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Application of machine learning
algorithms for prediction of
ultraviolet absorption spectra of
chromophoric dissolved organic
matter (CDOM) in seawater

Aobo Ju, Hu Wang*, Lequan Wang and Yuang Weng

State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
The ultraviolet absorption spectra of chromophoric dissolved organic matter

(CDOM) can be used to trace its sources and to explore the dynamic of the

CDOM pool. In previous studies, only the spectra above 240 nm can be used

directly to characterize the CDOM in seawater, due to the overlapping of CDOM

absorption spectra below 240 nm with inorganic chemicals such as NO−
3, NO

−
2, Cl

-

and Br-. In this study, three different machine learning models, back propagation

neural network (BPNN), random forest (RF) and extreme gradient boosting

(XGBoost), were built to predict the CDOM ultraviolet absorption spectra

between 215 and 350 nm after being trained with the raw absorption spectra of

seawater. The optimal input wavelength range of the raw seawater spectra is

250-350 nm, and the optimal model parameters of machine learning algorithms

were determined by using five-fold cross validation. The results show that the

three models can well predict the CDOM absorption spectra. Comparatively, the

XGBoost model gave the best prediction results. The reasons might be related to

the fact that the XGBoost algorithm focuses on the residuals generated by the last

iteration, which can reduce both variance and bias, especially for datasets with

small sample sizes. Based on the predicted spectra by XGBoost algorithm, we

calculated the spectra slopes of short wavelengths between 215 and 240 nm

(S215-240) and between 215 and 275 nm (S215-275). The results show that the S215-240
and S215-275 are ~2 times the widely used spectra slopes between 275 and 295 nm

(S275-295) obtained by traditional method based on the raw spectra. Moreover, the

S215-240 and S215-275 are more relavant with salinity for marine CDOM than S275-295,

suggesting spectra slopes of shorter wavelengths might be the better proxies for

marine CDOM than that of longer wavelengths.
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1 Introduction

Chromophoric dissolved organic matter (CDOM), which is also

called yellow substance, widely exists in oceans, lakes and rivers. It

plays a key role in climate-related biogeochemical cycles in aquatic

ecosystems, such as carbon dynamics, phytoplankton activity,

microbial growth and ecosystem productivity (Nelson and Siegel,

2013; Stedmon and Nelson, 2015). CDOM is a soluble and complex

mixture of many kinds of organic substances, including humic acid,

fulvic acid and aromatic polymers (Li and Hur, 2017; Zhang et al.,

2021), which constitutes a significant fraction of the DOM pool in

natural waters (10 ~ 90%) (Twardowski et al., 2004). CDOM can

absorb both ultraviolet and visible (UV-Vis) light and it is well known

that the optical properties of CDOM in seawater can be used to trace

its sources and to explore the dynamic of the CDOM pool

(Whitehead et al., 2000; McKnight et al., 2001; Stedmon and

Markager, 2001; Baker and Spencer, 2004; Guo et al., 2007; Yang

et al., 2013; Yamashita et al., 2013; Jørgensen et al., 2014). However,

due to the complexity of CDOM compositions, it is difficult to link the

optical absorbance directly to CDOM concentrations or its chemical

compositions (Del Castillo and Coble, 2000; Zhao et al., 2018; Nima

et al., 2019). Since the UV-Vis absorption spectra of CDOM decrease

approximately exponentially with increasing wavelength, exponential

models are generally used to describe CDOM absorption spectra

(Stedmon and Markager, 2001; Twardowski et al., 2004; Helms et al.,

2008; Li and Hur, 2017). The most often used model is given in

Equation (1).

ACDOM lð Þ = ACDOM l0ð ÞeS l0−lð Þ + k (1)

where l is the wavelength (nm), l0 is a reference wavelength

(nm), ACDOM(l) and ACDOM(l0) are the CDOM absorbance at the

wavelength of l and l0, k is a background constant (m-1), S is the

spectral slope (nm-1) that describes the approximate exponential rate

of decrease in absorption with increasing wavelengths.

