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Deep focus-extended darkfield
imaging for in situ observation
of marine plankton
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2University of Chinese Academy of Sciences, Beijing, China, 3School of Physics and Electronics,
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Darkfield imaging can achieve in situ observation of marine plankton with unique

advantages of high-resolution, high-contrast and colorful imaging for plankton

species identification, size measurement and abundance estimation. However,

existing underwater darkfield imagers have very shallow depth-of-field, leading to

inefficient seawater sampling for plankton observation. We develop a data-driven

method that can algorithmically refocus planktonic objects in their defocused

darkfield images, equivalently achieving focus-extension for their acquisition

imagers. We devise a set of dual-channel imaging apparatus to quickly capture

paired images of live plankton with different defocus degrees in seawater samples,

simulating the settings as in in situ darkfield plankton imaging. Through a series of

registration and preprocessing operations on the raw image pairs, a dataset

consisting of 55 000 pairs of defocused-focused plankter images have been

constructed with an accurate defocus distance label for each defocused image.

We use the dataset to train an end-to-end deep convolution neural network

named IsPlanktonFE, and testify its focus-extension performance through

extensive experiments. The experimental results show that IsPlanktonFE has

extended the depth-of-field of a 0.5× darkfield imaging system to ~7 times of its

original value. Moreover, the model has exhibited good content and instrument

generalizability, and considerable accuracy improvement for a pre-trained

ResNet-18 network to classify defocused plankton images. This focus-extension

technology is expected to greatly enhance the sampling throughput and efficiency

for the future in situ marine plankton observation systems, and promote the wide

applications of darkfield plankton imaging instruments in marine ecology research

and aquatic environment monitoring programs.
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1 Introduction

Marine plankton are abundant underwater drifters widely distributed in the world’s

oceans (Batten et al., 2019). They are mainly phytoplankton and zooplankton with weak

swimming ability. They are also starters of food, material and energy cycles in the ocean, and

foundations of the marine ecosystems and food webs (Steinberg and Landry, 2017; Lombard
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et al., 2019; Suthers et al., 2019). Their regional proliferation in a short

period of time can form blooms, which are often accompanied with

negative physical and toxicological effects, threatening the safety of

nearby aquaculture (Cowen and Sponaugle, 2009), coastal facilities

(Zhanhui et al., 2020), and even human health (Suthers et al., 2019).

Therefore, the observation of marine plankton is important for

understanding the impact of anthropogenic activities and global

change on marine ecosystems, and conversely the responses of

marine ecosystems to global change (Alvarez-Fernandez et al.,

2018). It is also an indispensable means in operational

oceanography applications such as marine environment

monitoring, biodiversity investigation, fishery resources assessment,

and harmful organism breakout warning (Lombard et al., 2019).

As early as in the era of film photography, people tried to use

underwater optical imaging for in situ observation of marine plankton

(Ortner et al., 1979). With the maturity of solid-state lighting and

digital camera technologies since the 1990s, a variety of underwater

plankton imagers have been developed (Benfield et al., 1996; Cowen

and Guigand, 2008; Schulz et al., 2009; Picheral et al., 2010; Bi et al.,

2013; M. Rotermund and Samson, 2015; Gallager, 2019; Orenstein

et al., 2020; Li et al., 2022), through which digital images of plankters

are captured in natural seawaters. By further analysis of the obtained

images using digital processing and machine learning algorithms,

people can achieve automatic observation of plankton taxonomy and

various functional traits (Orenstein et al., 2022). Compared with

traditional methods, in situ imaging has the advantages of longer

observational time and continuity, and higher spatio-temporal

resolution. Its non-contact property also makes it more suitable for

observing fragile gelatinous organisms. These advancements have

greatly expanded our knowledge on related marine sciences (Gorsky

et al., 2000; Hirche et al., 2014; Campbell et al., 2020).

However, in situ plankton imaging has always faced the trade-off

between imaging quality and sampling efficiency. On the one hand,

the complexity of seawater composition (Davies and Nepstad, 2017)

and plankton attributes makes the optical properties of imaging

medium and targets variable and heterogeneous, which easily leads

to the deterioration of imaging quality (Lombard et al., 2019; Cheng

et al., 2020). On the other hand, high magnification is necessary for

sufficient resolution to identify and measure tiny plankters. This leads

to a shallow depth-of-field (DOF) and a small volume of seawater

sampled by a single frame, which in turn leads to low throughput and

efficiency in seawater sampling (Lombard et al., 2019).

To increase the sampling throughput, existing imagers have

adopted different strategies and methods. Imaging flow cytometers

actively pump seawater into their instruments and implement

microscopy (mainly on microphytoplankton) as the seawater is

flowing through an interrogation volume to improve the sampling

rate (Olson and Sosik, 2007; Grcs et al., 2018). However, this is no

longer a strictly “in situ” strategy and is inefficient for sampling larger

and scarcer mesoplankton. Many other underwater imagers use more

direct strategy of imaging targets in the seawater outside their

housings through transparent ports to achieve in situ snapshot

imaging sampling. For example, silhouette imagers such as ISIIS

(Cowen and Guigand, 2008) and ZooVIS (Bi et al., 2013) use parallel

light beam illumination and shadowgraphic imaging to enlarge their

DOF. Combined with towed deployment, they can improve the

sampling throughput to 70L/s (Cowen and Guigand, 2008).
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However, shadowgraphy seriously compromises the resolution,

texture, and color information of the acquired images, and is easy

to lose target edge sharpness and signal-to-background ratio (SBR) by

underwater light scattering, resulting in great plankton detection

difficulty in turbid seawater (Cheng et al., 2020; Panaïotis et al.,

2022). Digital holography is another typical in situ method that uses

coherent illumination to record holograms and refocusing

computation to achieve focus extended imaging. Known

instruments include LISST-HOLO (Graham and Nimmo Smith,

2010), HOLOCAM (Katz and Sheng, 2010), and 4Deep

(Rotermund and Samson, 2015), among others. However, this

method has the shortcomings of intensive reconstruction

computation, speckle noise, and loss of color etc. More seriously, in

the turbid seawater environment, the coherence of illumination light

is easily reduced, leading to refocusing and target detection difficult

(Nayak et al., 2021).

