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Bahamian seagrass extent and
blue carbon accounting using
Earth Observation

Alina Blume*, Avi Putri Pertiwi, Chengfa Benjamin Lee
and Dimosthenis Traganos*

German Aerospace Center (DLR), Remote Sensing Technology Institute, Photogrammetry and Image
Analysis Department, Berlin, Germany
Seagrasses are among the world’s most productive ecosystems due to their vast

‘blue’ carbon sequestration rates and stocks, yet have a largely untapped potential for

climate change mitigation and national climate agendas like the Nationally

Determined Contributions of the Paris Agreement. To account for the value of

seagrasses for these agendas, spatially explicit high-confidence seagrass ecosystem

assessments guided by nationally aggregated data are necessary. Modern Earth

Observation advances could provide a scalable technological solution to assess the

national extent and blue carbon service of seagrass ecosystems. Here, we developed

and applied a scalable Earth Observation framework within the Google Earth Engine

cloud computing platform to account the national extent, blue carbon stock and

sequestration rate of seagrass ecosystems across the shallow waters of The

Bahamas—113,037 km2. Our geospatial ecosystem extent accounting was based

on big multi-temporal data analytics of over 18,000 10-m Sentinel-2 images

acquired between 2017-2021, and deep feature engineering of multi-temporal

spectral, color, object-based and textural metrics with Random Forests machine

learning classification. The extent accounting was trained and validated using a

nationwide reference data synthesis based on human-guided image annotation,

recent space-borne benthic habitat maps, and field data collections. Bahamian

seagrass carbon stocks and sequestration rates were quantified using region-

specific in-situ seagrass blue carbon data. The mapped Bahamian seagrass extent

covers an area up to 46,792 km2, translating into a carbon storage of 723MgC, and a

sequestration rate of 123 Mt CO2 annually. This equals up to 68 times the amount of

CO2 emitted by The Bahamas in 2018, potentially rendering the country carbon-

neutral. The developed accounts fill a vast mapping blank in the global seagrass map

—29% of the global seagrass extent—highlighting the necessity of including their

blue carbon fluxes into national climate agendas and showcasing the need for more

cost-effective conservation and restoration efforts for their meadows. We envisage

that the synergy between our scalable Earth Observation technology and near-

future nation-specific in-situ observations can and will support spatially-explicit

seagrass and ocean ecosystem accounting, accelerating effective policy-making,

blue carbon crediting, and relevant financial investments in and beyond

The Bahamas.
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1 Introduction

One of the most widespread coastal ecosystems is seagrass, a

functional group of intertidal and subtidal flowering plants, which can

be found in at least 159 countries across all continents except

Antarctica (Short et al., 2011; UNEP, 2020). It contributes to

animal and human well-being through a variety of ecosystem

services, including carbon sequestration, coastal protection, and

biodiversity preservation (UNEP, 2020). These services are

estimated to have an economic value of US $3,400,000 per km2 per

year (Short et al., 2011). Analogous to terrestrial plants, seagrasses

photosynthesize to store carbon in their biomass and soil, and

therefore act as ‘blue carbon’ sinks and natural climate solutions

(Macreadie et al., 2014). They can sequester carbon 35 times faster

than tropical rain forests and account for up to 10% of the annual

oceanic carbon burial, while only covering 0.2% of the ocean floor

(Mcleod et al., 2011; Fourqurean et al., 2012; Duarte et al., 2013;

Macreadie et al., 2015). More than 90% of the sequestered carbon is

stored within the underlying soil, where it can be sustained for

millennia due to anoxic conditions, vertical sediment accretion, and

slow composition rates (Mcleod et al., 2011; Fourqurean et al., 2012;

Macreadie et al., 2012; Duarte et al., 2013). Globally, the soil of

seagrasses alone is estimated to store up to 8.4 Pg carbon (Fourqurean

et al., 2012).

Seagrasses’ ability to reduce atmospheric carbon dioxide

concentrations supports the Paris Agreements’ goal of limiting the

global average temperature rise to below 1.5°C above pre-industrial

levels (UNFCCC, 2016). However, the importance of integrating

seagrass blue carbon into national climate agendas like the

Nationally Determined Contributions (NDCs) remains largely

overlooked (Dencer-Brown et al., 2022). Out of the 159 countries in

which seagrasses grow, only 13 countries explicitly recognise

seagrasses in their mitigation and/or adaptation strategies (UNEP,

2020; Cabo Verde, 2021; Republic of Seychelles, 2021; The

Government of Mozambique, 2021). Moreover, this ecosystem has

been declining globally at a rate of 1-2% per year since 1880, yet only

26% of its area lies within Marine Protected Areas (MPAs) (Waycott

et al., 2009; UNEP, 2020; Dunic et al., 2021). Habitat loss is driven by

a number of human and climate change induced factors like coastal

development, boating, increased urban/agricultural run-off, sea level

rise, and increased ocean temperatures (Waycott et al., 2011; Grech

et al., 2012; Saunders et al., 2013).