The S, k and Equation (1) for characterizing different CDOM are

usually obtained over the wavelength ranges of > 275 nm (e.g., 275-

295, 350-400 and 300-600 nm) (Twardowski et al., 2004; Li and Hur,

2017). Only recently, Massicotte and Markager (2016) used a

Gaussian decomposition approach to model CDOM absorption

spectra between 240 and 700 nm, which can remove the errors

associated with the choice of the spectral range used to estimate S.

However, the spectra below 240 nm can’t be modelled directly using

Equation (1), because several inorganic ions in seawater including

NO−
3 , NO−

2 , Cl
- and Br- have strong absorbance between 190 and

250 nm (Figure 1), which overlap with that of CDOM (Guenther

et al., 2001; Johnson and Coletti, 2002). Vice versa, when measuring

NO−
3 and NO−

2 by ultraviolet spectroscopic method, CDOM would

interfere with the analyzing results (Armstrong, 1963; Johnson and

Coletti, 2002; Sakamoto et al., 2009). Therefore, unraveling the

CDOM UV absorbance below 240 nm can improve the

understanding of CDOM light absorbance characteristics and help

to determine NO−
3 and NO−

2 concentrations in seawater accurately

when using spectroscopic techniques.

Machine learning algorithms can cope with nonlinearity and

other complex regression problems (Verrelst et al., 2012). In the

last decade, machine learning techniques have been increasingly
Frontiers in Marine Science 02
employed to estimate CDOM abundance and trace their sources

and reactivity. However, most of these studies built machine learning

models based on CDOM fluorescence spectroscopy (Stedmon et al.,

2003; Stedmon and Bro, 2008; Murphy et al., 2008; Nelson and

Gauglitz, 2016; Murphy et al., 2018; Sun et al., 2022), which can

provide rich information with its three-dimensional data (i.e.

excitation, emission and intensity) (Stedmon et al., 2003; Stedmon

and Bro 2008; Coble et al., 2014; Murphy et al., 2018; Marıń-Garcıá

and Tauler, 2020). In addition, many scholars have developed

algorithms based on remotely sensed reflectance to characterize

CDOM (Cao and Miller, 2015; Ruescas et al., 2018; Zhao et al.,

2018), although it is difficult to obtain an accurate estimation of

CDOM from satellite data due to its low optical signals and

absorption spectral shapes that are similar to those of

nonphytoplankton particulate matter (Zhang et al., 2021). To data,

there are no reports on CDOM UV-Vis spectra below 240 nm

combined with machine learning models.

In this work, we aim to model the UV-Vis absorption spectra of

CDOM in seawater between 215 and 350 nm by machine learning

models based on the raw absorption spectra of seawater. Three

machine learning algorithms, back propagation neural network

(BPNN), random forest (RF) and extreme gradient boosting

(XGBoost), were implemented to establish the prediction models.

The optimal input wavelength range and model parameters were

selected and the results from the three algorithms were evaluated

and compared.
2 Materials and methods

2.1 Apparatus

A UV-Vis spectrophotometer (Specord plus 210, Analytik Jena

AG, Germany) was used to collect absorption spectra of seawater

from 200 to 350 nm. All the samples were measured in a 3.0 cm quartz

cuvette with spectral resolution set to 0.2 nm. The script programs for

the XGBoost, RF and BPNN algorithms were written based on

python language.
FIGURE 1

Absorption spectra of NO−
3 ,   NO−

2 , and sea salt (salinity) in seawater.
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2.2 Data preprocessing

2.2.1 Dataset
Water samples with different NO−

3 , NO−
2 and CDOM

concentrations and salinities were collected from the Changjiang

River Estuary and East China Sea. These samples were split into a

training and test set at a ratio of 2:1, and 20% of the training set samples

were randomly taken as validation set. Notably, the splitting ratio of

training and test sets can be 3:1 or 4:1, etc according to the number of

samples. While selecting the samples, care was taken to include one-,

two- and three-component of NO−
3 , NO

−
2 and salinity with various

concentrations in the training set in order that the built models have

better prediction performance (Mitchell, 1997; Quinonero-Candela

et al., 2008). Hence, several natural seawater samples were diluted by

Milli-Q water or added by standard NO−
2 solutions considering the very

lowNO−
2 concentrations in samples compared with NO−

3 (Table 1). The

resulting NO−
3 and NO

−
2 concentrations and salinities in the training set

ranged from 0 to 85.62 mM, 0 to 14.60 mM and 0 to 35.42 PSU (practical

salinity units), respectively (Table 1), which can cover their

concentrations in the Changjiang River Estuary and East China Sea.