Darkfield imaging is also a popular method for in situ plankton

observation. Its images own excellent resolution and rich color

information for better representation of the planktonic target, and

are more intuitive to human vision. Additionally, it often achieves

good image SBR to facilitate object detection in subsequent

processing. These features are beneficial for finer plankton

taxonomy and quantification, especially favorable for biodiversity

study (Lombard et al., 2019). Therefore, darkfield imaging has been

adopted by many underwater plankton cameras (Benfield et al., 1996;

Gorsky et al., 2000; Schulz et al., 2009; Gallager, 2019; Orenstein et al.,

2020; Li et al., 2022). For example, the Imaging Plankton Probe (IPP)

developed by (Li et al., 2022) is a darkfield plankton imager that

supports long-time near-shore buoy deployment. It features a

compressed orthogonal white-light illumination to reduce stray

light scattered from outside the imaging DOF, enabling high-

contrast true-color in situ imaging of plankton and suspended

particles in a wide size range of 200mm-40mm and finer

plankton identification.

However, darkfield imaging also has very shallow DOF. For

example, the DOF of a 0.5× lens used in IPP is only ~3mm,

corresponding to a sampling volume of just ~1.5 mL by a single

frame capture. Although low-magnification lenses have thicker DOF,

using them as replacement of high magnification lens in any imager

will sacrifice resolution. To overcome this drawback, (Wang et al.,

2020) installed different magnification lenses onto a rotatable

nosepiece in their darkfield imager to expand the imaging range.

(Merz et al., 2021) simply put a high and a low magnification imaging

optics into one darkfield imager housing for simultaneous acquisition

of wider size range. But both made the instrument cumbersome,

expensive, and unreliable. Exploring other possible strategies by

hardware modifications, one can easily think of methods for

darkfield imaging focus-extension by using liquid lenses (Cheng

et al., 2021), diffractive optical elements (Xu et al., 2019), or light-

field cameras (Martı́ nez-Corral and Javidi, 2018). However, these

methods are essentially at the cost of sacrificing temporal or spatial

freedom, and will increase the complexity and cost of

instrumentation, which is not favorable for long-term work in the

harsh oceanic underwater environment.

It will become very attractive if the focus of underwater darkfield

imager could be effectively extended without hardware modification.

This directs us to image restoration algorithm as an alternative for this
frontiersin.org
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goal, which can be roughly classified into two categories: physical

modeling-based method (Krishnan et al., 2011; Nishiyama et al., 2011;

Karaali and Jung, 2018) and data-driven method (Abuolaim and

Brown, 2020; Lee et al., 2021; Luo et al., 2021). In the scenario of

underwater imaging, due to the extremely complex properties of

seawater and targets, and inconsistent imaging characteristics of

different instruments, the accurate prior for physical modeling is

difficult to estimate or measure. Therefore, relevant works were

mostly carried out in laboratories (Fan et al., 2010; Makarkin and

Bratashov, 2021). The data-driven method trains deep convolution

neural network (DNN) models through a large-scale dataset, and can

achieve end-to-end focus restoration for images with a certain degree

of defocus. However, the large-scale high-quality real-world data

needed to train such deep-learning models is difficult to obtain. In

few successful DNN-training reports, (Luo et al., 2021) and (Rai

Dastidar and Ethirajan, 2020) used microscopic image stack datasets

collected by expensive precision automatic microscopes and

(Abuolaim and Brown, 2020) and (Lee et al., 2021) relied on a

special dual-pixel camera chip to collect natural scene image

datasets with defocus distance information embedded. Obviously,

these datasets construction patterns have high time and money costs

and are difficult to duplicate for building up live marine plankton

image datasets. Moreover, in order to train DNNs to generalize well in

actual ocean observation, the dataset is necessary to have considerable

example quantity and diversity. This undoubtedly makes the

modeling of learning-based algorithm for underwater plankton

imaging focus-extension face great challenge in data availability.

To this end, we used the off-the-shelf optical components to

customize a set of dual-channel darkfield imaging apparatus, which

efficiently facilitated us to construct a dataset consisting of 55 000

pairs of defocused-focused marine plankter images. The acquisition of

this dataset mimicked the settings as in real oceanic in situ imaging,

and all defocused images are provided with accurate defocus distance
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labels. Using this dataset, we trained a self-guided focus-extension

DNN named IsPlanktonFE, which, to the best of our knowledge,

achieved end-to-end defocus restoration of real in situ plankton

darkfield images for the first time. The idea of using IsPlanktonFE

for darkfield plankton imager focus-extension is shown in Figure 1.

We used a standard SiO2 bead and real plankton as targets to test and

calibrate its performance. The results show that it can significantly

improve the accuracy of plankton images classification and bead size

measurement. IsPlanktonFE has extended the DOF of a 0.5× darkfield

imaging system to ±10mm range, which is ~7 times of its original

value of ~3mm. Its performance was further verified on a lot of in situ

images collected by different IPPs from the actual sea sites. The results

show that the network has good generalizability, and plays a

significant role in improving the efficiency of marine plankton

observation in practice.