The lack of recognition and protection arises from insufficient

knowledge of spatially explicit seagrass distribution and related carbon

accounts, especially in remote and/or data-poor areas (McKenzie et al.,

2020; Macreadie et al., 2021). Recent advances in Earth Observation

utilize high temporal and spatial resolution satellite data archives, cloud

computing, and machine learning to minimize mapping uncertainties

(Lyons et al., 2020; Traganos et al., 2022a; Traganos et al., 2022b). This

provides an alternative to traditionally expensive and time-consuming

surveying methods (Hossain et al., 2015; Veettil et al., 2020). The

incorporation of country-scale seagrass carbon data with high-quality

mapping products supports the assessment of the seagrass ecosystems’

importance and its implementation into national climate agendas, and

benefits relevant seascape management and conservation efforts

(Roelfsema et al., 2014; McKenzie et al., 2020; Traganos et al., 2022b).
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In this study, we aim to minimize the aforementioned data gaps

by producing physical accounts of spatially explicit seagrass extent,

carbon stock and sequestration rate for The Bahamas. For this, we

developed a cloud-native Earth Observation framework using the

cloud computing platform Google Earth Engine (GEE), multi-

temporal high-resolution Sentinel-2 archives, and the machine

learning classifier Random Forest (Breiman, 2001). The generated

maps were combined with country- and region-specific in-situ carbon

data to evaluate the importance of the seagrass ecosystem for the

NDCs of The Bahamas.
2 Methods

2.1 Study site

The Bahamas is one of 13 countries which recognize seagrass in

their NDCs, and the first one which set a measurable target—

protecting 20% of their nearshore marine environment by 2020

(The Government of the Bahamas, 2015). The Bahamian

archipelago consists of about 700 carbonate islands and is located in

the tropical Western Atlantic (Buchan, 2000; The Commonwealth,

2022). Its coastline stretches along 3,542 km and its Exclusive

Economic Zone covers an area of approximately 619,785 km2

(Dataset ChartsBin statistics collector team, 2010; Flanders Marine

Institute, 2019). Almost 20% of the Bahamian seascape is shallow with

water depths under 25m (Landfall, 2021). It features coastal habitats

like coral reefs, mangrove forests and seagrass beds (Mandoske, 2017).

According to the best available information seagrasses cover an area

between 26,400 and 56,930 km2 (Schill et al., 2021; Dataset Allen Coral

Atlas, 2022). The three main Bahamian seagrass species are Thalassia

testudinum , Syringodium fi liforme , and Halodule wrightii

(Buchan, 2000; Green and Short, 2003; Dierssen et al., 2010). Low

energy sites on San Salvador Island have been found to be dominated

by the dense seagrass species of Thalassia testudinum, while the sparse

species (Syringodium filiforme and Halodule wrightii) dominate

higher-energy sites (Smith et al., 1990; Dierssen et al., 2010). Higher

density seagrass species feature higher biomass and productivity

(Buchan, 2000; van Tussenbroek et al., 2014).
2.2 Data

2.2.1 Earth Observation data
For our country-scale seagrass mapping procedure, we processed

four years’ worth of Sentinel-2 (S2) Bottom Of Atmosphere (Level

2A) imagery at 10m spatial resolution, acquired between March 28th,

2017 and March 28th, 2021 and available in GEE. The employed

archive consists of 18,881 single 100x100-km tiles, covering an area of

633,063 km2 (the country’s Exclusive Economic Zone + land area).

2.2.2 Reference data
Our mapping procedure utilizes reference data of four coastal

habitat classes: Seagrass, Sand, Coral/Algae and Rock/Rubble. These

classes were selected following the requirements for remotely sensed

benthic habitat classification of Kennedy et al. (2021).
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Training data were assembled through a combination of expert-

guided photo interpretation using the pre-processed S2 composite

(Section 2.3.1 and Figure 4A) and modified seagrass mapping results

of the Allen Coral Atlas (Dataset Allen Coral Atlas, 2022). Validation

data were based on multiple data sources leveraging field data

acquisitions with remotely sensed covariates, aggregated throughout

the entire Bahamas (Roelfsema et al., 2021). Section 2.3.2 describes

the pre-processing and modification of the reference data before

sample points were taken.

