate change effects. Fisheries data collected by

commercial and recreational fishing industries, and fishery-

independent data collected by researchers and government-led

organizations are also good sources of biological data. Ocean

sounds and acoustics data, for example, larval recruitment,

biodiversity, marine mammals, and biotic sounds, and

underwater videos and photos for example reef mosaicking, fish

communities, species identification, etc. also contribute to biological

ocean data. Biological data has been collected traditionally by taking

the samples in situ, requiring human input. At sea, sample

collection, data post-processing, and physical sample archiving

are expensive and tedious. New emerging methods like image

recognition and environmental DNA (eDNA) can help in

reducing post-processing times, maintaining data storage, and

reuse of data.

3.1.3 Chemical ocean data
Chemical ocean data represents the properties of ocean water,

processes and cycles of ocean waters, and how ocean water interacts

with the atmosphere and seafloor. These data help in understanding

the ocean’s role in climate change as the oceans are a major carbon

sink. Ocean acidification is also a central topic investigated using

chemical ocean data. Some of the chemical data variables are

inorganic carbon, oxygen, pH, nutrients, ocean color, and

dissolved organic carbon. Chemical ocean data collection is made

using in-situ ocean sensors like pH sensors, pCO2 sensors, etc., and

also through remote sensing satellites.

3.1.4 Geological ocean data
Geological ocean data relates to the seafloor and sub-seafloor

features. These data give insights into plate tectonics, volcanic

processes, and other phenomena. Geological data may overlap

with biological, chemical, and physical data to study ocean

circulation, sedimentation patterns, and biological productivity,

sediment coring, paleoceanography, stratigraphy, estuarine

system, beach erosion, and sea level rise.

3.1.5 Socioeconomic ocean data
Socioeconomic ocean data relates to ocean-based industries like

shipping, fishing, tourism, and offshore renewable energy.

Community impacts on coastal areas, oceans, and industries

related to the oceans can also be considered as socioeconomic

data. Analyzing and understanding the socioeconomic data can

help find the climate change indicators as they affect employment,

exports, demographics, and unemployment rates.
3.2 Ocean data platforms

The aforementioned ocean data types can be collected using

different ocean technologies and methods in-situ and/or by remote

sensing. Insitu data collection in the water uses portable ocean

sensors, sensors on ships, submersibles, and unmanned marine

vehicles. Sensing ocean data remotely without direct contact with
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the medium is made possible using satellites. Satellites are equipped

with sensors that make measurements of the ocean like

temperature, wave height, and watercolor. Sampling is also

another data collection method where samples of specimens like

water, sediments, etc are collected in situ. A mathematical model

can also be developed to generate ocean data in a simulated

environment. Below we discuss several data platforms that collect

different sets of ocean science data. Ocean data platforms

themselves are broad topics and discussing them in-depth is out

of the scope of this paper.

3.2.1 Unmanned marine vehicles
UMVs are essentially vehicles that can be controlled remotely,

either wired or wireless. Operators can control the vehicles either on

a ship or onshore. UMVs can also be preprogrammed to go to a

specific location and time for data collection. UMVs can be

equipped with a variety of sensors for data collection for example

temperature, pressure, dissolved oxygen, but also active and passive

acoustic sensors. UMVs can store data on board which can be

retrieved upon recovering the UMV while some UMVs can also

transmit the data wirelessly via satellites, wifi, and/or cellular

networks. UMVs are powered by batteries and can be recharged

via solar energy or wind energy, while others can be recharged

aboard the ship. Depending on the size, range, and endurance of

UMVs, they can be deployed for longer time periods and collect

data at desired sampling rates.

Gliders are also a type of preprogrammed unmanned marine

vehicle that can essentially go underwater to follow a particular

path. Gliders have sensors installed on them and record the data

throughout their track until they reach the surface. This data can be

used to generate a 3D visualization of the ocean data for example

temperature and salinity, but also many more like acoustic

measurements. Gliders transmit the recorded data to a satellite,

and users can download it. Gliders can take new instructions from

operators via the satellite link and can also change the data

sampling rates.