The contributions of this article are emphasized as follows.
1. A data-driven method that can achieve focus-extension for

single-image acquired by underwater darkfield imaging

systems is proposed, which can greatly improve their

efficiency for in situ observing marine plankton and

suspended particles.

2. A simple dual-channel imaging apparatus is devised and a

complete protocol for using the apparatus to conveniently

and efficiently building up large-scale defocused-focused

image pair datasets of live plankton is introduced. The

accurate defocus distance labels contained in the datasets

can provide quantitative reference to the training of imaging

focus-extension models.

3. A self-guided end-to-end convolution neural network that

can effectively extend the DOF of underwater darkfield

imag ing wi th proven in s t rument and cont en t

generalizability is designed and trained.
FIGURE 1

Concept of a deep learning-based focus-extension for in situ darkfield imaging of marine plankton.
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2 Materials and methods

2.1 Sample preparation

10 liters of coastal seawater sample containing live plankton was

collected from Dapeng Ao Cove (22°34’4’’ N, 114°31’53’’ E),

Shenzhen of China by light trapping on December 9th, 2021 and

July 28th, 2022, respectively. The seawater samples were kept at

ambient temperature in a bucket when they were returned to

laboratory in one hour time after collection. Every time we used a

pipet to select some active plankters from the samples and added

them into the container of the dual-channel darkfield imaging

apparatus for dataset construction. According to plankton expert’s

identification from the recorded images, the taxa in the samples were

mainly Arthropoda and Annelida.
2.2 Dataset construction

In order to acquire defocused-focused image pairs of live

plankton in their natural state, we built a set of dual-channel

darkfield imaging apparatus in laboratory to simulate the real in

situ imaging settings in the ocean. Its composition and principle are

shown in Figure 2. When the plankters freely swim through the

illuminated space in the transparent container, they are illuminated

by a white-light ring LED illuminator. Part of the scattered or

refracted light by the plankton is split into two pathways by a cube

beam-splitter and enters two imaging sub-systems for simultaneous

imaging. Each sub-system consists of a telecentric lens (0.5×,
Frontiers in Marine Science 04
DOF~3mm) and a CMOS camera (4096×3000 pixels, FLIR BFS-

PGE-122S6C-C) mounted on a high-precision translation stage.

During image acquisition, the focal plane of one channel was fixed

to a certain position behind the container’s window, and the focal

plane of the other channel was adjusted to different axial positions

with a spacing Dz relative to the previous focal plane. At each Dz, the
cameras of the two channels were triggered to synchronously capture

paired images with very short exposure time of 400ms to avoid motion

blur, and their framerate was both set to 4fps. After enough images

were acquired at one Dz position, one of the focal planes was

translated stepwise (1mm) to next axial position to continue

capturing a new set of image pairs. By repeating such process while

Dz was varied in a range of 0mm-10mm, we finally acquired enough

raw darkfield image pairs of live plankton with discrete defocus

spacing. Note that multiple clear and blurry planktonic targets may

coexist in all the raw images at this stage.

Next, we applied a set of image registration and preprocessing

operations to process all the raw images. Figure 3 illustrates the steps

of this process to generate multiple defocused-focused plankton

region-of-interest (ROI) pairs from one pair of raw images I-I’ with

focal spacing Dz between them. The steps include performing (1)

affine transformation of image I relative to the reference image I’ to

obtain a registered image IR (refer to Supplementary Materials for

image registration details), (2) background subtraction and white

balancing of the registered image pair IR-I’ (Li et al., 2022), (3) ROI

extraction by thresholding from the processed image pair IP-I’P (Li

et al., 2022), (4) focus evaluation of all ROIs extracted from IP to select

coordinates of all the in-focus ROIs (Yang et al., 2021), (5) defocused-

focused ROI pairs cropping from the raw image pair IP-I’P (note all

the cropped ROIs from IP are in-focus as evaluated by the algorithm,

and their corresponding ROIs cropped from I’P are defocused with a

defocus distance Dz), (6) repeating steps (4) and (5) to process ROIs

extracted from I’P in step (3) to obtain defocused-focused ROI pairs

(note the cropped ROIs from I’P are in-focus, and their corresponding

ROIs cropped from IP are defocused with a defocus distance of -Dz).
Applying the above processing, we obtained the raw data of

defocused-focused ROI pairs with different defocus distances.

Finally, the raw ROI pair data was further cleaned by removing

some unwanted ROIs selected based on human visual determination.

We firstly selected the ROIs still with visual blur, ROIs containing

multiple objects, and ROIs with both defocused and focused parts in

one planktonic object from all the ROIs determined by the algorithm

as “clear”. Then we discarded all these selected ROIs together with

their corresponding defocused counterparts. For the remained ROI

pairs after cleaning, we denoted d as the defocus distance label to the

defocused ROI in the pair. When the position of a target is between

the focal plane and the lens, d=Dz; while when the target’s position is

outside the focal plane, d=-Dz. Thus, the construction of a large-scale

defocused-focused marine plankton ROI image pair dataset with

defocus distance label d was eventually completed.
2.3 IsPlanktonFE modeling

2.3.1 Network structure
Based on the characteristics of the defocused-focused plankton

ROI pair dataset, we designed a self-guided DNN network
FIGURE 2

Setup of the dual-channel darkfield imaging apparatus for defocused-
focused live plankton darkfield image pair acquisition.
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IsPlanktonFE to achieve end-to-end focus-extension for underwater

darkfield plankton imagers. As Figure 4 shows, the structure of

IsPlanktonFE includes a defocus distance estimation sub-network
Frontiers in Marine Science 05
DDE-Net and a focus-extension sub-network FE-Net. The DDE-Net

can estimate the defocus distance of an input ROI image and encode

the estimated value for the FE-Net to guide its focus-extension. The

FE-Net extracts the features of the input ROI, and then encodes and

decodes it with the reference of the estimated defocus distance.

