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This study analyzed the spatiotemporal dynamics of surficial benthic microbial

communities in a bathymetric gradient (44 - 3573 m) across four oceanographic

campaigns at the Perdido Fold Belt (PFB) in the northwestern Gulf of Mexico

(nwGoM). Bioinformatic analysis of 16S rRNA gene amplicons grouped the 27

samples into three clusters according to a longitudinal bathymetric gradient.

Differences in community structure among clusters, based on PERMANOVA

analysis, were partially explained by cruise, water depth, temperature, salinity,

nitrate plus nitrite, silicate, redox potential, Ni, Cd, Pb, and Al, as well by aliphatic

and aromatic hydrocarbon concentrations. Into microbial community

composition, Gemmatimonadaceae, Planctomycetaceae, and the JTB255 were

detected at all depths across the four campaigns. Members of Anaerolinaceae and

specific sulfate-reducing bacteria were more abundant in sites located between

43 and 1200 m, and Rhodospirillaceae, wb1-A12, OM1 clade, Desulfurellaceae,

Gemmatimonadetes, Nitrospinaceae, and Clostridiaceae 1 were better

represented in deeper sites. Alpha diversity was similar between the three

groups and remained stable; however, 10 samples presented changes in the

community structure across the four campaigns. Finally, a multivariable

association analysis revealed 25 bacterial genera positively related with

physicochemical parameters that characterized the environment from shallow

to deep sea sites. Taken together, these results yield insights into the temporal

stability of 17 of 27 sites in the PFB and revealed signature taxa with putatively

ecological relevance in sedimentary environments.
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1 Introduction

Marine sediments are highly variable environments in space

through time. Their physical and chemical settings are affected by

human activities and natural processes such as fluvial inflows and

oceanographic phenomena (e.g., vertical eddies, currents,

horizontal vortices) so climate and seasons are other important

factors for their variation (Hernández-Molina et al., 2016; Ward,

2017). The ocean food web depends on the circulation of nutrients

and organic matter between surface waters and sediments (Zinger

et al., 2011; Orsi, 2018). In marine sediments prokaryotes are the

major biological catalysts that largely control organic carbon and

nutrients cycling and are involved in the climate change regulation

and the degradation of multiple pollutants (Newton et al., 2013;

Orsi, 2018; Cavicchioli et al., 2019; Li et al., 2020; Walker et al.,

2021). Microbial studies have evidenced temporal and spatial

patterns in community structure in response to environmental

and biotic factors (Ortmann and Ortell, 2014; Torres-Beltrán

et al., 2016; Zorz et al., 2019). Given their essential roles in

regulating ecological services, understanding the factors that

shape microbial community structure on spatial and temporal

scales is crucial to yield insights to anticipate the responses of

marine ecosystems to environmental changes afforded (Zinger et al.,

2011). Under this idea, deciphering the influence of environmental

variables on the community structure of native prokaryotes became

an area of great research interest in the Mexican GoM, such as the

PFB in the northwestern Gulf of Mexico (nwGoM), which is within

the third most important hydrocarbon fields in the basin (Celis-

Hernandez et al., 2018).

To date, few studies have assessed microbial communities in the

PFB that combined molecular analysis with physicochemical data at

a single time point, and none have compared the structure of

benthic microbial communities over time. Although the way to

analyze, interpret, and present microbial diversity data in these

studies are difficult to compare, some interesting trends can be

observed. In the first place, the analysis of the beta-diversity of

pelagic and benthic communities showed a tendency to cluster the

samples by water column depth (Sánchez-Soto Jiménez et al., 2018;

Raggi et al., 2020; Ramıŕez et al., 2020; Sánchez-Soto et al., 2021).

Sánchez-Soto Jiménez et al. (2018; 2021) and Ramıŕez et al. (2020)

reported the co-occurrence of aerobic and anaerobic metabolisms

in the studied sites; however, anaerobes (e.g., sulfate-reducers)

showed higher abundances in shallow environments where anoxic

conditions predominated. Changes in the community structure in

such studies were mostly related to differences in water depth and

temperature, that were common factors in determining the beta-

diversity of benthic communities. Taxonomic and metabolic

analysis have revealed indigenous microorganisms to participate

in biogeochemical cycling and the presence of putative hydrocarbon

degrading bacteria was also a common result in all these studies,

suggesting that the PFB could be an area affected by the presence of

hydrocarbons in the environment (Ramıŕez et al., 2020; Sánchez-

Soto Jiménez et al., 2018; Raggi et al., 2020; Loza et al., 2022). The

study of Sánchez-Soto et al. (2021), based on sequence analysis of

the dsrB gene encoding for the beta subunit of the dissimilatory

sulfite reductase involved in sulfate-reduction, showed that
Frontiers in Marine Science 02
differences in the community structure of sulfate-reducing

microorganisms (SRMs) were related to the sediment

concentrations of Ni and Cd.

Diversity measurement is fundamental for understanding

community structure and dynamics, but it is particularly

challenging for microbes (Lozupone and Knight, 2008). Alpha

diversity is often estimated as the number of species in a

community (species richness), and beta diversity is usually based

on the number of shared species (Lozupone and Knight, 2008).