Remotely operated vehicles (ROVs) are surface and underwater

vehicles that are controlled by operators on the surface. ROVs are

tethered to a main control board that can stay on the ship or can be

connected to any other human-operated vehicle (HOV). ROVs and

HOVs have an onboard cameras and manipulator arms that can be

controlled by the operator. ROVs and HOVs send the real-time data

feed to the mother ship via the tether cable. Thus they provide

telepresence to the scientific community and public from

Exploration Vessel (E/V) Nautilus, NOAA Ship Okeanos

Explorer, and Schmidt Ocean Institute’s (SOI) Research Vessel

(R/V) Falkor during underwater exploration Raineault (2019).

ROVs and HOVs are also used to collect specimen samples, and

sediments, and capture marine organisms.
3.2.2 Buoys and floats
Buoys are platforms that comprise several instruments and

sensors. While static buoys are anchored to the seafloor, some

buoys like Argo buoys are free-floating and provide vertical profile

of the water column by going up and down and drifting with the
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current at a prescribed depth/pressure until they die. Buoys

equipped with mission-specific sensors and instruments can be

deployed at a desired location. Buoys have central control board

that gathers the data from all the sensors on the buoy and transmits

either averaged data or the whole collected data to a satellite.

Nearshore buoys may use a cellular network for data

transmission instead of expensive satellite data transmission rates.

Some buoys can also be equipped with profilers that move through

the water column vertically carrying instruments/sensors which

sample the water column.

3.2.3 Research vessels
Research vessels which are floating labs also act as a data

platforms. Vessels can carry instruments and sensors and collect

the data or take specimen samples along their route. This data can

be processed and analyzed onboard the vessel for any

quick analysis.

3.2.4 Satellites and aircrafts
Satellites with the right instruments and sensors can be used to

sense ocean data remotely and conduct non-invasive observations

of the oceans. Satellites can be used to measure the ocean data

variables like sea surface height, watercolor, sea surface

temperature, etc. Satellites are also used to collect the data from

buoys, and unmanned marine vehicles and transmit that data to

land stations. Aircrafts are also used to collect remote observations

of the ocean to obtain images or other data related to the ocean

landscape or its properties. Earth observing system data and

information system (EOSDIS) and National Environmental

Satellite Data and Information Service (NESDIDS) maintain

environmental data for land, ocean, and atmosphere applications

collected by several satellites, aircraft, and field measurements.

Remote sensing data is also used to study the spatial and

temporal characteristics of earth’s landscape which can be used to

understand the effects of human activities, population growth, and

natural and biological factors (Chen et al 2020a; 2021). Studies like

Chen et al. (2022) have developed methods for extracting coastline

information using remote sensing images to study the evolution of

the coastlines.

3.2.5 Models
A mathematical model can simulate the ocean state and

describe the ocean conditions and trends in a parameterized and

quantitative way generating ocean data like temperature, salinity,

waves, etc. This model data is also extensively used in

understanding the oceans. With the rapid improvements in

computing power, numerical simulations of the ocean have

developed greatly and have become a big source of ocean science

data. Some of the models that generate simulated ocean science data

are Hybrid Coordinate Ocean Model (HYCOM), Amseas (Former

Navy Coastal Ocean Model), Regional Ocean Modeling System

(ROMS), Finite Volume Community Ocean Model (FVCOM),

M.I.T. General Circulation Model (MITgcm), GFDL Modular

Ocean Model (MOM), The Parallel Ocean Program (POP),and

NGOFS2 (Northern Gulf of Mexico Operational Forecast System)
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for ocean circulation simulations, Simulating WAves Nearshore

(SWAN), and WAVEWATCH for wave simulations, ecosystem

models (ECOSIM-ECOPATH) to understand dynamics of natural

ecosystems, biophysical models such as Daigle et al. (2016) to study

larval dispersal, and biogeochemical models such as Fennel ROMS

to examine physical and biogeochemical mechanisms for the

formation and destruction of seasonal hypoxia on the TX-LA shelf.
3.3 Data sources

Like in any other areas, Gulf of Mexico’s ocean science data is

collected by several ocean instruments – moored surface and

underwater ocean buoys, floating ocean buoys, surface and sub-

surface sensor networks, coastal ocean dynamics applications radar

(CODAR) stations, remote sensing satellites, unmanned maritime

vehicles, research vessels, and numerical ocean models. Regional,

state, and national ocean observing platforms host most of the ocean

science data. The data and the ocean observing platforms are

managed by government, educational, and private organizations.

The ocean observing platforms common goal is to maximize the

full potential of ocean data. NOAA is responsible for one of the

government’s largest data inventories, collecting, organizing, and

releasing data on everything from the deep ocean to the

atmosphere and space. The agency founded in 1807 as the U.S.