Finally, it reconstructs and outputs a refocused image.

The DDE-Net is composed of a feature extractor, an aggregator, a

regressor and an encoder. A ResNet-34 network is trained as feature

extractor to extract features of the input ROI image in patches (refer

to Supplementary Materials for details). Then, the mean and standard

deviation, quantile, and moment of the extracted features are

aggregated into three vectors. Next, partial least squares regressor

(PLSR) is used to regress the three vectors, and the mean of the

regression value is taken as the estimate of the defocus distance of the

input defocused ROI. Finally, the estimate is transformed by the

encoder into two one-dimensional vectors a and b to meet the input

requirements of the FE-Net combiner. The encoder consists of five

convolutional layers with 1×1 cores.

FE-Net is the backbone of IsPlanktonFE, which is composed of an

extractor, a combiner, and a decoder. The extractor extracts the

feature map fmex from the input, which consists of four e-blocks

and each contains three convolutional layers with batch-

normalization and ReLU. The combiner is responsible for adding a
and b to fmex. It consists of two f-blocks and each has a convolution

and an FILM layer (Perez et al., 2018). The FILM layer implements

the function as expressed in the equation below, where fmref is a

feature map with reference information.

fmref = afmex + b

The decoder is composed of only one convolutional layer, which

performs dimension transformation of the combined feature map

fmref to obtain and merge the R, G and B channel values to output the

final refocused image.
2.3.2 Loss
IsPlanktonFE adopts a weighted sum of contextual loss and MSE

loss to guide its training optimization, as is formulated by the

equation:

Loss = k1*Lcont +   k2*Lmse
FIGURE 4

Schematic structure of the deep focus-extension network IsPlanktonFE.
FIGURE 3

Flow chart of generating defocused-focused plankton ROI pairs from
processing a pair of dual-channel raw plankton images. Red and green
frames represent focused and defocused plankton ROIs, respectively.
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The contextual loss (Li et al., 2017) is known to be insensitive to

image misalignment, but it does not consider sufficiently on the global

distribution of features and often generates mosaic artifacts in the

output images (Odena et al., 2016). Conversely, the MSE loss takes the

global features into account, but it is very sensitive to image

registration errors. Therefore, the combinational loss is expected to

complement their strengths and weaknesses to direct the

IsPlanktonFE training towards more accurate feature recovery and

better visual effect optimization for its ultimate focus-

extension performance.

2.3.3 Network training
IsPlanktonFE was implemented using PyTorch on a server

with 6 NVIDIA GeForce RTX3090 GPUs. Its training was divided

into two phases: (1) training DDE-Net with defocused ROIs and

the absolute value of their corresponding defocus distances in the

dataset (more details are provided in the Supplementary

Materials); (2) training FE-Net by using the trained DDE-NET

and the defocused-focused ROI pairs in the dataset. In this phase,

the model was trained with Adam optimizer and an initial

learning rate of 6*10^ (-3). The initial weights k1 and k2 for the

contextual loss and MSE loss were empirically set to 0.97 and

0.03. The batch size was set to 48 and patch size was set to 128. To

improve training efficiency, only the number of foreground pixels

in a patch exceeded 820 (empirical value) would it be used for

training. After 200 epochs of training, the learning rate decreased

to 0.316 times of its initial, and k1 and k2 became 0.95 and

0.05, respectively.
Frontiers in Marine Science 06
3 Results

3.1 Image dataset

A dual-channel darkfield imaging apparatus (Figure 2) has been

home-built to capture raw image pairs of live plankton in seawater

samples with focal distance difference between the channels adjusted in

a range of 10 mm at a step of 1 mm. Afterwards, the raw image pairs

were processed to finally construct a dataset containing 55 000

defocused-focused ROI pairs of marine plankton. We randomly

selected 2500 ROI pairs recorded at each defocus distance as training

set and reserved extra 250 ROI pairs as test set for testing and validating

the IsPlanktonFE and the DeblurGAN-v2 deep networks (Kupyn et al.,

2019). The DeblurGAN-v2 is a state-of-the-art deep-learning model for

image restoration, which is selected for focus-extension performance

comparison with our proposed IsPlanktonFE network. Its modeling

details are provided in the Supplementary Materials.
3.2 Visual evaluation

The focus-extension results of the two DNN models are shown in

Figure 5. From top to bottom, each column lists an input marine

plankton ROI with different defocus distances in the test set, output

images from the two DNN models, and the in-focus image of the

input target (ground truth, GT), respectively. From visual perception

on this comparison, we can see that both DNNs have restored
FIGURE 5

Visual comparisons of the focus-extension performances of two DNNs on representative marine plankton images. DI, DGAN, FE and GT represents the
defocused images as network input, their corresponding restored images by the DeblurGAN-v2 and IsPlanktonFE models, and the focused ground truth
images, respectively. The value above each column indicates the defocus distance label of the DI relative to the GT images. The length of the scale bars
at the bottom is 1mm. The abbreviations of DI, FE, GT and DGAN are also applicable to other figures in this work.
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considerable details of the targets from their defocused images. As the

defocus distance increases, the defocus blur of the input image

increases, the recovered details in the two network outputs become

less, and the artifacts start to emerge and gradually become serious.