2.2.2 Calculation of the theoretical CDOM
absorption spectra

In seawater, the main inorganic and organic chemical substances

absorbing UV light include NO−
3 , NO−

2 , salinity and CDOM. As a

result, the CDOM absorbance can be obtained from the difference

between the total seawater absorbance (Al) and the absorbance of

NO−
3 , NO−

2 and salinity ( ANO −
3
, ANO −

3
, Asalinity ), which can be

shown in Equation (2). Based on the Beer-Lambert law, Equation (2)

can be changed to Equation (3).

ACDOM, l = Al − ANO −
3 ,  l + ANO −

2 ,  l + Asalinity,  l

� �
(2)

ACDOM, l = Al − b

� ϵNO −
3,  l � CNO −

3
+ ϵNO −

2 , l  � CNO −
2
+ ϵsalinity, l � salinity

� �
(3)

Where b is the path length (cm) of the optical cell, ϵ is the absorption
coefficient of the subscripted species (l mol-1 m-1 for NO−

3 andNO
−
2 , PSU

-

1 m-1 for salinity), C is the concentration of the subscripted species. Each

ϵ value can be obtained by measuring the absorption in the standard

solutions with known concentrations. NO−
3 and NO−

2 concentrations

were measured by conventional wet-chemical analyses (colorimetric

Griess assay) using an AA3 Auto-Analyzer (Bran Luebbe Co.,

Germany). NO−
2 was determined using the pink azo dye

spectrophotometric method at wavelength of 543 nm. NO−
3 was first

reduced to NO−
2 using a cadmium column before measurement. Salinity

values of the samples were from an in-situ conductivity-temperature-

depth (CTD) recorder (SBE911, Sea-Bird Co., USA) onboard.

2.3 Machine learning algorithms

2.3.1 BPNN
BPNN is a multi-layer feedforward artificial neural network

trained by error back propagation algorithm (Rumelhart and
Frontiers in Marine Science 03
McClelland, 1986; Zhou and Li, 2020). It consists of input layer,

hidden layer and output layer. In BPNN, considering the neurons

between different layers are inter-connected, each layer is also called

as a fully connected (FC) layer, which can combine the features from

the previous layer (Hecht-Nielsen, 1992; Erb, 1993; Li et al., 2012;

Tawfik et al., 2018). BPNN uses activation functions to accomplish

nonlinear data transformation, which is added to the FC layer and

allows the network to create arbitrary nonlinear complex mappings

between inputs and outputs. The commonly used activation functions

include sigmoid and ReLU, which are shown in Equations (4) and (5).

f xð Þ = s xð Þ = 1
1 + e−x

(4)

f xð Þ = ReLU xð Þ =
0   for   x < 0

x   for   x ≥ 0

(
(5)

The BPNN model is trained by continuously adjusting the

weights and thresholds of each neuron, and the training processes

consist forward propagation and backward feedback. The former

transmits the output values layer by layer, while the latter sums the

error derivatives for weights in the reverse direction until all the data

are run through the network once (Dong et al., 2020). This constitutes

an epoch, and the weights are updated after each epoch such that the

model error decreases (Primadusi et al., 2016).

In this paper, the input, output and the theoretical output of

BPNN model are respectively x = (x1, x2, ···, xn), y = (y1, y2, ···, ym) and

d = (d1, d2,···, dm). The xn represents the n-th wavelength of the input

raw seawater spectra, the ym and dm represent them-th wavelength of

the calculated and theoretical output CDOM spectra, respectively.