Coast and Geodetic Survey, now oversees a complex system of data

on America’s seas, Great Lakes, and coastlines in collaboration with

other federal agencies, regional organizations, business, academic

partners, and data producers and users. In addition, commercial

firms, citizen science, non-governmental organizations, and others

are using new, low-cost technology like drones and cellphones to

contribute to the ever-growing pool of ocean data. For a number of

legal, regulatory, private, or technological reasons, certain data may

not be shared with government agencies or the general public,

restricting its applicability. However, unrestricted ocean science

data is publicly available for independent research purposes. The

unrestricted ocean science data can be accessed via ERDDAP (https://

coastwatch.pfeg.noaa.gov/erddap/index.html) servers and Open-

source Project for a Network Data Access Protocol (OPeNDAP)

depending on what protocols the data sources support. Accessing and

downloading the ocean science data of interest is a tedious task for

data scientists and marine researchers as the data of interest for a

specific region may be collected by several ocean instruments and

organizations but for different purposes. Thus, the similar data from a

specific region but recorded by different or same instruments by

different organizations may be available in the data platforms of

specific regional, state, and federal organizations. Below we present

some of the data sources commonly used to download and/or analyze

GOM-related ocean science data that data scientists and marine

researchers can resort to.
3.3.1 United States geological survey
USGS is one of the significant data contributors providing

especially the water, energy, minerals, and other natural resources

people rely on, natural hazards that can threaten lives and property,
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the health of our ecosystems and environment, and the impacts of

climate and land-use change. USGS is nation’s largest water, earth,

and biological science and civilian mapping agency. In addition to

providing quality scientific data, USGS also provides web tools like

interactive maps, alerts and notifications, data analysis and

visualizations, and data repositories. USGS produces accurate

geologic maps, topographic maps, and 3-D geologic frameworks

that provide critical data for sustaining and improving the quality of

life and economic vitality of the Nation. They also organize,

maintain, and publish the geospatial baseline of the Nation’s

topography, natural landscape, built environment and more.

USGS also has multimedia data like videos, images, audio, before-

after imagery, webcams, and more. The USGS tracks and researches

a wide range of water conditions and resources, including

streamflow, groundwater, river discharge, water quality, and water

usage and availability. USCG operates and maintains 500

laboratories nationwide, 60 science centers, and 5 volcano

observatories. USGC supports research and also supply data to

external users. USGS serve multiple types of users, including

scientists (USGS, other federal agencies, and academic), regulators

and resource managers (federal, state, and local), and

private companies.

3.3.2 National centers for
environmental information

One of the world’s largest archives for atmospheric, coastal,

geophysical, and oceanic research is managed by NCEI. NCEI

houses a large portion of the data that NOAA scientists,

observational systems, and research projects collect. It is in charge

of a huge repository of environmental data that spans many

different time periods, monitoring systems, scientific fields, and

geographical locations. NCEI is holding 44 petabytes of data as of

May 2022 and is expecting the data will grow to 250 petabytes by

2030 (NOAA, 2012). Figure 2 shows the current and forecasted

NCEI data archival volume. NCEI’s data access functionality
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provides free access to NCEI’s archive of global coastal,

oceanographic, geophysical, climate, and historical weather data.

These data include quality controlled hourly, sub-hourly, daily,

monthly, seasonal, and yearly measurements of NOAA’s archived

environmental data. Data are available through direct download or

sub-setting services. Customers can also order most of these data as

certified hard copies for legal use. NCEI provides several data

services to monitor, access, archive, and download multi domain

ocean science data. NCEI generates a comprehensive annual

summary report of the global climate system. This report

summarizes the global and regional climate of the preceding

calendar year with the input from hundreds of authors giving

several directions for further research topics.

3.3.3 National data buoy center
National Data Buoy Center maintains a network of data

collecting ocean buoys and coastal stations. NDBC provides

meteorologic and oceanographic data collected by buoys and

coastal stations. NDBC transmits hourly observations from its

network of buoys and coastal stations to a ground facility

operated by NOAA. This transmitted data is recorded and

processed by the national oceanographic data center. The NDBC

website displays all buoy details it is managing on a map along with

some useful resources to download the observations data. The

NDBC Distributed Oceanographic Data System (DODS) makes

netCDF files available to the science community and general public

via their website. It uses the Open Source Project for a Network

Data Access Protocol software for data providers to share data with

each other and the end users.