Despite recent progress in assessing community composition and

spatial distribution of benthic prokaryotes in the nwGoM, the study

of alpha and beta diversity and the factors that shape microbial

assemblages continues to be an area of acute research. Analysis of

benthic prokaryotes in a bathymetric gradient in the PFB has shown

the response of microbial communities to specific parameters

variation, including water depth, temperature, OM, salinity,

sediment particles, nutrients, and contaminants (Sánchez-Soto

Jiménez et al., 2018; Raggi et al., 2020; Ramıŕez et al., 2020;

Sánchez-Soto et al., 2021; Loza et al., 2022). However, how

consistently microbial communities respond to such variables

over different climatic seasons and in a wider spatial area is still

to be investigated. Thus, the objectives of the present study were to

1) analyze beta-diversity, 2) determine the composition and

distribution of benthic prokaryotes, 3) characterize the

environmental variables of the region identifying their statistical

association with changes in the structure of microbial communities

across time and space.
2 Materials and methods

2.1 Sampling

Four oceanographic campaigns were conducted in the Mexican

region of the Perdido Fold Belt (PFB) polygon located in the

nwGoM (Figure 1): Perdido 1 (P-01, May 2016), Perdido 2 (P-02,

September-October 2016), Perdido 3 (P-03, June 2017), and

Perdido 4 (P-04, September 2017). During each campaign, 27 soft

bottom sediment samples were collected using a Hessler-Sandia box

corer from four perpendicular transects (B, C, D and F) to the

Tamaulipas coastline extended in a bathymetric gradient (~44-3573

m) (Figure 1). Salinity (PSU), temperature (°C), and dissolved

oxygen (DO mL L-1) were determined in situ from the bottom

water using a CTD Seabird 9 plus®. Bottom water samples were

collected using Niskin bottles and kept frozen until their analysis in

the laboratory for nutrient determinations such as nitrate plus

nitrite (NO−
3+ NO−

2 mM L−1), orthophosphate (PO3−
4 mM L−1),

and silicate minerals (SiO4−
4 mM L−1) which were determined

from the bottom water by colorimetric methods following

standard protocols using a spectrophotometer UV-VIS (Agilent

Technologies Cary 60) (Herguera-Garcıá et al., 2021). Following the

box corer recovery, pH and redox potential were measured directly

in the sediment with specific sensors (Extech pH 100 probe and an

Extech RE300 probe, respectively) (MA, USA). The first 10 cm of

each sediment sample were removed using sterile syringes with cut-

off tips and preserved at −20°C for subsequent DNA extraction. A
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sediment subsample of 400 g was taken and preserved at -4°C in

plastic bags for later organic matter (OM%) and grain size

determinations (%). Another two subsamples of 100 g of

sediment were taken and stored at -4°C for heavy metals and

hydrocarbons content determinations. The subsamples for heavy

metal analysis were stored in plastic bags previously washed with a

solution of HNO3 1N (pure grade from Sigma-Aldrich) and

deionized water, and the subsamples to analyze the hydrocarbon

content were stored in glass bottles previously washed with hexane

and acetone separately (both of chromatographic grade from

Sigma-Aldrich).
2.2 Physicochemical characterization of
Perdido sediments

Organic matter (OM%) was determined by oxidation with

potassium dichromate and sand structure (as medium sands, MS

%, fine sands, FS%, and very fine sands, VFS%) was analyzed

weighing the particles retained in distinct mesh sizes (Hernández-

Ávila et al., 2021). Heavy metal concentration (vanadium, V µg/g,

nickel, Ni µg/g, cadmium, Cd µg/g, lead, Pb µg/g, and aluminum, Al

µg/g) were quantified using ICP-MS (iCAP Q, Thermo Scientific),

and hydrocarbons (total aliphatics µg/g and total aromatics, PAHs

µg/g) were identified and quantified using a Clarus 500 PerkinElmer

gas chromatography coupled to a mass spectrometer detector

according to established protocols (Hernández-Ávila et al., 2021;

Arcega-Cabrera et al., 2022).

Spatial and temporal differences (ANOVA, P<0.05) of

environmental variables were tested using Zone and Campaign as

grouping factors, respectively (Supplementary Tables 1, 2).

Campaign corresponded to cruises P-01, P-02, P-03, and P-04,

and Zone corresponded to shallow (≤200 m), intermediate (201-

1200 m) and deep (1201-3573 m) categories that were defined along

a longitudinal gradient according to the total water depth of each

sampling site (Supplementary Material 1). Environmental
Frontiers in Marine Science 03
variability was further explored with a principal component

analysis using all the environmental parameters (Figure 2).

Analyses of environmental variables were performed with the

InfoStat program (version 2020). Figures were generated using

InfoStat and Ocean Data View (version 2022) available in

https://odv.awi.de.
2.3 DNA extraction and 16S rRNA
amplicon sequencing

Sediment subsamples were thawed and centrifuged for 1 min at

10,000×g to extract the genomic DNA from the settled cells after

discharging the remaining water. Genomic DNA was extracted

from 1 g of each sediment sample with the DNeasyPowerSoil Kit

(QIAGEN, Gilden, Germany) following the manufacturer’s

instructions and stored at -20°C until needed. The integrity of the

extracted DNA was verified by 1% agarose gels.

From the extracted DNA, 16S rRNA amplicons were prepared

with the adapters for sequencing by Illumina MiSeq system

following the two-step PCR protocol. In the first PCR the

primer pair S-D-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21

(Klindworth et al., 2013) was used to generate approximately 550

bp paired-end reads, covering the V3-V4 16S rRNA region, in a

Veriti thermal cycler (Applied Biosystems Veriti ABI Inc., Foster

City, CA, USA). The PCR program was as follows: initial

denaturation at 95°C for 3 min, 25 cycles including denaturation

for 30 s at 95°C, alignment for 30 s at 55°C, and elongation for 30 s

at 72°C, with a final extension at 72°C for 5 min. Each PCR reaction

mixture (20 µL) included 1 µL of each primer (0.5 mM), 10 µL of 2x

phusion High-Fidelity MasterMix (Thermo Scientific, USA) and 2

µL of DNA (~ 10 ng/mL). PCR products were then purified with

AMPure XP beads technology. For the second PCR round, eight

cycles were included to attach the Nextera indexes with the XT

Index Kit reagents. The size of the amplicons was verified on a

QIAxcel Advanced system (QIAGEN, Hilden, Germany) and the
FIGURE 1

Sampling sites in the Gulf of Mexico. Region of study, located from
25.74° to 24° North latitude and from -97.53° to -95.18° West
longitude, with the 27 sampling sites distributed in four
perpendicular transects (B, C, D, and F) to the Tamaulipas coast that
were settled along a bathymetric gradient (43-3573 m). Black
crosses indicate the intersection between coordinates. Gray lines
indicate isobaths.
FIGURE 2