2.3.2 RF
As an ensemble learning method, RF creates multiple decision

classification trees with random subsets of the original training dataset

(Breiman, 2001; Cutler et al., 2012). By averaging the predictions of

each decision tree, RF can get a more accurate result. The training

subset of each tree is generated by a bootstrapping procedure, which

divides the training dataset into an “in-bag” subset for the training of

the decision tree and an “out-of-bag” subset not included in the training

process. This partitioning is unique for each tree in the forest and hence

provides a significant internal validation. As a result, RF can overcome

the disadvantages of overfitting and instability and has good robustness

and high interpretability (Khoshgoftaar et al., 2007; Primadusi et al.,

2016). More specific details of RF algorithm can be found in Breiman’

article (Breiman, 2001).

Here, the samples in the training set are randomly sampled

repeatedly by bootstrap resampling technology to generate K sub-

training sets, and each sub-training set constructs a regression tree.

The prediction result of CDOM spectrum in the i-th seawater sample

can be calculated as follows:

y xið Þ = 1
Ko

K
j=1y xi,j, qj

� �
(6)

Where xi, j denotes the input raw seawater spectra of the i-th

sample in the j-th sub-training set, qj is the random variable of the j-th

regression tree, y(xi,j,qj ) represents the predicted CDOM spectra of

the j-th regression tree for the i-th sample.
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2.3.3 XGBoost
XGBoost is an improved algorithm based on gradient boosting

decision tree. It is developed to increase the computing speed and
Frontiers in Marine Science 04
accuracy, and thus require less training and prediction time. Instead

of averaging independent trees, XGBoost recursively adds decision

trees that are created from the prediction errors or residuals of the
TABLE 1 Samples of the training and test sets.

Training & validation set samples

No. NO−
3 (mM) NO−

2 (mM) Salinity (PSU) No. NO−
3 (mM) NO−

2 (mM) Salinity (PSU)

1* 0.00 0.00 6.78 24 4.73 4.72 2.36

2* 0.00 0.00 16.95 25 0.24 0.06 21.50

3 0.00 0.00 27.12 26 23.51 3.93 24.05

4# 0.00 1.94 26.08 27 3.29 1.32 34.16

5 0.00 0.50 32.21 28# 0.00 9.15 12.33

6 20.89 5.30 25.31 29 55.12 0.00 15.07

7 11.67 2.96 19.94 30 8.27 1.05 14.12

8# 52.22 10.59 8.92 31# 25.44 10.32 13.91

9 0.49 0.49 33.23 32 20.89 5.30 8.92

10 0.95 0.97 26.08 33 9.23 1.17 12.61

11 26.85 4.69 3.36 34 4.61 2.34 25.23

12 25.68 0.05 36.42 35 10.24 3.02 25.91

13 11.55 5.28 23.24 36 45.23 5.66 3.34

14# 31.94 9.08 22.69 37 9.03 0.08 33.03

15# 39.12 14.60 11.05 38 32.54 0.08 35.42

16 17.51 2.63 22.53 39 9.68 3.85 11.98

17 9.35 0.10 35.10 40 66.87 4.45 15.54

18 24.70 0.21 23.52 41 51.12 0.32 13.94

19 0.16 0.07 34.29 42 10.83 0.22 31.84

20 0.11 0.03 34.89 43 9.40 0.98 31.03

21 9.43 1.65 11.73 44 10.18 1.02 23.21

22 7.65 1.84 12.18 45 10.21 0.74 27.93

23 9.36 4.68 9.35 46 25.69 0.64 26.92

Test set samples

1 4.75 0.96 31.44 13 0.97 0.00 32.23

2 5.25 1.06 17.94 14 8.76 0.00 24.29

3 0.68 0.00 24.26 15 23.95 3.76 28.86

4 11.81 2.40 10.09 16 4.91 0.98 9.80

5 85.62 2.22 1.51 17 4.75 0.96 8.11

6# 19.23 7.11 23.45 18 32.90 3.03 24.26

7 27.47 0.06 35.77 19 75.35 0.51 11.58

8 23.47 3.83 27.77 20 6.54 0.59 23.26

9 5.18 0.00 24.75 21 7.93 0.41 27.59

10 23.91 3.74 31.58 22 18.21 0.92 30.60

11 22.54 4.36 25.32 23 10.81 0.52 22.87

12 9.45 0.00 25.83
* - diluted samples, # - samples spiked with standard NO−
2 solution.
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previous tree model until no significant improvement is detected

(Abdel-Rahman et al., 2017). Unlike RF, where the decision trees run

in parallel and there is no interaction between trees, XGboost

generates trees in chronological order with constant error correction.