3.3.4 Integrated ocean observing systems
IOOS maintains near-real time observations data collected from

11 regional associations spanning the national coasts. It is a

multidisciplinary system that provides data in the forms and at

the speeds that decision makers require in order to accomplish
FIGURE 2

NCEI Archival Volume History and Forecast NCEI (2022).
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several societal goals. IOOS is a cooperative effort of federal and

non-federal entities to provide new data, tools, and forecasts to

improve marine safety, enhance the economy, and protect the U.S

coastal and ocean environment. Several tools and resources to

access and visualize multi-domain ocean science data are

developed and readily available on IOOS web interface. IOOS

also contributes to and shares the resources to global ocean

observing system (GOOS). IOOS manages data assembly centers

for gliders, animal telemetry network, and High Frequency (HF)

Radar network. IOOS created the Coastal and Ocean Modeling

Testbed that allows sharing of numerical ocean models data along

with observations data, and utilizes the software tools for

integration, scientific analysis, comparison, and data archival.
3.3.5 Gulf of Mexico coastal ocean
observing system

GCOOS is at the center of data gathering for the Gulf of

Mexico’s ocean and coastal waters, collecting thousands of data

points from sensors and ensuring that the data is trustworthy,

timely, and correct before being disseminated to the ocean sectors

that rely on it. GCOOS represents the academic, industrial,

government, and non-government sectors, with organizations

streaming data, information, and products on marine and

estuarine systems to the GCOOS online platform, where

thousands of users from ocean modelers to ship captains have

instant access. GCOOS integrates physical, biological,

meteorological, biogeochemical, bathymetric, and other ocean

science data from diverse providers. GCOOS delivers timely and

reliable data, products, and services to IOOS, decision-makers, and

the general public to benefit human communities, the economy,

and natural ecosystems. GCOOS is one of the 11 regional

associations of the U.S. IOOS.
3.3.6 Coastal CUBEnet
The Coastal CUBEnet developed by the University of Southern

Mississippi is a high-resolution, coastal ocean sensors, modelling,

and data sharing network that provides the integrated, multi-

dimensional, open infrastructure needed for collaborative ocean

research products. The CUBEnet’s centralized environmental

intelligence resources are critical for sharing high-resolution data,

model forecasts, and other related research products with end users

and the community. The CUBEnet and its environmental

intelligence tools serve as a platform that offers the opportunity to

bring in expertise, insights, methods, and tools from multiple

disciplines including oceanography, climate science, biology,

natural resource management, computer/data science, public

policy, and economics. The CUBEnet provides data collected by

several ocean instruments like moored buoys, underwater sensor

networks, HF Radar stations, unmanned maritime systems,

satellites along with high resolution hydrodynamic models

integrated for several GOM coastal areas. The web interface of

CUBEnet provides tools and resources for visualization, analysis,

and download the data. The CUBEnet is currently hosting data for

Louisiana, Mississippi, Alabama, and West Florida coastal regions.
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The CUBEnet’s data is passed on to GCOOS for QA and QC, and is

then archived at the Global Telecommunication System.

3.3.7 Earth observing system data and
information system

The EOSDIS is the primary component of NASA’s earth science

data collected from satellites, aircrafts, field measurements, and

other programs. EOSDIS provides an open source web application,

“worldview,” allowing users to browse satellite imagery

interactively. Solar irradiance, oceanic, atmospheric, land surface,

and subsurface data are only a few examples of the Earth

observation data that EOSDIS supports. Worldview uses the

Global Imagery Browse Services (GIBS) to rapidly retrieve its

imagery for an interactive browsing experience. The GIBS system

is a core EOSDIS component which provides a scalable, responsive,

highly available, and community standards based set of imagery

services. The GIBS imagery archive includes over 100 imagery

products representing visualized science parameters.