Principal component analysis of environmental variables through
campaigns and sampling zones. Labels P-01, P-02, P-03, and P-04
indicate the campaign, followed by the sampling zone: shallow (SH)
in red, intermediate (I) in green, and deep (D) in blue. Sampling zone
categories were defined according to the total water depth of each
sampling site. SH sites: ≤200 m, I sites: 201-1200 m, and D sites:
1201-3573 m.
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concentration was quantified by fluorometry on a Qubit 3.0 kit (Life

Technology, Shah Alam Selangor, Malaysia). Indexed amplicons

were purified with AMPure XP beads and individually diluted in 10

mMTris (pH 8.5) and combined to an equimolar concentration of 9

pM. The final libraries were loaded on a V3 MiSeq Reagent Kit V3

flow cell (600 cycles) and sequenced on 2x300 Illumina-Miseq

platform (Illumina, San Diego, CA, USA) at CINVESTAV Merida.
2.4 Bioinformatic analyses

Sequences were processed with the QIIME2 pipeline (Bolyen

et al., 2019). The amplicon sequence variants were resolved with the

DADA2 plugin (Callahan et al., 2016). Due to low quality detected

in the last 150bp of some R1 sequences, merging with R2 was not

possible and only R1 reads were used for this study. Trimming and

truncating of R1 reads were made on positions 30 (end 3’) and 150

(end 5’), removing chimeric sequences with the “consensus”

parameter. The representative sequences of ASVs were classified

with the “classify-consensus-vsearch” plugin (Rognes et al., 2016),

using the SILVA database (v.128) as a taxonomic reference. A

phylogeny of the representative sequences of ASVs was calculated

with the “align-to-tree-mafft-fasttree” plugin (Katoh and Toh, 2008;

Price et al., 2010). The feature table and phylogeny were exported to

the R environment.

The data were processed in R with the phyloseq package

(McMurdie and Holmes, 2013). The alpha diversity was evaluated

using the number of ASVs and the Shannon diversity index. The bar

plots of taxonomic abundance were performed and prettified with

the ggplot2 packages (Wickham, 2010). A PCoA was calculated

based on the weighted UniFrac distance. The gap statistic to

determine the optimal number of sample clusters in the PCoA

was performed with the cluster package (Maechler et al., 2014)

using the partition around medoids (pam1) method and 1000

bootstraps. To determine variables that influence changes on

microbial community structure among sites a PERMANOVA

(Permutational Multivariate Analysis of Variance) with the adonis

function analysis was used. LEfSe analysis was used to identify the

features most likely to explain differences between clusters of

samples based on statistical different abundances (Segata et al.,

2011). The Maaslin2 package (Mallick et al., 2021) was used to

associate the genera with the environmental variables using the

parameters as default (method:LM, transformation: log2,

normalization:TSS). The threshold P-value to consider a result

significant was set up to<0.05.
3 Results

3.1 Environmental variables

All the environmental data obtained from this study are

presented in Supplementary Material 1. Spatial differences of

environmental variables (ANOVA, P<0.05) were observed

between the bathymetric zones (Supplementary Table 1). Over

the four campaigns, the shallow zone (≤200 m of the water
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column) was characterized by the lower redox values (mean ±

standard deviation, -136.8 ± 228.7 mV), the highest temperature

(20.7 ± 6.1°C), salinity (39.2 ± 0.4), and the concentrations of Pb

(26.1 ± 6 µg/g), Al (15193.6 ± 8009.2 µg/g), and PAHs (0.08 ± 0.04

µg/g), while it presented the lowest concentrations of NO−
3 + NO−

2

(4.3 ± 5.8 mM/L), PO3−
4 (0.2 ± 0.2 mM/L), SiO4−

4 (7.2 ± 5.2 mM/L), Ni

(22.3 ± 4.9 µg/g), and Cd (0.2 ± 0.1 µg/g) (Figure 2). The deep zone

(>1200 m of the water column) presented the higher redox values

(188 ± 329.9 mV), and the highest concentrations of NO−
3 + NO−

2

(20.4 ± 6.4 mM/L), SiO4−
4 (27.5 ± 7.6 mM/L), Ni (32.6 ± 6.1 µg/g),

and Cd (0.23 ± 0.1 µg/g), while presented the lowest temperature

(6.2 ± 5.2°C), salinity (35 ± 0.01), and the concentrations of Pb (20.4

± 4.6 µg/g), Al (8343.1 ± 6432.2 µg/g), and PAHs (0.04 ± 0.03 µg/g)

(Figure 2). The intermediate zone (201-1200 m of the water

column) showed the highest PO3−
4 concentration (2.3 ± 3.3 mM/

L), it was similar to the shallow zone in terms of redox, Pb, and Al,

and similar to the deep zone in terms of temperature, salinity, NO−
3

+ NO−
2 , and Cd (ANOVA, P>0.05). The content of OM (0.9 ± 0.5%)

and aliphatic hydrocarbons (1.2 ± 0.6 µg/g) did not show significant

differences between zones (ANOVA, P>0.05). Overall, salinity,

water depth, temperature, NO−
3 + NO−

2 , and SiO4−
4 were among

the five variables that contributed most to the spatial env

ironmental variability (Supplementary Table 1).

Temporal changes (ANOVA, P>0.05) were also observed in the

environmental parameters (Supplementary Table 2; Figure 2).