The objective functions of the XGBoost algorithm consist of a loss

function (L) and a regularization term (W) that suppresses the

complexity of the model, which are shown in Equations (7) and

(8). The loss function represents the bias of the model, and the

inclusion of the regularization term reduces the variance to prevent

overfitting. Both the bias and variance are used to determine the

prediction accuracy of the model (Fan et al., 2018). More specific

details can be found in Chen and Guestrin’s research (Chen and

Guestrin, 2016).

Obj =on
i=1L yi, ŷ ið Þ +ot

i=1W f ið Þ (7)

W f tð Þ = gT +
1
2
loT

j=1w
2
j (8)

Where Obj is the objective function, L is the loss function term,W
is the regularization term, ŷ i is the predicted value of the i-th sample,

yi is the theoretical value of the i-th sample, g is the leaf tree penalty
regular term with pruning effect, T is the number of leaf nodes per

tree, l is the leaf weight penalty regular term to prevent overfitting, w
is the leaf weight value.

Here, the input X of the model is a matrix with size N × M, where

N is the number of seawater samples and M is the number of input

raw seawater spectral wavelengths. The output Y of the model is a

matrix with size N × L, where N is the number of seawater samples

and L is the number of output CDOM spectral wavelengths. The

model is trained with the samples in the training set to minimize Obj

in Equation (7).
2.4 Evaluation of the algorithmic
model performance

The prediction accuracy and performance of different algorithmic

models are evaluated with the correlation coefficient (R2), mean

absolute error (MAE), and root mean square error (RMSE) between

the theoretical and the predicted CDOM spectra between 215 and 350

nm. These evaluation metrics are defined as follows (Equations (9)-

(11)).

R2 =
SSR
SST

= oi ŷ i − �yð Þ2

oi yi − �yð Þ2 (9)

MAE =
1
No

N
i=1 yi − ŷ ij j (10)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1 yi − ŷ ið Þ2

r
(11)

Where yi and ŷ i are the theoretical and predicted absorbance of

CDOM in the i-th sample, �y is the average of the theoretical

absorbance of CDOM in those samples, and N is the number

of samples.
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2.5 Model development

In this study, the BPNN, RF and XGBoost algorithms were used

to establish the spectral prediction model of CDOM, respectively. The

flow chart of the model development is shown in Figure 2, which

includes three steps.

Step 1. Data preprocessing. Use the instruments and methods

mentioned above to obtain the raw seawater spectra of each sample.

Analyze the NO−
3 and NO−

2 concentrations in the samples using

colorimetric Griess assay. Then, the theoretical CDOM spectra were

calculated using Equation (3).

Step 2. Model construction. In order to avoid overfitting, five-fold

cross validation was used to select the optimal model parameters. The

absorption spectra of the samples in the training set were used to train

the three machine learning models, respectively, and then the

validation set samples were evaluated with the evaluation metrics in

Section 2.4. In order to obtain the best prediction results, the input

wavelength range and model parameters (layers, the node number

and training epochs of BPNN, the number of trees of RF and

XGBoost, etc.) need to be tuned according to the evaluation results.

Step 3. Model application. Use the built BPNN, RF and XGBoost

models to predict the CDOM absorption spectra between 215 and 350

nm for the samples in the test set. The prediction results were

evaluated by comparing to the theoretical spectra obtained in Step 1.