But the artifacts in the IsPlanktonFE outputs are much weaker than

those from the DeblurGAN-v2 model, and the restoration effect by

IsPlanktonFE is visually closer to the corresponding sharp

ground truths.
3.3 Quantitative evaluation

To make more quantitative evaluation of the DNNs’ focus-

extension performance, we used structural similarity (SSIM), root

mean square error (RMSE) and a self-defined focus score (Yang et al.,

2021) as three metrics, and calculated their values on all the input

images in the test set and their outputs from the two DNN models

relative to their in-focus GT images. We compared the mean and

standard deviation of these scores at each defocus distance as the

results displayed in Figure 6.

On all the metrics, the IsPlanktonFE network has achieved

obvious improvements compared to its inputs and relatively stable

standard deviations, indicating its efficacy in focus-extension.

Moreover, IsPlanktonFE has also achieved higher scores than

DeblurGAN-v2 on the metrics of SSIM (Figure 6A) and RMSE

(Figure 6B). In comparison, DeblurGAN-v2 has not exhibited

RMSE improvement (Figure 6B) and even obtained peculiarly

worse scores than its inputs on SSIM (Figure 6A), though it

marginally outperformed IsPlanktonFE on the focus score

(Figure 6C). Upon visual inspection of the DeblurGAN-v2 outputs

shown in Figure 5, we found these images contain quite some high-

frequency artifacts.
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Note in Figures 6A, B that the average SSIM and RMSE values of

the gradually defocused input images decrease very slowly with the

increase of defocus distance. Differently, as shown in Figure 6C, their

focus scores decrease sharply with the increase of defocus distance,

indicating that the evaluation of focus score is more consistent with

human vision (Yang et al., 2021). This is not surprising, since this

metric was designed to incorporate group evaluations from

human vision.
3.4 Quantitative calibration

To reduce evaluation variance caused by morphological

irregularity of diverse real planktonic organisms when

characterizing IsPlanktonFE performance, we used a 2mm SiO2

bead as target to further calibrate its achievable DOF through

comparative image analysis of the bead. As shown in Figure 7, we

used the dual-channel imaging apparatus to collect a series of focused

and defocused image pairs of the bead in the defocus distance range of

-12mm-12mm.

It is well known that defocused contour of a target leads to its

inaccurate size measurement. Therefore, we calibrated the focus

extended range by IsPlanktonFE based on the measurement

accuracy of the bead’s diameter from its darkfield images. As the

results shown in Figure 8, the diameter measured from the in-focus

images of the bead is 2.02mm, which is very close to its nominal value

of 2mm. From the defocused images, the measurement error

gradually increases with the increase of defocus distance, and

reaches 0.25mm at ±10mm (>10%). In comparison, the

measurement error from the focus extended images is almost

negligible within a defocus range of -5mm-5mm. Only when the

defocus distance is outside this range, the error begins to increase
(A)

(B)

(C)

FIGURE 6

Quantitative comparisons of the focus-extension performances of the DeblurGAN-v2 and IsPlanktonFE networks on restoring marine plankton images
with metrics of SSIM (A), RMSE (B) and focus score (C). Here larger SSIM (∈[0,1]), smaller RMSE, and higher Focus score indicates sharper image focusing
state, respectively.
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gradually. Even at a defocus distance of ±10mm, the error is only

0.1mm (~5%).

On the other hand, the details inside the contour of a planktonic

target, e.g., the high-frequency features of some biological structures,

often play a decisive role for its recognition. Defocus obviously blurs

the faithful representation of such features, resulting in serious decline

in the accuracy of subsequent recognition. Therefore, we further

calibrated the focus-extension performance of IsPlanktonFE by

evaluating its ability in restoring the internal features of the bead’s

images. Using the RMSE, SSIM and focus score metrics again, we

quantified and compared the features in different defocused and the

focus-extended images of the bead as the results shown in Figure 9.

We found that the measurement from the focus-extended images

were significantly better than from the defocused images in the range

of -12mm-12mm. IsPlanktonFE has not only achieved good

restoration effect in the trained defocus range of -10mm-10mm, but

also considerable improvement outside this range.

To further confirm the focus-extended range by IsPlanktonFE, we

designed another experiment to compare the performance of a

ResNet-18 network, which had been pre-trained only on 20 classes

of focused plankton ROIs, on classifying marine plankton from their

defocused and corresponding focus-extended images. For each class,

200 ROIs were subsampled from the dataset constructed in this work.

The results in Figure 10A show that within the defocus range of

-10mm-10mm, the accuracy of the ResNet-18 network on classifying

the blurred images decreases significantly with the increase of defocus

distance, which is consistent with common sense. In contrast, the

accuracy on classifying the focus-extended images decreases much

slower and remains better than 50% even at defocus distances of ±10

mm. Figure 10B further details the changes of the ResNet-18’s

accuracy on classifying focus-extended images with different

plankton sizes. It can be seen that for the images collected by the

0.5× imaging optics, the accuracy on classifying plankton with body

length > 2mm decreases very slowly with the increase of defocus

distance, reaching more than 70% within the defocus range of

-10mm-10mm. However, for smaller plankton with body length<

2mm, the accuracy decreases rapidly. Even though, such accuracy is

still higher than that achieved on the defocused images. These results
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indicate that within the defocus range of -10mm-10mm, the focus-

extension by IsPlanktonFE has contributed effective improvement to

a machine classifier’s performance on recognizing plankton images.

And the larger the target, the better such performance.