Water temperature significantly increased during P-01 and P-02

in the intermediate and deep zones, respectively, while it decreased

in the shallow zone in P-02 (Figure 2). In P-02, salinity decreased

only for the shallow zone, while the redox state decreased in all the

region (mean ± standard deviation, shallow zone = -511.2 ± 77.2

mV, intermediate zone = -443.4 ± 104.8 mV and deep zone = -304 ±

327.1 mV). Differences in the OM% were detected only in the zones

intermediate and deep, with the highest content in cruises P-01 and

P02 compared to cruises P-03 and P-04 (Supplementary Table 1).

The highest concentrations of NO−
3 + NO−

2 and SiO4
4 corresponded

to intermediate and deep zones; however, NO−
3 + NO−

2

concentration decreased in P-02 in both zones, while SiO4
4

decreased in P-01 and P-02 in the deep sites (Figure 2). An

increased content of Pb, Al, Ni, and Cd was recorded in P-02,

while they decreased in P-01 (Figure 2). V content showed temporal

differences with the highest content in P-01, and the lowest in P-03.

The highest concentration of PAHs was recorded in P-02, followed

by P-01. The lowest concentration of PAHs was detected in P-03

and P-04. Aliphatic hydrocarbons showed statistical differences

among cruises in the shallow and deep zones, the lowest

concentrations were quantified in P-02 (Supplementary Table 2;

Supplementary Figure 1).

Medium (MS%), fine (FS%) and very fine sands (VFS%)

presented a similar spatial distribution during the four cruises

(Supplementary Table 1). However, they changed in time

(Supplementary Table 2). The highest percentage of MS was

obtained in P-01 and P-04 (mean ± standard deviation, 53.4 ±

14.4%), and the lowest proportion was obtained in P-02 (9 ± 14%).

Meanwhile, P-02 presented the highest percentage of FS (68.4 ±

10.7%) and P-01 the lowest proportion (34 ± 13.1%) (Figure 2). The

highest VFS percentage (20.8 ± 8.6%) was observed in cruise P-02,
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while the lowest proportion (4.9 ± 2.3%) corresponded to P-04

(Figure 2). pH values ranged from 5.01 to 9.25 showing the highest

values in P-01 and the lower ones in P-02 (Supplementary Figure 1).

Overall, MS, FS, Cd, redox, and Al contributed most to the

environmental variability between cruises according to the

ANOVA results (Supplementary Table 2).
3.2 Microbial diversity and PERMANOVA

Community structure analysis grouped the samples into three

clusters (Figure 3A) differing in terms of the water depth (R2 = 0.56,

F2,102 = 64.48, P<0.0001) at which the analyzed sediments were

collected. In P-01 the samples were clustered following a clear

bathymetric gradient; cluster I included the samples collected from

44 to 107 m of the water column, cluster II the sediments collected

from 372.5 to 826 m of water, and cluster III the samples collected

from 1000 to 3548 m of water (Supplementary Figure 2). Based on

the community structure analysis, 17 of 27 samples showed

temporal stability, since they were in the same cluster campaign

after campaign (Figure 4; Supplementary Figure 2). The remaining

10 samples showed community structure shifts, and thus, they were

grouped in different clusters in some campaigns. Most of these 10

samples were in transect D, which showed larger differences than

the others, especially in P-02 and P-03 compared with P-01

(Supplementary Figure 2). Cruises, water depth, temperature,

salinity, NO−
3 + NO−

2 , SiO
4−
4 , redox potential, the concentration of

Ni, Cd, Pb, and Al, and the content of aliphatic and aromatic

hydrocarbons were related to community structure changes.

Nonetheless these parameters explained only a small proportion

of these changes (Figure 3B).

Shannon diversity index (H’) varied in the range from 5.4 to 7.5

(mean ± standard deviation, 6.7 ± 0.4) and was similar (P>0.05)

between clusters across the four campaigns according to the ANOVA

test (Supplementary Table 3). The species richness (S) based on the

number of ASVs varied in the range from 402 to 2581 (1247 ± 391).

P-01, P-03, and P-04 showed similar species richness between the

three clusters. However, cluster II showed a significant increase

(P<0.05) in the number of species during P-02 (Supplementary
Frontiers in Marine Science 05
Table 3). Both alpha diversity metrics showed differences only in P-

02 between transects with the highest values observed in transect D

(H’ = 1344 ± 128, S = 6.9 ± 0.06) (data not shown).
3.3 Community composition

Proteobacteria was the dominant phyla in all the sites among

cruises. At this taxonomic level Acidobacteria, Chloroflexi,

Planctomycetes, Nitrospirae (Nitrospirota), Gemmatimonadetes,

Actinobacteria, Bacteroidetes, and Bathyarchaeota were detected in

high abundances in the studied region (Supplementary Figure 4). The

most abundant microbial classes were represented by

Deltaproteobacteria, Gammaproteobacteria, Alphaproteobacteria,

Nitrospira, and Dehalococcoidia; although SAR202, Phycisphaere,

Anaerolineae, and Gemmatimonadetes showed high relative

abundances in microbial communities (Supplementary Figure 5). At

the family taxonomic level Syntrophobacteraceae, Rhodospirillaceae,

Nitrospiraceae, OM1 clade, JTB255marine benthic group (abbreviated

JTB255 MBG), Desulfobacteraceae, Desulfobulbaceae, Anaerolinaceae,

and Desulfurellaceae were among the most abundant groups detected

across campaigns (Supplementary Figure 6).
3.4 Differential abundances in
microbial communities