3 Results and discussion

3.1 The theoretic CDOM absorption spectra

The absorption spectra of CDOM between 215 and 350 nm in each

sample was calculated based on Equation (3). The absorbance below

215 nm was not calculated because the absorbance was saturate. The

results show that all the spectra show a similarly exponential decay

model, with the absorbance decreasing rapidly from 215 and 240 nm

and then decreasing slowly above 240 nm. Comparatively, the coastal

water samples with lower salinity had higher absorbance of CDOM. For

example, the train sample 40 (salinity = 15.54) and test sample 19

(salinity = 11.58) had absorbance of higher than 0.35 at 215 nm

(Figure 3). While those samples with higher salinity had lower

absorbance, such as the train sample 9 (salinity = 33.23) and test

sample 1 (salinity = 31.44) (Figure 3).

The presence of a broad spectral peak between 260 and 275 nm

characterized most samples, which had also been found in previous

studies (Guenther et al., 2001; Johnson and Coletti, 2002). The reason

was ascribed to the specific kind of organic matter. Noteworthy, the

sulfides have also an absorbance peak near 260 nm. An absorbance of >

0.5 has been observed in sediment pore water (Guenther et al., 2001).

However, in oxygenated and alkaline seawater, the sulfide

concentrations are normally very low. Its absorbance can be neglected.
3.2 Selection of wavelength range for
model input

The wavelength selection is to choose an optimal wavelength

range of raw seawater spectra with which the established model has
frontiersin.org
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the best prediction ability. Contrarily, the inclusion of uninformative

wavelengths in the training process would affect the accuracy of

prediction and model interpretability. Here, we trained the models

using the raw seawater absorption spectra with different wavelength

ranges between 215 and 350 nm, e.g. 230-350, 240-350, 230-340, 240-

340, 250-350 nm, etc. Then, the results were evaluated by calculating

the R2, MAE and RMSE between the predicted CDOM spectra and

theoretical CDOM spectra of the validation set. The wavelength

interval with maximal R2 and minimal MAE and RMSE was

selected as the optimal wavelength range. The prediction accuracies

of the models using different wavelength ranges are shown in Figure 4.

The results suggest that the optimal wavelength range was 250-350

nm for both the BPNN and XGBoost models, which had the maximal

R2 of 0.786 and 0.809, the minimal RMSE of 0.0103 and 0.0095 and

the minimal MAE of 0.0043 and 0.0037 respectively. For the RF

model, although 240-350 nm was the optimal wavelength interval, its

prediction results (R2 = 0.8061, RMSE = 0.0096, MAE = 0.0036) were

very close to that of 250-350 nm range (R2 = 0.8040, RMSE = 0.0095,
Frontiers in Marine Science 06
MAE = 0.0037). Hence, 250-350 nm was chosen to train the three

models and predict the CDOM spectra between 215 and 350 nm.
FIGURE 3

CDOM ultraviolet absorption spectra of seawater samples.
FIGURE 2

Flowchart of the machine learning models for CDOM spectrum prediction.
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3.3 Optimization of model parameters

3.3.1 The epoch of the BPNN model
In this study, the BPNN model consisted of three FC layers with

nonlinear activation functions. The first two activation functions were

the ReLU functions, while the third activation function was the

Sigmoid function. The number of training epoch is another

important model parameter for BPNN model. The inadequate or

excessive training epochs may cause underfitting or overfitting and

affect the prediction performance. The R2 and RMSE of the validation

set were used to determine the optimal number of training epoch for

the model. The BPNN model was trained 1000 epochs using samples

of the training set, and the resultant R2 and RMSE of the training and

validation sets are shown in Figure 5A, B. It suggests that the R2 of

both the training and validation sets increased as the epoch increased

and remained stable until 200 epochs (Figure 5A). Accordingly, the
Frontiers in Marine Science 07
RMSE decreased with the increase of epoch till 200 (Figure 5B).

Therefore, 200 epochs were selected as the training times for the

BPNN model.

3.3.2 The number of decision trees of the RF and
XGBoost model

In XGBoost and Random Forest models, the number of trees

represent the number of base classifiers. Less trees would lead to a

poor model performance and higher prediction error. Since XGBoost

and RF models don’t cause over-fitting, the number of trees can be as

large as possible to make the model have good generalization ability.

However, the superfluous trees would increase the complexity of the

model and the running time of the model.