3.3.8 National environmental satellite, data, and
information service

The NOAA’s mission is to understand and predict changes in

climate, weather, oceans and coasts, to share that knowledge and

information with others, and to conserve and manage coastal and

marine ecosystems and resources as the Nation’s authoritative

environmental intelligence agency. NESDIS supports NOAA’s

mission of Science, Service and Stewardship through our satellite

missions, data centers, data and information products and services

as well as use-inspired science. The United States depends on

NOAA to provide satellite data and imagery for meteorological

forecasts and emergency services to support continuity of

government. NESDIS’ responsibility is to collect and provide the

critical satellite Earth observations and other essential

environmental information needed for disaster preparedness, all

hazards response and recovery and the protection of the Nation’s

critical infrastructure and natural resources. The 24/7 global

coverage provided by NESDIS generates an uninterrupted stream

of information and products. These products and information

enable services used across the country in preparation for events

that impact our climate, weather, oceans, daily lives and national

safety and provide essential information for national, regional and

local planners and officials. Massive amounts of satellite data is

processed to create products, tools, and services that help decision-

makers better inform the public and safeguard our environment.

This data is archived in NCEI and can be accessed through NOAA’s

data search platform, “One Stop.”
3.4 Data issues

The ocean science data is as complex as the oceans are. As data

density and resolutions improve with technological advancements,

the volume of ocean data is expected to expand dramatically,

surpassing 250 petabytes by 2030 (NOAA, 2012). Huge volumes

of data from multiple disciples of ocean science create significant
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challenges in handling and managing the data. The data output

from any sensor instrument collecting ocean science data should

describe the data as well as the file structure. Since different datasets

may use different terms to describe ocean variables, descriptions of

metadata in the output files guarantee correct interpretation of data.

Network Common Data Form (netCDF) is one such data format

that is widely used by several data platforms. Processing raw data

and making ocean data useful for analysis that can guide

management choices, clarify long-term patterns, and solve key

scientific issues takes a significant amount of time and skill. The

requirements vary depending on the kind of data and are frequently

a result of how the data was obtained. The processes required to

handle the data must also be accurately recorded in order for

scientific reproducibility across research utilizing the same data to

be possible. Data processing and analysis will be a severe bottleneck

given the volume of data that is currently available and expected in

the future with the traditional manual methods. Thus, data science

and data driven skills and expertise is needed in the field of ocean

related sciences and collaborations among data scientists and

marine scientists will solve many data related problems.

Despite the significant amounts of ocean data currently

available and expected in the future, because of the vastness of

oceans and dependence of several economic sectors on the ocean,

there are data needs and gaps identified for different ocean data

categories. In addition to acquiring acceptable ocean data, data

management and access systems must be capable of distributing

data to decision makers and other users in ways that are helpful to

them. Planning for data collection should be done in tandem with

planning for data usage, taking into account a variety of purposes

and users, including individuals whose desire to provide data may

be influenced in large part by whether their requirements are

satisfied and their interests are respected. Moreover, the data

collected by some academic and private sector communities, the

data collected by private industries that is withheld due to privacy

and confidentiality purposes, and by scientific groups working on

specific projects with short-term funding is not openly available to

the public. As a result, large amounts of ocean science data is

inaccessible, and thus shows the need for data sharing.
4 Machine learning and its application
in Gulf of Mexico

Machine learning (ML) uses dynamic models to make data-driven

choices, and ML approaches may be used to high-dimensional,

complicated, non-linear, and big-data problems. ML can tackle issues

that are unfeasible or too difficult for traditional methodologies, which

need a large number of people, resources, time, and effort to achieve the

requisite precision. ML not only delivers effective solutions, resilience,

and accuracy, but also efficiency due to its ability to swiftly handle

massive volumes of data. Furthermore, the ML technique works well

even when the data is noisy. ML is adapted by several scientific fields

and has proven to be effective with the fields that generate large

volumes of data. As the ocean science data is real-time, near real-time,

and historical, ML techniques and approaches have been effective in
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addressing the ocean related problems. In this section, we discuss how

ML is being used to solve some of the problems faced by GOM and

other ocean waters.

Wind and wave conditions are critical for many marine

industries and hence the accurate forecasting and prediction of

wind and wave parameters is a valuable resource. With the

knowledge of wind and wave characteristics, shipping routes can

be optimized by avoiding rough seas, aquaculture harvesting can be

improved, testing and performance evaluation of unmanned marine

vehicles can be conducted for navy and military operations. While

traditional physics based models are used in wave prediction (Hsu

and Holland, 2007; Kalourazi et al., 2021), physics based wind and

wave modelling is computationally expensive and thus machine

learning approaches with better accuracy are preferred. The outputs

of thousands of wave model runs is used to create the training

dataset to develop a surrogate model as a data-driven technique to

empirically approximate the response of a physics based model in

(James et al., 2018). Artificial neural network is fed with reanalysis

wind data to extend the observed time series data of significant wave

heights in (Peres et al., 2015). Data recorded by the buoys carrying

inertial sensors is used by a convolutional neural network to predict

wave heights and period in (Liu et al., 2019). Support vector

machines, random forests, and artificial neural networks are used

to forecast hurricane wave height over the GOM utilizing the data

collected from six different buoys at different locations (Mafi and

Amirinia, 2017). While some data driven machine learning

approaches use the real-time and historical observations data

from buoys in forecasting and predictions of wind and wave

characteristics, (Ellenson et al., 2020) presents a hybrid approach

to improve predictions by correcting a physics based model using a

machine learning method.