LEfSe analysis identified ASVs with consistent differences between

clusters. The ASVs with differential abundances between clusters were

related to 57 microbial families (Figure 4). The most differentially

abundant bacterial members in clusters I and II belonged to

Nitrospiraceae, Anaerolinaceae, and potential sulfate-reducing

bacteria affiliated to Syntrophobacteraceae, Desulfobacteraceae,

Desulfarculaceae, and Desulfobulbaceae. However, Nitrospiraceae

and Desulfobulbaceae were specially enriched in cluster I and

Syntrophobacteraceae was the most abundant phylogenetic unit in

cluster II with percentages higher than 10% in some samples

(Figure 4). Although clusters I and II had some families in

common, LEfSe analysis indicated differences between their
A B

FIGURE 3

Community structure analysis. (A) PCoA ordination of the community structure dissimilarity based on weighted UniFrac distance. (B) Results of the
permutational multivariate analysis of variance. Environmental variables significantly (P<0.05) related to microbial community structure changes.
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population structure. wb1-A12 and OM1 clade were detected as

differentially abundant groups in clusters II and III. However, they

were consistently more abundant in cluster III. Also of note was the

relevant representation of sulfate-reducing bacteria from the

Desulfurellaceae family in cluster III, as well as the abundance of

Rhodospirillaceae with percentages higher than 10% in some samples.

A similar distribution was found for Gemmatimonadaceae and

Nitrospinaceae in cluster III samples. The group JTB255 MBG was

relatively abundant at all depths, and therefore it was determined by

LEfSe to be characteristic of all sites (Figure 4).
3.5 Bacterial genera and
environmental variables

Analysis of multivariable association of microbial features revealed

25 genera correlated with specific environmental parameters (Figure 5).

The correlation of environmental variables with specific taxa was done

at genus level because this kind of analysis must be performed at the
Frontiers in Marine Science 06
lower taxonomic level to secure correspondence between metabolisms

related with the environmental parameters. ASVs affiliated to

Desulfatiglans and Sva008, as well as ASVs affiliated to uncultured

bacteria from Syntrophobacteraceae, Latescibacteria, Anaerolineaceae,

Nitrospiraceae, and an unassigned Dehalococcoidia genus were

positively related with temperature, salinity, and the content of

Pb, Al, and PAHs (Figure 5). ASVs affiliated to wb1-A12,

Rhodospirillaceae, Chloroflexi classes SAR202 and S085, NB1-j and

SAR324 clade marine group B from Deltaproteobacteria, Acidobacteria

class Subgroup22, Gemmatimonadaceae, Actinobacteria clade OM1,

and the Desulfurellaceae genus H16 were positively related with water

depth, NO−
3 + NO−

2 , SiO
4−
4 , redox, Cd, and Ni (Figure 5).
4 Discussion

Two years of sampling at two different seasons allowed to

evaluate the spatiotemporal dynamics of surficial benthic

microbial communities along a bathymetric gradient (44 -
FIGURE 5

Analysis of multivariable associations of microbial genera with environmental variables related with the community structure changes in PFB
sediments. These genera were present in 25% of the total samples.
FIGURE 4

Differential abundances analysis. Labels in y axis indicate the sample ID followed by the sampling campaign. Clusters I, II, and III, based on beta
diversity analysis, are indicated on top.
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3573 m). Alpha diversity analysis based on Shannon’s diversity

index showed spatiotemporal stability although the number of

ASVs suggested that an increase in the species richness may

reflect a larger environment variation. Beta diversity analysis

revealed three clusters of samples and indicated that community

structure changes were associated with sampling time, water depth,

temperature, salinity, redox, and the concentration of nutrients

(silicates and nitrate+nitrite), metals (Pb, Al, Ni, and Cd), and

PAHs. Based on beta diversity analysis, 17 out of 27 samples showed

temporal stability in the community structure and composition

during the four sampling campaigns. However, 10 samples showed

temporal variation in the community structure and composition

suggesting underlying processes that influence microbial

assemblages in the studied region. Moreover, microbial

community analyses allowed the detection of genera with putative

ecological relevance that correlated with specific environmental

parameters. These aspects are discussed below.
4.1 Alpha diversity stability

Previous studies in the PFB estimating alpha diversity, have

reported differences in microbial communities between shallow and

deep sites based on relatively small data sets at a single time point

(Sánchez-Soto Jiménez et al., 2018; Ramıŕez et al., 2020). In the

present study despite the environmental changes observed Shannon

diversity index was similar between the bathymetric zones and

remained relatively stable in the four sampling moments

(Supplementary Table 3). The lack of spatial variability in the

Shannon diversity between the bathymetric zones contrasts with a

previous study in which higher microbial diversity was observed in

shelf sediments (Sánchez-Soto et al., 2018). A strong physical

mixing and seasonality were suggested to explain higher diversity

in the shelf sediments (Sánchez-Soto et al., 2018). In the present

study environmental differences were found between the

bathymetric zones and the four campaigns, even between P-01

and P-03 conducted at the end of the dry season and between P-02

and P-04 conducted at the end of the rainy season (Figure 2;

Supplementary Tables 1, 2). This result suggests that microbial

communities might develop independently of environmental

changes as reported in other studies (King et al., 2013). It is

possible that a stable diversity indicates a stable state of the

ecosystem, since diversity is considered crucial in maintaining

ecosystem functions (e.g., organic matter decomposition, nutrient

cycling, and resistance and resilience to perturbations) (Loreau

et al., 2001; Lozupone and Knight, 2008; Deng, 2012).