Similar to BPNN, the R2 and RMSE of the training and validation

sets were applied to determine the optimal numbers of trees for

XGBoost and RF models, which are shown in Figures 6A-D. For
B

C

A

FIGURE 4

The (A) R2, (B) RMSE and (C) MAE between the predicted and theoretical absorbance for different wavelength ranges.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1065123
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ju et al. 10.3389/fmars.2023.1065123
XGBoost model, as the tree numbers were more than 200, the R2 was

the largest and RMSE was the lowest for both the training and

validation sets. Hence, 200 was chosen as the optimal number of

trees. Similarly, for RF model, 50 was chosen as the optimal number

of trees.
3.4 Comparison of the results from the built
BPNN, RF and XGBoost models

Based on the optimal wavelength range and model parameters,

the three machine learning models were trained using the spectra of

the training set samples. Then it was used to predict the CDOM

spectra of the test set samples. In Figure 7, we show the prediction

results of CDOM spectra of several samples in the test set. For

comparison, the theoretical CDOM spectral are also shown. The

results suggest that there was no significant difference between the
Frontiers in Marine Science 08
results from the three models, and they were consistent with the

theoretical CDOM spectra between 215-350 nm. Comparatively, the

XGBoost model gave the best prediction results, which had the

highest R2 and lowest RMSE and MAE (Figure 4).

Furthermore, we plotted the predicted absorbance at 215, 220

and 240 nm of all the samples in the test set against the theoretical

absorbance in Figure 8. The correlation coefficients (R2) and slopes

can be used to evaluate the correlation and close proximity between

the predicted and theoretical absorbance. We found that both

XGBoost and RF models have better R2 and slope at 215, 220 and

240 nm. While XGBoost model had slopes closer to 1 (0.92, 0.92 and

1.00), although they had similar R2 values. This indicates the

predicted absorbance was more fit to the theoretical value. It is

known that, as integrated learning algorithms, XGBoost and RF can

overcome the disadvantage of overfitting by creating multiple

decision trees (Breiman, 2001; Chen and Guestrin, 2016). In

addition, both XGBoost and RF have been shown to outperform
BA

FIGURE 5

Variation of R2 (A) and RMSE (B) with the numbers of epoch of the BPNN model. The error bars indicate ± 1 standard deviation.
B

C D

A

FIGURE 6

Variation of R2 and RMSE of the RF (A, B) and XGBoost (C, D) models with different numbers of decision trees. The error bars indicate ± 1 standard
deviation.
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B

C D

A

FIGURE 7

The predicted results from the BPNN, RF and XGBoost models. (A) - test sample 4, (B) - test sample 16, (C) - test sample 20, (D) - test sample 8.
B C

D E F

G H I

A

FIGURE 8

The relationships between the predicted and theoretical absorbance of CDOM at 215, 220 and 240 nm for samples in the test set using BPNN (A-C), RF
(D-F) and XGBoost (G-I) algorithms. Red dash lines represent line of 1:1 of predicted to theoretical absorbance. Green solid lines represent fitted line
between the predicted and theoretical absorbance.
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BPNN in prediction performance for training set with small sample

size (Luckner et al., 2017; Ogunleye and Wang, 2019; Han et al.,

2021). However, the difference between RF and XGBoost is that the

RF algorithm focuses on the final voting results of all decision trees

and can only reduce the variance, while the XGBoost algorithm
Frontiers in Marine Science 10
focuses on the residuals generated by the last iteration. Therefore,

XGBoost can reduce both variance and bias (Oh and Lee, 2017;

Zhang et al., 2019). These reasons might explain the best

performance for XGBoost model, especially for the data sets with

limited samples.
TABLE 2 Comparison of S215-240 and S215-275 based on the predicted spectra and S275-295T calculated using the traditional method.