While satellite remote sensing is an important tool for spatial

and temporal estimation of some of the ocean parameters, in many

models satellite mapping is done for a specific oceanic region often

dominated by a single major oceanic process. Thus, any numerical

or data driven models developed to estimate ocean parameters for a

specific region may have poor applicability in other regions. Sea

surface temperature, pCO2 and pH are critical parameters which

play an important role in understanding climate change and global

warming. Yet, the estimation of these variables mostly based on

satellite remote sensing is difficult due to the complex relationship

between these variables and other environmental variables.

Statistical techniques such as multiple linear regression (MLR)

(Lefevre et al., 2002; Olsen et al., 2004; Jamet et al., 2007),

multiple polynomial regression (MPR) (Stephens et al., 1995; Ono

et al., 2004; Gloege et al., 2022), and principal component regression

(PCR) (Lohrenz and Cai, 2006; Lohrenz et al., 2010) are used in

most research that estimates pCO2, whether based on remote

sensing pictures or observation data sets. Self-organizing maps

(SOMs) and feedforward neural networks (Moussa et al., 2016)

are examples of machine learning algorithms that have done well in

estimating pCO2. Statistical research, on the other hand, still lacks

knowledge on the mechanical mechanisms that explain why coastal

regions act as carbon sinks or sources (Dai et al., 2013). At the same

time, neither physical, chemical, nor biological processes can

explain the projected findings (Chen et al., 2017). Fu et al. (2020)
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combines cubist and semi-mechanistic methods to predict ocean

surface pCO2 using sea surface temperature, sea surface salinity,

chlorophyll, and diffuse attenuation coefficient. The GOM is chosen

as the study area and has obtained a satisfied performance

providing a solid foundation for extending its application to other

areas with similar environmental and geographic conditions. Most

common ML approaches used to study water quality and key

parameters such as pH, temperature, chlorophyll-a (Chl-a),

salinity, dissolved oxygen, are Artificial Neural Networks (ANN),

Support Vector Machines (SVM), Radio Frequency (RF), Decision

Trees (DT), Multilayer Perceptron (MLP), cubist, and Gaussian

processes (GP) (Hassan and Woo, 2021). These ML approaches are

also used to monitor the water quality at regional and global scales.

However, a variety of indicators like turbidity, Chromophoric

Dissolved Organic Matter (CDOM), Chl-a, Dissolved Oxygen

(DO), suspended solids concentrations, harmful algae, e.t.c are

used to assess the water quality of a water body while water

temperature, pH, salinity, and DO are common water quality

indicators. For most of the water quality prediction, forecasting,

and monitoring ML models satellite remote sensing data is a

common source for training datasets (Kim et al., 2014a; Chang

et al., 2017; Shehhi and Kaya, 2020; Gómez et al., 2021; Zhu et al.,

2022). However, real-time, near real-time, and historical sensor

measurements are also used to predict water quality and the

contributing parameters (Lu and Huang, 2009; Xiang and Jiang,

2009; Solanki et al., 2015; Khan and See, 2016; Lorenzo et al., 2019;

Manimegalai et al., 2020).

Data-driven models (Minsker et al., 2006; Coopersmith et al.,

2011; Li et al., 2020; Yu et al., 2020) are also developed to

understand, predict and forecast hypoxic and anoxic waters along

the coastal regions using the dissolved oxygen content data along

with other environmental variables. The GOM being prone to

hypoxic conditions along the coastlines affects the marine

industries, aquacultures, and tourism. The freshwater discharges

are related to hypoxic conditions and thus affect water quality along

the coastline which is a major concern (Alizadeh et al., 2018;

Dzwonkowski et al., 2018). In addition, the GOM is also prone to

harmful algal blooms along the coastal waters resulting in fish kills

and marine wildlife kills (Blondeau-Patissier et al., 2014; Le et al.,

2019; Yñiguez and Ottong, 2020). Predicting the chlorophyll and ˜

dissolved oxygen contents is handled by several machine learning

approaches, developed to investigate algal blooms (Kumar and

Bhandarkar, 2017; Hill et al., 2020; Chen et al., 2020b;

Yerrapothu, 2021; Yu et al., 2021). Computer vision techniques

are also studied in detection and classification of algal blooms

(Samantaray et al., 2018; Pant et al., 2020).