The above experimental results from the SiO2 bead size

measurement, bead image feature restoration assessment, and machine

classifier performance evaluation on real plankton images have proved

that our trained IsPlanktonFE deep network at least extended a 0.5×

darkfield imaging system’s DOF of 3mm to a wider range of -10mm-

10mm, which is equivalent to ~7 times focus-extension.
3.5 Model generalizability

We selected a batch of in situ acquired ROIs by different IPPs

deployed separately from coastal sites near Shenzhen, Pingtan, and

Changjiang of China, and Hobart of Australia, and used the metric of
FIGURE 8

Diameter comparison of a SiO2 bead measured from its defocused
images, focus-extended images by IsPlanktonFE, and focused GT images.
FIGURE 7

Visual comparisons of the focus-extension performance of the IsPlanktonFE network on darkfield images of a SiO2 bead target. The value above each
column indicates the defocus distance between the DI and the GT images. The nominal diameter of the SiO2 bead is 2mm.
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focus score to evaluate their focus states before and after the

processing by IsPlanktonFE to test its generalization performance

on real-world test data.

Figure 11 shows the test results of IsPlanktonFE on some ROIs

containing in-distribution (i.e., plankton classes already in the

training dataset) plankton of Copepod, Polychaete and Mysid, in

which the defocused and refocused ROIs of these representative

common plankters and their focus scores are given for comparison.

Note that the principles of IPP and the dual-channel imaging

apparatus are both darkfield imaging, but their optics has certain

differences in lens magnification, pixel size and illumination. These

make the selected test images have feature variations from those in the

training set, although biologically they belong to the same taxa.

Judging from the resultant visual evaluation and quantitative focus

score comparisons of the input and output images, we see that

IsPlanktonFE has evidently refocused the blurred images.

Then we selected another subset of out-of-distribution ROIs

(biological classes and/or defocus states not included in the training

set) to further validate the generalizability of IsPlanktonFE on

different image contents. The test results are shown in Figure 12, in

which the Lucifer sp. (Figure 12A) and the Polychaete sp. and the

copepod (Figure 12B) exhibits more complex defocus status although

their taxa were already included in the training set. Specifically,

different parts of the Lucifer sp. defocus differently, and the

Polychate sp. and the copepod has different defocus degree. While in

Figures 12C, D, the defocus status of theMonstroid with eggs and the

Cresis Acicula is also very complex, and their taxa are not included in

the training set. Observing the refocused ROIs and their focus scores,

we can see IsPlanktonFE has achieved excellent refocusing effect on

them with never-trained contents. Remarkably, as shown in

Figures 12E, F and more in Figure S3 in the Supplementary

Materials, IsPlanktonFE also turned out to be very effective in

refocusing the suspended particle images, which were never trained

and are known to be extremely heterogeneous in morphology.
(A) (B)

FIGURE 10

Performance comparison of a trained ResNet-18 deep network on classifying defocused plankton images, their focus-extended counterparts by
IsPlanktonFE, and corresponding focused GT images. The ResNet-18 classifier has been trained on focused plankton images before this test. The value
of each point is the average accuracy of 50 randomly selected testing plankton images. (A) plots the classification accuracy of the ResNet-18 model
versus defocus distance on DI, FE, and GT testing plankton images. (B) further plots the classification accuracy on the FE plankton images grouped in
two different sizes. FE_Small refers to plankton length (diagonal of ROI)<2mm. FE_Large refers to plankton length >2mm.
FIGURE 9

Quantitative focus-extension evaluation of the IsPlanktonFE network
using a 2mm SiO2 bead by the metrics of SSIM (A), RMSE (B) and focus
score (C), respectively. The cyan areas in the panels indicate a defocus
distance range from which the recorded SiO2 bead images are used
for training the IsPlanktonFE model. The pink areas indicate defocus
distance ranges where the recorded SiO2 bead images were NOT
used to train the IsPlanktonFE model.
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3.6 Observation efficiency improvement

We used the raw ROIs acquired from a trial IPP deployment

underwater at the wharf of CSRIO Ocean and Atmosphere of

Australia during December 25-29, 2019 as testing data to verify the

efficiency improvement by applying IsPlanktonFE for in situ marine

plankton observation. In this data, an average of 26,414 ROIs were

taken per day. Because the focus evaluation filtration algorithm
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(Yang et al., 2021) was not deployed at the time during their

collection, the data contains many defocused ROIs.

We first screened the focus scores of all the original ROIs and

found that the average daily proportion of the clear images (focus

score>4.0) in the raw ROIs was only 2.15%. After applying focus-

extension to all the raw ROIs by IsPlanktonFE, such proportion rose

to 12.75%. The proportional change of clear ROIs before and after

IsPlanktonFE processing and the absolute number of raw ROIs

collected daily are shown in Figure 13. The proportional

fluctuations of the focused ROIs were mainly caused by the natural

change of the plankton and suspended particles abundance and

spatial distribution with time. This result further confirmed the

application of IsPlanktonFE can greatly increase the fraction of in-

focus images acquired in the raw data. The observation efficiency of

IPP has been further lifted by ~6 times on average.
FIGURE 12

Focus-extension comparisons of IsPlanktonFE on some special in situ
darkfield ROIs acquired by IPP. (A) A ROI contains an in-distribution
plankter with different degrees of defocus in different body parts. (B) A
ROI contains two different in-distribution plankters with different
degrees of defocus. (C) and (D) contains an out-of-distribution (OOD)
plankter, respectively. (E) and (F) contains an OOD suspended particle,
respectively. The value at the top-right corner of each ROI indicates its
focus score.
FIGURE 13

Proportion change of the clear ROI images in a 4-day in situ image
data acquired by an IPP camera deployed underwater before and after
all the raw ROIs processed by IsPlanktonFE.
FIGURE 11

Focus-extension comparisons of IsPlanktonFE on some representative in situ marine plankton ROIs acquired by IPP. The value at the top-right corner of
each ROI indicates its focus score.
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4 Discussion