S215-240 (nm
-1) S215-275 (nm

-1) S275-295T (nm
-1)

Range 0.030~0.066 0.024~0.060 0.015~0.035

mean 0.044 0.037 0.023
B

C

A

FIGURE 9

The correlation between salinities and spectra slopes (A)-S215-240, (B)-S215-275, (C)-S275-295T.
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It should be noted that the build method can also be used to

predict the UV absorption spectra for seawater samples collected

from a variety of marine environments, such as eutrophic or

oligotrophic waters. However, we recommend using local training

sets, considering that the CDOM compositions and light absorbance

might vary in different waters.
3.5 The spectra slopes of short wavelengths

It is known that spectra slope, S in Equation (1), is an important

parameter to describe the shape of UV-Vis spectra, which can be used

as indicators of molecular size and weight and its sources (Bricaud

et al., 1981; Helms et al., 2008; Stedmon and Nelson, 2015). For

absorption measurements of CDOM, the main problem is the low

absorption at long wavelengths in combination with the limited

length of the cuvette and the possible scattering effect of particles

and bubbles. The slope of the shorter wavelengths can be measured

with high precision and therefore more reliable than the values at

longer wavelengths (Markager and Vincent, 2000; Helms et al., 2008).

However, the calculation of S values at shorter wavelength than 240

nm based on the raw spectra is problematic due to the interference of

other substances besides CDOM.

Generally, the widely used spectra slope is calculated between 275

and 295 nm by traditional method (S275-295T), which is based on the

raw spectra and employing non-linear regression of Equation (1). For

comparison, we use our predicted spectra by XGBoost algorithm to

obtain the spectra slopes of the test set samples between 215 and 240

nm (S215-240) and between 215 and 275 nm (S215-275). The reference

wavelength was set at 295 nm. The results are shown in Table 2. It

suggests that S215-240 and S215-275 have similar values ranging from

0.030 to 0.066 nm-1 and 0.024 to 0.044 nm-1, respectively, which are

almost twice the S275-295T (0.015 to 0.035 nm-1). This result is

consistent with previous observations indicating increasing S values

with decreasing wavelengths (Twardowski et al., 2004; Swan et al.,

2013; Wei et al., 2016).

The relationships between S and salinity are plotted in Figure 9.

We found that all the S values show similar distribution shape. For

nearshore samples with lower salinities (<27), there is no big

difference in S, suggesting that these samples have similar CDOM

composition. However, for marine samples with comparatively higher

salinities (>27), there is an increasing trend of S with increasing

salinities. Previous efforts have demonstrated that S correlates

strongly with molecular weight and size (Helms et al., 2008;

Stedmon and Nelson, 2015). Low molecular weight CDOM has

stronger absorbance at shorter wavelengths (<300 nm), causing

higher (or steeper) spectra slopes, and vice versa (Stedmon et al.,

2000; Helms et al., 2008; Lei et al., 2019). Generally, marine CDOM

has chromophores with smaller molecule size and weight, while

terrestrially dominated CDOM has higher molecule size and weight

(Stedmon et al., 2000; Helms et al., 2008; Fichot and Benner, 2012;

Zhao et al., 2021). Consequently, our results support these previous

observations. Interestingly, both S215-240 and S215-275 are more

relevant with salinities (R2>0.70, Figure 9A, B) than S275-295T (R2 =

0.34, Figure 9C) for marine CDOM, indicating that spectra slopes of

shorter wavelengths might be the better proxies for marine CDOM

than that of longer wavelengths.
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4 Conclusions

We present a technique of machine learning to model the UV

absorption spectra of CDOM in seawater between 215 and 350 nm for

the first time. Three machine learning models, BPNN, RF and

XGBoost, were constructed based on the raw seawater UV

absorption spectra and the results were compared with each other.

The optimal input wavelength range for the three models was

250-350 nm. By choosing the optimal model parameters based on

five-fold cross validation, all the three models can well predict the

CDOM absorption spectra between 215 and 350 nm. Comparatively,

the XGBoost model had the best prediction performance, which had

the highest R2 and lowest RMSE and MAE.

Spectra slopes of short wavelengths, S215-240 and S215-275, are

higher than the widely used S275-295T. More interestingly, S215-240
and S215-275 have better correlation with salinity than S275-295T for

marine CDOM, suggesting that spectra slopes of short wavelengths

might be more suitable to describe marine CDOM. We strongly

advocate inclusion of spectra slopes of short wavelength in future

CDOM studies.
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