With the extent of observational data available along the GOM,

machine learning is used in predicting the severity of weather events

(Ramachandra, 2019). Data-driving machine learning approach is

used to predict the Loop Current evolution and the Loop Current

ring formation in the Gulf of Mexico (Wang et al., 2019), including

a forecast of the sea surface height of the Loop Current System

(Zeng et al., 2015; Wang et al., 2021), and a forecast of velocity

structures of the Loop Current and its eddies (Huang et al., 2021;

Muhamed Ali et al., 2021; Huang et al., 2022b). All ocean basins are

experiencing sea level rise and warming due to climate change and
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global warming, so predicting and understanding the sea-level rise

is also done using the machine learning approaches (Roshni et al.,

2019; Morovati et al., 2021; Nieves et al., 2021; Tur et al., 2021).

Remote sensing data is quite helpful in detecting the oil spills by

analyzing satellite images manually, however machine learning

models can also help automate the detection and tracking of oil

spills (Estes and Senger, 1971; Kubat et al., 1998; Shamsudeen,

2020). While remote sensing data is used to detect oil spills for a

larger area, oil spill detection in confined areas like ports is also

carried out with the help of aerial vehicles, thermal infrared images

and a trained convolutional neural networks (De Kerf et al., 2020).

To assist faster emergency oil spill responses a novel faster region-

based convolutional neural network model is developed which uses

satellite synthetic aperture radar imagery (Huang et al., 2022a).

Flood warning systems and forecasting techniques play an

important role in mitigating the hazards in flood prone areas and

have a severe economic impact. While the physics based models

have been long used to predict storms, rainfalls and other

hydrologic events (Costabile et al., 2013; Fernández-Pato et al.,

2016), data driven machine learning models show promising results

faster than physics based models in forecasting floods (Xu and Li,

2002; Mekanik et al., 2013; Kim et al., 2016; Mosavi et al., 2017).

Within machine learning, Deep Learning (DL) models with a

focus on ocean data analysis have also been developed in the recent

years (Lou et al., 2021). A number of such DL models focus on

object detection, sound, image or video processing of marine and

ocean objects. Deep Learning models have been used to identify fish

species in underwater drone footage (Meng et al., 2018) and coral

reefs have been classified using such models with image processing

applications (Mary and Dharma, 2017). With the advancement in

underwater drones, ocean data can also take the form of videos and

DL models have been applied for object detection in such videos

when the quality is too low for manual detection (Sun et al., 2018).

Computer vision and other DL models can successfully be used to

detect numerous types of ocean objects, such as seagrass meadows

in a plethora of ocean datasets (Moniruzzaman et al., 2017), some of

the specific application include deep water sound processing to

identify sources of sound pollution or detect specific marine species

(Mishachandar and Vairamuthu, 2021) and to detect and classify

fish call types in the northern Gulf of Mexico (Waddell et al., 2021).

Satellite ocean data, such as what we discussed above, is also

amenable to Deep Learning analysis (Ducournau and Fablet,

2016) including for ocean data forecasting (Choi et al., 2022).

Deep Learning approaches also show significant promise for

climate change modeling of ocean data such as wave energy

forecasting (Bento et al., 2021), as well as sea surface temperature

patterns to identify ocean extremes (Prochaska et al., 2021). They

are also effective tools in ocean data quality control, such as when

used for ocean temperature data with potential gross errors

(Mieruch et al., 2021). To overcome sampling rates and low-

resolution ocean data (Bolton and Zanna, 2019) use Deep

Learning approaches to predict unresolved turbulent processes

and subsurface flow fields. Figure 3 shows the summary of this

section by illustrating the major areas of ML applications in the

GoM with the proportion of the literature divided into specific

categories of interest.
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5 Discussion and conclusions