4.1 Model performance

Single image refocusing is an ill-posed problem. There are many

possible solutions to the mapping between a defocused image and its

focused GT. The DDE-Net essentially provides a unique descriptor

for the defocus degree of the input, which assists IsPlanktonFE to

learn more definitely the optimal mapping between blurred and clear

images. The practicality of this module has obviously benefited from

our dual-channel imaging apparatus, which provided accurate

defocus distance label to the training image pairs. In contrast,

DeblurGan-v2 cannot utilize defocus distance prior and only relied

on image data to learn such complicated mapping. Limited by

network layer depth and parameters, DeblurGan-v2 is difficult to

handle volatile defocus situations in the input images, and generated

serious artifacts for many images. This is why the output of

DeblurGAN-v2 even appear lower SSIM and RMSE scores than its

inputs. The DNN used in the focus score evaluation (Yang et al.,

2021) is only sensitive to the content rather than the distribution of

high-frequency features, so DeblurGAN-v2 has achieved higher

scores on this metric as it is prone to generate falsely distributed

high-frequency artifacts in the output images.

With the increase of defocus distance, each pixel in a defocused

image receives contributions from more neighboring object

features, which renders it more challenging to remap them

correctly to their original pixel locations. In this limit, it

gradually becomes difficult for IsPlanktonFE to obtain an

optimal solution to the mapping even it is provided with the

defocus distance information.

Figure 14 shows the focus-extension effect of IsPlanktonFE on

planktons with different sizes at different defocus distances. The

comparison between Figures 14A, B shows that at the same defocus

distances, the larger plankter containing more features in the

defocused image achieved higher SSIM score and better image

quality after the restoration. The comparison between Figures 14A,

C reflects that at a larger defocus distance, the model is also more

likely to perform better for larger plankton. These results indicate that

the focus-extension performance of IsPlanktonFE will decline with

the decrease of planktonic object size. The resolution of an optical

system with fixed magnification will become insufficient when

imaging smaller targets. Under such situation, defocus blur will

result in further loss of high-frequency features in the low-

resolution images of tiny objects, thus disadvantaging the

restoration of any focus-extension models without exception of

IsPlanktonFE. When the resolution of acquired images is not

enough to entertain the computation requirements of IsPlanktonFE,

higher magnification of the imaging instruments should

be considered.

It is worth discussion that the darkfield ROIs have offered

IsPlanktonFE relatively simplified foreground and background

contents compared to the more complex natural scene images. On

the one hand, it is rare in the ROIs that multiple foreground targets

overlap or a single target has inconsistent defocus situations at

different focal positions. This means the label d can depict the
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defocus distances of the foreground targets accurately and uniquely.

On the other hand, darkfield ROIs have almost zero backgrounds

with little interference to the foregrounds. These data characteristics

are all favorable to the training of IsPlanktonFE for performance. In

addition, the dual-channel imaging apparatus has an inborn

advantage of reciprocity in acquiring the image pairs, which means

the defocused and focused targets in one channel image are

counterparts to those in the other channel image, so it can acquire

2n image pairs by just stepping one focal plane of the two channels for

only n positions. Note that this is very useful to speed up the data

acquisition to keep the fragile planktonic organisms’ bioactivity after

being caught out from the marine environment. It certainly also saves

t ime to upsca le the l ive p lankton image datase t for

IsPlanktonFE training.
4.2 Model generalizability

Currently, the IsPlanktonFE dataset has reached a scale of 55 000

ROI pairs, containing at least 20 classes of plankton from the phyla of

Arthropoda and Annelida. Admittedly, compared with the actual

number of plankton in the ocean and the high complexity of the

underwater environment, the scale and diversity of this dataset is far

from sufficient. Fortunately, IsPlanktonFE has learnt the low-level
frontiersin.org
FIGURE 14

Effects of plankton size on the focus-extension performance of
IsPlanktonFE. (A) a Megalopa larva at d=-6mm, (B) a Polychate with
eggs at d=-6mm, (C) a different Polychate at d=-9mm.
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pixel-by-pixel feature mapping between defocused-focused image

pairs, which is essentially different from an image classifier learning

mappings between images and their categorical labels, so it is less

sensitive to high-level image semantics such as classes, morphologies,

etc. When the ROI pairs in the IsPlanktonFE dataset were acquired,

the plankton were alive so they kept on swimming. Compared with

the limited FOV and DOF of the imaging apparatus and the confined

space in the container, their motion is not finite at all. In addition, we

only used a slow frame rate during the raw image acquisition, so even

for the same plankton target, its defocus position, orientation and

morphology can vary significantly in temporally close frames and

spatially close positions. This allows our dataset to have a very rich

“defocused image-focused image” mapping variety, i.e., defocus

diversity, even though its construction is based on a limited

number of taxonomic groups. As a result, even trained and tested

by a simple random 10:1 split of the datasets, the obtained

IsPlanktonFE model has achieved good generalizability on the

images of untrained organism classes, images collected by different

instruments, or even suspended particles, as demonstrated in the

results and the Figure S3 in the Supplementary Materials. In principle,

we can reasonably infer that this generalizability has more potentials.

Firstly, the good performance of IsPlanktonFE on in situ images

acquired by different IPPs suggests its application potential for a

variety of other in situ darkfield plankton imagers. Although the

optics of the dual-channel imaging apparatus has various differences

from the other underwater darkfield imagers besides IPP, their

principle is all snapshot darkfield macrophotography or microscopy

(Benfield et al., 1996; Schulz et al., 2009; Picheral et al., 2010; Gallager,

2019; Orenstein et al., 2020; Li et al., 2022). The representation of

plankton and particles by their images exhibits very similar

morphological features. Therefore, the modeling process of

IsPlanktonFE could be repeated to optimize di fferent

hyperparameters for these instruments. In fact, several sets of

hyperparameters at different magnifications can also be multiplexed

to further improve the universality of the model. This perhaps is the

most attractive aspect of IsPlanktonFE, as it requires no hardware

changes to existing imagers, but can computationally extend their

DOFs and make observation efficiency improvements.