Temporal and spatial differences observed in the number of

ASVs (species richness) indicated that species richness increased in

cluster II during P-02 (Supplementary Table 3), and in transect D in

this campaign (data not shown). The correspondence of a greater

number of species with significant changes in environmental

conditions observed in P-02 (Figure 2), suggests that changes in

the species richness may reflect larger environmental variability

(Walsh et al., 2016). Perhaps the increase in the number of species

allows maintaining the stability of the system since, there seems to

be a positive relationship between species richness and ecosystem
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temporal stability (Xu et al., 2021). The temporal environmental

variation that influences microbial richness could be related to the

latitudinal location of the transects, which has been found to explain

sedimentary differences resulting from the prevailing hydrographic

conditions throughout the year (Salcedo et al., 2017). The set of

samples analyzed at the end of the dry season (P-01 and P-03) and

at the end of the rainy season (P-02 and P-04) for two years, along

with the relatively larger ocean area into the nwGoM, provided

higher spatial and temporal resolution than previous works (e.g.,

Ramıŕez et al., 2020). However, further long-term studies are

prompt to explore microbial benthic communities using water

depth as an explanatory variable. This may allow to recognize

whether the alpha-diversity metrics such as species richness can be

used as sensitive indicators of environmental changes from shelf to

the deep-ocean over time in the PFB.
4.2 Beta diversity in the
bathymetric gradient

As documented previously, beta-diversity analysis at local and

regional scales in the GoM has shown that benthic microbial

communities living under comparable environmental conditions

(e.g., water depth, temperature, nutrients, electron acceptors, etc.)

may have greater similarity among them (Devereux et al., 2015;

Sánchez-Soto Jiménez et al., 2018; Overholt et al., 2019). In the

present study, PCoA clustered the samples in three groups

(Figure 3A). The environment variation between the shelf, slope,

and deep sea (Figure 2) may result in the community structure

differences between these zones as indicated by the beta diversity

analysis (Figure 3A). As water depth, temperature, salinity, redox,

and the concentration of nutrients (silicates and nitrate+nitrite),

metals (Pb, Al, Ni, and Cd), and PAHs changed along the

bathymetric zones, the abundance of prokaryotic species better

adapted to different conditions may increase, while the abundance

of less adapted species may decrease (Figure 5). Weighted UniFrac

distances suggested that benthic prokaryotes that changed in

abundance between shelf, slope, and deep zones were distantly

related (Figure 3A). The low relatedness of benthic prokaryotes that

changed in abundance between these zones may reflect alternative

community assemblages conformed by species with different

metabolic and functional requirements, and thus, with different

functions in the ecosystem (Ortmann and Ortell, 2014).

Shelf and slope sites (43-1200 m) presented lower redox

conditions and higher Al, Pb, and PAH concentrations, especially

in P-02 (Figure 2). Higher metal and hydrocarbon concentrations in

continental margin sediments are generally attributed to riverine

inputs, that also affect the deposition of fine grain sediments (Trefry

and Presley, 1976; Celis-Hernandez et al., 2018), which limit pore

water exchange, and thus, favoring a lower redox state in these sites

(Huettel et al., 2003; Burdige, 2007). Desulfarculaceae ,

Desulfobacteraceae, Syntrophobacteraceae , Nitrospiraceae,

Anaerolinaceae, and Dehalococcoidia were significantly more

abundant in these sites (Figure 5), and are recognized as

anaerobes (Matturro et al., 2017; Hoshino et al., 2020; Walker
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et al., 2021). Desulfarculaceae , Desulfobacteraceae , and

Syntrophobacteraceae are involved in the sulfur cycle through

sulfate reduction, the dominant process in the anaerobic

decomposition of OM in margin sediments (Parkes and Sass,

2007; Jørgensen et al., 2019). They may play a relevant role in

PAHs degradation and metal precipitation (Geets et al., 2005; Shin

et al., 2019) in the shelf and slope sediments. Nitrospiraceae

members are nitrite-oxidizing bacteria and recently have been

found to perform complete nitrification, oxidizing ammonia to

nitrate (Daims et al., 2015). Anaerolinaceae has been related to

higher OM loadings (Walker et al., 2021), although OM% was

similar along the bathymetric zones in the present study

(Supplementary Table 1), the lower redox state in shelf and slope

(Figure 2) would indicate a higher activity of the oxidation

processes (Alewell et al., 2008). Metabolic predictions from

Dehalococcoidia cells have indicated their capacity to oxidize

aromatic compounds, to be resistant to metals, and to use

multiple electron acceptors that enable these bacteria to develop

in low redox conditions (Wasmund et al., 2016). These taxa

comprised the assemblage in most sites in the shelf and slope

during the period of observation (Supplementary Figure 6;

Figure 4). Their putative metabolisms seemed to correspond to

the environmental conditions.

Deep sediments (>1200 m) presented higher redox conditions

and nitrate+nitrite, silicate, Ni, and Cd concentrations (Figure 2).

Higher redox values suggested oxic environmental conditions as

reported previously for these sites (Sánchez-Soto Jiménez et al.,

2018). Under oxic conditions, nitrite usually accumulates because

microorganisms may perform nitrification coupled to ammonia

oxidation (Orsi, 2018). Silicate is associated with biological

production (Sarmiento et al., 2004), and potential toxic Ni and

Cd are a growing concern in the GoM owing to anthropogenic

discharges (Ruiz-Fernández et al., 2019; Arcega-Cabrera et al.,

2022). The abundant (resident) taxa in this zone were represented

by Rhodospirillaceae, that has been related to an increase of

inorganic nutrients (Shi et al., 2017), Gemmatimonadaceae, with

aerobic bacteria capable to remove phosphorus (Zhang et al., 2003),

Clostridiaceae that includes bacteria related to respiration of sulfur

species (Muyzer and Stams, 2008), and OM1 clade, related to

nitrogen fixation to produce ammonia (Dworking et al., 2006). In

addition, a high abundance of wb1-A12 was detected which is

capable of nitrite oxidation under oxic and anoxic environmental

conditions (Orsi, 2018), and Desulfurella, related to sulfate-reducers

that has been detected in high abundances in the deep biosphere

(Orsi et al., 2016). Except for Desulfurellaceae, these taxa have been

detected in high abundances in the study region (Sánchez-Soto

et al., 2018; Ramıŕez et al., 2020; Sánchez-Soto et al., 2021). For

Desulfurella this is the first report in the GoM, but sulfate-reducers

seem to have an important role in oxic and metal rich deep

sediments in the PFB (Sánchez-Soto et al., 2021). These abundant

microbes found in most of the deep sites throughout the

observation period, may perform relevant microbial functions

under the prevailing environmental conditions, as posed for

microbial communities in other marine ecosystems (Gobet et al.,

2012). Thus, the detection of these abundant taxa with putative

ecological relevance at most sites in the deep zone in each campaign
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suggested a relative temporal stability in the deep microbial

assemblages in the PFB.
4.3 Temporal environment variation and
beta diversity

No seasonal patterns were observed when comparing sampling

cruises conducted at the end of the dry season (P-01 and P-03) and

at the end of the rainy season (P-02 and P-04) (Figure 2).