The reviewed literature identifies several approaches that can be

applied to GOM problems, and Figures 1, 3 depict the breadth of

studies on a wide variety of applicable topics. The figures also

illustrate areas that need further research both within the ML-based

literature and the broader climate change literature. Algal blooms,

HABs/fish kills, and sea-level rises (major problems with the GOM)

have not received as much attention as other climate change

problems. Within the ML-based literature, the effects on estuaries

and coastal systems, and oyster mortality (both being major problem

for the GOM) have been understudied and we identify those as

important areas for improvement. Our overview, combined with the

abundance of data and constantly developing methodologies, should

serve as a template to identify areas of research most in need of

further work. We have attempted to provide that template,

suggestions for possible data sources, as well as methods that can

be used to analyze the available data. As we pointed out, the GOM is

of major interest economically, ecologically, and within public policy

so such future research holds tremendous promise for a broad

impact. We anticipate this paper will help data scientists looking to

delve into ocean science to find a research problem and ocean science

researchers trying to find ways how ML skills can be applied to their

specific research problem.
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Daigle, R. M., Chassé, J., and Metaxas, A. (2016). The relative effect of behaviour in
larval dispersal in a low energy embayment. Prog. Oceanogr. 144, 93–117. doi: 10.1016/
j.pocean.2016.04.001

Data, B. (2008). Community cleverness required. Nature 455. doi: 10.1038/455001a

De Kerf, T., Gladines, J., Sels, S., and Vanlanduit, S. (2020). Oil spill detection using
machine learning and infrared images. Remote Sens. 12, 4090. doi: 10.3390/rs12244090

Deo, R. C., and Sahin, M. (2015). Application of the extreme learning machine
algorithm for the prediction of monthly effective drought index in eastern australia.
Atmos. Res. 153, 512–525. doi: 10.1016/j.atmosres.2014.10.016

Diaz, R. J., and Rosenberg, R. (2008). Spreading dead zones and consequences for
marine ecosystems. science 321, 926–929. doi: 10.1126/science.1156401

Diaz, R. J., and Rosenberg, R. (1995). Marine benthic hypoxia: a review of its
ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar.
Biol. Annu. Rev. 33, 245–203.

Doney, S. C. (2010). The growing human footprint on coastal and open-ocean
biogeochemistry. science 328, 1512–1516. doi: 10.1126/science.1185198

Doney, S. C., Ruckelshaus, M., Duffy, E., J., B., P., J., Chan, F., et al. (2012). Climate
change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37. doi: 10.1146/
annurev-marine-041911-111611

Ducournau, A., and Fablet, R. (2016). “Deep learning for ocean remote sensing: an
application of convolutional neural networks for super-resolution on satellite-derived sst
data,” in 2016 9th IAPR Workshop on Pattern Recogniton in Remote Sensing (PRRS).
(IEEE) 1–6.

Dzwonkowski, B., Fournier, S., Reager, J. T., Milroy, S., Park, K., Shiller, A. M., et al.
(2018). Tracking sea surface salinity and dissolved oxygen on a river-influenced,
seasonally stratified shelf, mississippi bight, northern gulf of mexico. Continental
Shelf Res. 169, 25–33. doi: 10.1016/j.csr.2018.09.009

Ellenson, A., Pei, Y., Wilson, G., Özkan-Haller, H. T., and Fern, X. (2020). An
application of a machine learning algorithm to determine and describe error patterns
within wave model output . Coast . Eng . 157, 103595. doi : 10.1016/
j.coastaleng.2019.103595

Enwright, N. M., Wang, L., Dalyander, P. S., Wang, H., Osland, M. J., Mickey, R. C.,
et al. (2021). Assessing habitat change and migration of barrier islands. Estuar. Coasts
44, 2073–2086. doi: 10.1007/s12237-021-00971-w

Epstein, P. R. (2005). Climate change and human health. New Engl. J. Med. 353,
1433–1436. doi: 10.1056/NEJMp058079

Estes, J. E., and Senger, L. W. (1971). The multispectral concept as applied to marine
oil spills. Remote Sens. Environ. 2, 141–163. doi: 10.1016/0034-4257(71)90088-5

Feely, R. A., Doney, S. C., and Cooley, S. R. (2009). Ocean acidification: Present
conditions and future changes in a high-co2 world. Oceanography 22, 36–47. doi:
10.5670/oceanog.2009.95

Fernández-Pato, J., Caviedes-Voullième, D., and Garcıá-Navarro, P. (2016). Rainfall/
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