Secondly, although the marine plankton species is extremely

diverse, the number of high-level taxonomic groups become much

smaller. It is known that organisms belong to the same phylum have

many similar morphological features but different between different

phyla (Batten et al., 2019), e.g., Copepoda and Eumalacostraca share

quite some alike exoskeleton features as they both belong to

Arthropoda. Due to this biological property, the training scale of

IsPlanktonFE might not necessarily need to cover all plankton

species, but only needs to cover enough higher-order phyla, and

then it is possible to generalize to the images of untrained species

under the same phyla. The examples of Monstrilloid and Creseis

acicula in Figures 12C, D exactly justified this hypothesis. It is known

that copepods alone account for 90% of all marine zooplankton

abundance (Suthers et al., 2019), so it is anticipated that

IsPlanktonFE has the potential to generalize to a considerable

number of plankton classes. However, the dataset still lacks

examples from Chordata, Cnidaria and etc. The performance of

IsPlanktonFE is likely to drop if it were directly applied to in situ

plankton images of these species. But users can simply apply the
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apparatus and methods described in this paper, combined with live

sampling of these plankton, their images can be conveniently

supplemented into the training set. The model can then be

retrained to quickly regain the focus-extension ability on

these images.

Surprisingly, IsPlanktonFE also achieves excellent performance

on various suspended particle images, although none of them are used

in the training. This may be because the kaleidoscopic particles in

their darkfield images also contain many features similar to plankton

morphology that have been learnt by the model. This speculation does

not lack of scientific reasoning as many particulates are the debris of

plankton or fecal pellets (smaller planktonic debris). On the other

hand, marine plankton might evolve their morphology to resemble

the suspended particles in seawater, because this is preferable for their

hiding and survival. It is well known that the quantity of suspended

particles in the ocean is extremely large [>80% in situ images are

particles (Panaïotis et al., 2022)], and their size and volume are the

most concerned measurands in the study of oceanic carbon cycle

(Lombard et al., 2019; Giering et al., 2020). IsPlanktonFE has achieved

remarkable performance on refocusing the contour of defocused

suspended particles, which is obviously beneficial for their more

accurate measurement.
4.3 Impact on marine plankton observation

Generally, the density of plankton in ocean is low, and larger

organisms are in lower abundance. For more efficient observations,

the seawater sampled per unit time by any plankton imaging method

is always favored as more as possible to obtain statistically

representative plankton information and more undersea space

coverage. Extending the focus of an imaging instrument with fixed

magnification (i.e., fixed field of view) is obviously a straightforward

way for this purpose. Taking the results of this study as an example,

IsPlanktonFE can extends the DOF of a 0.5× darkfield imaging system

from ~3mm to ~20mm, equivalent to a seawater sampling volume

improvement of ~7 times. Based on our experience in IPP nearshore

deployment, this will result in a total water volume enlargement from

388.8L to 2592L per day at an imaging frame rate of 3FPS. This is

expected to further fill the gap in seawater sampling throughput and

plankton quantification between the traditional methods and the in

situ imagers (Barth and Stone, 2022; Le et al., 2022).

The value of IsPlanktonFE for plankton observation is also

reflected in its generalization for future darkfield imaging

instrumentation. When an imager works underwater, the space

outside its DOF will inevitably be illuminated, and the stray light

from these spaces can enter the camera and reach the imaging chip.

This is the fundamental cause for defocus blur in darkfield imaging.

The existing darkfield imagers generally assess the focus of the target

in a ROI by simple edge gradient calculation routine, and directly

discard the defocused ROIs to just retain the “clear” ones (Gallager,

2019; Orenstein et al., 2020; Li et al., 2022). This made their high-

quality image yield and light energy utilization rate very low. IPP

improves such yield by physically compressing the illumination into a

layer of thickness to ~6.89mm to reduce illumination outside the

DOF. However, it is not trivial to further compress incoherent light

beams thinner than such thickness. This will not only increase the
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complexity of the optomechanical structure of the illuminator and

lose instrumentation flexibility, but also greatly waste illumination

energy. If the DOF is extended to ~20mm by IsPlanktonFE, the

difficulty of matching the illumination layer with the imaging DOF

can be greatly alleviated, in favor of simplifying the instrumentation

and can also improve the high-quality image yield of darkfield

imaging to its limit. Moreover, the process of IsPlanktonFE

establishment has provided users references to solve their respective

research problems of interest, in which the users may have to deal

with different challenges from complicated observational objects and

application environments. All these will certainly help marine

scientists to explore more of the unknown ocean at better cost.

One shortcoming of IsPlanktonFE lies in its deep network

structure, leading to high computation cost and long training time.

It took 120 hours and six RTX3090 GPU cards in training the model

to achieve convergence. Fortunately, the computation is greatly

reduced in its production phase, during which IsPlanktonFE was

verified to achieve an average speed of 1-2 ROI/s using a single

RTX3090 GPU. This is much faster than the average speed of ROI

generation by an IPP deployed nearshore according to our experience

(Li et al., 2022). In the future, the model can be light-weighted by

network pruning (Molchanov et al., 2019), quantification (Wang

et al., 2022), knowledge distillation (Yim et al., 2017) techniques to

further reduce its demand on computation for training and inference.

These will enable the deployment of IsPlanktonFE on a cloud

computing platform to facilitate next-generation in situ real-time

marine plankton observations.
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