Nonetheless ANOVA test showed environmental differences

between campaigns (Supplementary Table 2). These results were

unexpected as it is well known that during the rainy season local

rivers dominate the shelf and upper slope (Zavala-Hidalgo et al.,

2003), while in the dry period Mississippi, Atchafalaya, and Texas

rivers affect the shelf (Salmerón-Garcıá et al., 2011). Deep sea is

dominated by the Mississippi, Colorado and Rıó Grande rivers

(Balsam and Beeson, 2003). The fluctuation in oceanographic

processes that affect the circulation and distribution of the

physicochemical properties may explain the apparent lack of

seasonality in the sedimentary environments analyzed during this

study as it has been reported elsewhere (Jochens and

DiMarco, 2008).

Most sites (17 of 27) showed temporal stability in microbial

assemblages since they were in the same cluster across campaigns.

However, 10 sites showed changes in the community structure in

different campaigns, mainly the transect D sites during P-02 and P-03

(Supplementary Figures 2, 3). The multivariable association analysis

revealed positive and negative relations between the abundances of

bacterial genera and specific environmental parameters that did exhibit

temporal variation (Figures 5, 2; Supplementary Table 2). The

complexity lies in that the parameters involved in structuring

microbial communities (i.e., temperature, redox, salinity, nutrients,

metals, hydrocarbons) changed differently between the bathymetric

zones in each campaign (Figure 2; Supplementary Figure 1). This may

be related to the fact that the sedimentary physicochemical properties

that drove the changes in benthic prokaryote communities are closely

linked with the hydrological and oceanographic dynamics of the study

site according to its latitudinal and longitudinal location (Jochens and

DiMarco, 2008; Hernández-Molina et al., 2016; Salcedo et al., 2017).

Likely, the biochemical properties in surface sediments can show spatial

and temporal variability ranging from millimeters to decimeters and

seconds to seasons (Huettel et al., 2003). The combination of changes

in community-structuring variables may partially explain a deep

microbial assemblage being present on the shelf and a shelf

microbial assemblage being present in the deep zone, as we observed

in this study at 10 specific locations (Figure 2B; Supplementary

Figure 2). In this regard, community assembly can be interpreted

under contrasting perspectives such as deterministic niche paradigm

and stochastic or neutral community models which are not necessarily

exclusive (Pholchan et al., 2013). An understanding of the temporal

and spatial scales over which these community changes occur might

indicate underlying processes of microbial assemblages, and whether

changes in microbial communities affect the functioning of the system

or whether it is a mechanism to maintain ecosystem functions

and services.
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Environmental changes over time and space may provide an

array of niches occupied by metabolically diverse microorganisms

(Anderson et al., 2015; Yu et al., 2016). For instance, niche

separation of ammonia-oxidizing ecotypes has been proposed by

finding a dominant ecotype under oxygen- and ammonia-rich

conditions, and a dominant ecotype in oxygen- and ammonium-

poor conditions (Muck et al., 2019). In the present study the

presence of Thaumarchaeota, Nitrospinae, Planctomycetaceae,

Nitrospira, and Nitrosomonadaceae (Figure 4; Supplementary

Figures 4, 6), provided evidence of nitrification and denitrification

processes in the studied sites according to literature (Yu et al., 2016;

Muck et al., 2019; Overholt et al., 2019). However, putative

ammonia oxidizers related to Nitrospirota genera were associated

to different physicochemical variables (Figure 5) revealing a

preference distribution, likely due to a niche differentiation. A

genus related to the wb-A12 family (Nitrospira) was positively

associated with depth, nitrite+nitrate, silicate, Cd, and Ni,

suggesting a higher abundance toward slope and deep sites. wb-

A12 has been related to nitrite oxidation (Orsi, 2018). Under oxic

environmental conditions, such as the deep sites, nitrogen oxides

commonly accumulate because microorganisms may perform

ammonia oxidation to nitrite. Ammonia in oxic sediments is

usually low because it can be used as an energy source when OM

is scarce (Orsi, 2018), however, ammonium was not measured in

this study. On the contrary, a genus from Nitrospiraceae was

positively associated with temperature, salinity, lead, aluminum,

and PAHs, suggesting its higher abundance in the shelf microbial

assemblages (Figure 5). Lower nitrite+nitrate concentration in these

sites may be attributed to denitrification processes (Braker et al.,

2012). These results propose the existence of different

microorganisms likely being keystones in ecosystem functions

under different conditions.

The positive correlation between bacterial relative abundance and

the concentration of silicate, nitrate plus nitrite, Ni, and Cd represented

a feature in the deep zone (Figure 5). It has been found that Ni and Cd

may affect microbial growth (Cabrera et al., 2006). However, it has been

proposed that in environments poor in organic matter (<2%), as the

analyzed sediments (Supplementary Figure 1), microorganisms can

take advantage of the precipitation of minerals and metals that are

necessary for microbial growth and metabolism. For instance, H2

production by nickel-containing hydrogenases may be influenced by

metal ions in the environment (Martins and Pereira, 2013). There

seems to be a mutual influence between the precipitation of silica

minerals/metals and microbial community composition which is

influenced by environmental geochemistry (Sauro et al., 2018). The

increase in metal concentration and inorganic cations has been found

parallel to the silica minerals increase as in the present study (Figure 2).

Precipitation of silica minerals and metals is influenced by

alkalinization and the production of extracellular polymeric

substances (EPS) that may result from microbial processes such as

sulfate reduction, inorganic nitrogen transformation, and MO

degradation (Braissant et al., 2007; Sauro et al., 2018). In this respect,

sediments in the deep zone showed an abundance of microorganisms

able to perform nitrogen fixation to produce ammonia such as OM1

clade, nitrite oxidation such as wb1-A12, sulfate reduction such as

Desulfurellaceae, and organic carbon degradation such as heterotrophic
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bacteria related to SAR324 (Dworking et al., 2006; Sheik, Jain, and

Dick, 2014; Orsi et al., 2016; Orsi, 2018). Thus, it is possible that

temporal changes in microbial community composition may affect the

dynamic of silica minerals and metals in these environments.

Temperature, salinity, and PAHs can induce changes in microbial

communities (Roussel et al., 2015; Chen et al., 2017; Chen et al., 2018;

Shin et al., 2019) as was observed in the current study (Figure 3B).

Temperature changes may affect microbial activity, growth rates, and

survival (Degerman et al., 2013; Orsi, 2018), higher salinity has been

found to stimulate carbon metabolism and microbial processes such as

sulfate reduction (Sivakumar et al., 2019), and PAHs can be degraded

by aerobic and anaerobic bacteria or also inhibit microbial growth

(Haritash and Kaushik, 2009). In marine sediments anaerobic

degradation of PAHs by sulfate reducers has been demonstrated

(Hamdan et al., 2017; Shin et al., 2019). This allows proposing that

bacteria positively related with PAHs such as Desulfatiglans, Sva-0081,

and Syntrophobacteraceae genera (Figure 5), detected in high

abundance in the shelf and slope may represent a biological

mechanism to control the concentration of PAHs in the

environment, that showed higher concentrations in this study (0.002

to 0.2 µg g-1) than reported (0.01-0.07 µg g-1) (Botello et al., 2015).

Otherwise, PAHs could be toxic compounds (Haritash and Kaushik,

2009). In this regard, PAH concentrations seemed to affect the

abundance of other microorganisms such as SAR324 genus which

seemed to be better represented in deep sites (Figure 5). SAR324

members have been linked to sulfur oxidation, nitrite reduction and

alkane degradation, thus, these bacteria could control the concentration

of simple hydrocarbons in the environment over time. In future works

it would be interesting to address the effect of hydrocarbons in

structuring benthic microbial communities under different

environmental conditions and to explore the ecological relevance of

benthic prokaryotes to control the concentration of different

hydrocarbons in the PFB.
5 Conclusion

A two-year study at the end of the dry (P-01 and P-03) and the

end of the rainy (P-02 and P-04) seasons was undertaken to compare

the diversity, structure, and composition of benthic microbial

communities to determine whether changes in benthic microbial

assemblages are associated with spatial and temporal environment

variation. The alpha diversity based on the Shannon index was

similar in the bathymetric gradient over time. However, differences

in the number of ASVs, suggested that higher species richness may

reflect larger environmental changes. Species richness increase could

be crucial to maintain ecosystem stability and ecosystem functions.

Beta diversity analysis revealed that samples were grouped in three

different clusters according to the depth gradient. The differences in

the community structure between these clusters were related to the

campaign, and changes in the water depth, temperature, salinity,

redox, nitrate plus nitrite, silicate, Ni, Cd, Pb, Al, and aliphatic and

aromatic hydrocarbons. Shelf and slope microbial assemblages

showed high abundances of anaerobes related to sulfate-reduction,

nitrate respiration, anaerobic degradation of OM, and the oxidation

of PAHs. Deep sea microbial assemblages were integrated by
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members related to sulfur respiration, nitrogen fixation, and nitrite

oxidation among other processes. Microbial composition in the shelf,

slope, and deep sea showed relative temporal stability in most sites.

However, environmental heterogeneity over time was complex and

could provide different niches for ecotypes better adapted to specific

environmental conditions, which could explain community structure

changes in 10 out of 27 sites. Changes in benthic microbial

communities may reflect the temporal fluctuation in the

physicochemical properties of sedimentary environments, which

may result from the prevailing oceanographic conditions according

to the latitudinal and longitudinal location of the study site. Taken

together, these results yield insights into the spatiotemporal dynamic

of benthic bacterial communities in the PFB, nwGoM. However,

long-term studies are needed to explore benthic microbial

communities using water depth as an explanatory variable. This

could allow the identification of sensitive bioindicators of

environmental changes. Also, it is necessary to address in more

detail the diversity of functional groups (including abundant and rare

taxa) and their ecological relevance concerning biogeochemical

cycles, nutrient supply, and metals and hydrocarbon

transformations. An important issue is to understand whether

changes in microbial communities affect system functioning or

whether this is a mechanism for maintaining ecosystem functions

and services under environmental variability.
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Ramıŕez, D., Vega-Alvarado, L., Taboada, B., Estradas-Romero, A., and Juárez, K.
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Salmerón-Garcıá, O., Zavala-Hidalgo, J., Mateos-Jasso, A., and Romero-Centeno, R.
(2011). Regionalization of the gulf of mexico from space-time chlorophyll-a
concentration variability. Ocean Dynam. 61 (4), 439–448. doi: 10.1007/s10236-010-
0368-1

Sánchez-Soto, M. F., Cerqueda-Garcıá, D., Alcántara-Hernández, R. J., Falcón, L. I.,
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