2.2.3 Carbon data
We conducted a systematic literature review of seagrass blue

carbon data before calculating areal carbon stock ranges and

sequestration rates. A combination of keywords (locations,

‘seagrass’, species, ‘(blue) carbon’, ‘soil carbon’ ‘biomass’,

‘sequestration’) was used to identify relevant articles. These were

then screened for region- or species-specific data ranges and

discarded when only averaged numbers for biomass and carbon

stocks were stated.

The collected data were harmonized to calculate areal carbon

stock ranges, which equal the sum of above-ground biomass (AGB)

carbon, below-ground biomass (BGB) carbon, and soil carbon.

Harmonization efforts were based on an AGB : BGB ratio of 1:2

and a biomass carbon to dry weight biomass ratio of 1:2.86

(Fourqurean et al., 2012). Final ranges were calculated after creating

species-specific ranges, and the prevalence of species was taken into
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account to prevent incorrect weighting. Due to the lack of country-

specific soil carbon data, a bioregional average was used (Fourqurean

et al., 2012). Areal sequestration potentials of Bahamian seagrasses

were based on averaged in-situ data.
2.3 Cloud-based Earth Observation
framework

Our developed cloud-based Earth Observation framework

features a plethora of successive big satellite and reference data

analytics which transform pixels into nationwide seagrass

ecosystem accounts (Figure 1). These big data analytics are split

into three main technological pillars within our framework: (a) Multi-

temporal Sentinel-2 Composition (2.3.1), (b) Training and Validation

Data Harmonisation (2.3.2), and (c) Supervised Machine Learning

Classification (2.3.3).

2.3.1 Multi-temporal Sentinel-2 composition
To create a high-quality S2 composite of the entire optically

shallow water area of The Bahamas, the archive described in Section

2.2.1 was filtered for images with minimum cloud coverage and sun

glint effects. To reduce the possibility of sun glint, images with a mean

solar zenith angle of more than 70% were discarded. The collection

was further filtered for cloud coverage, retaining images with a cloudy

pixel percentage under 25%. This reduced the size of the S2 archive to
FIGURE 1

Schematic workflow of the cloud-native Earth Observation seagrass ecosystem accounting framework.
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9,909 single tiles (52% of the original amount). After joining the

archive with the corresponding S2 Cloud Probability dataset1, pixels

with a cloud probability over 30% were masked. Moreover, the QA60

and Scene Classification Map bands were utilized to discard pixels

featuring cloud shadows, and opaque and cirrus clouds (Louisand

L2A Team, 2019). The filtered archive was then statistically reduced

to a single multi-temporal composite using the 20th percentile of each

pixel’s spectral value. This approach further reduces high-reflectance

obstacles like remaining clouds and sun glint effects, waves, turbidity,

and haze (Thomas et al., 2021; Traganos et al., 2022b). To further

minimize misclassification, optically deep water, land and land water

pixels were masked. The combined Otsu-thresholding and Canny

edge filter method of Donchyts et al. (2016) was applied to the

Modified Normalised Difference Water Index (MNDWI) to

differentiate land from coastal waters (Xu, 2006). Optically deep

waters were masked using Otsu-thresholding of the MNDWI and

Shallow Water Index (Otsu, 1979; Traganos and Reinartz, 2018;

Alkhatlan et al., 2019). All thresholding methods were based on

suitable image subsets which allowed for a strong bi-modal histogram

distribution and therefore better masking results. Input parameters

like the Canny edge sensitivity threshold and the number of buckets

for the Otsu-histograms were chosen based on an iterative approach

(Traganos et al., 2022b). Land water bodies were masked using an

edited version of the Global Administrative Unit Layers 2015 (Dataset

FAO UN, 2014). The resulting optically shallow S2 composite was

transformed to the below-surface remote sensing reflectance (rrs)

following Lee et al. (1998) and Traganos and Reinartz (2018).

We improved the model accuracy by incorporating a variety of

features as the raster input for the classification: Simple Non-Iterative

Clustering (SNIC)-based statistical properties, selected Gray-Level

Co-occurrence Matrix (GLCM) layers of the first five bands, Hue,

Saturation, and Value (HSV) of bands 2 to 4, and the first three

eigenvalues of a Principal Component Analysis (PCA)2 (Hassanein

et al., 2018; Tassi and Vizzari, 2020; Google Earth Engine, 2022). We

ran a Random Forest variable importance measure (VIM) of the

GLCM layers to select the ten most important properties and

eliminate the least relevant layers for the classification. These

properties were then used as a base for the PCA. All additional

layers were stacked together with the derived rrs band layers.

2.3.2 Training and validation data harmonisation
We converted the validation and training data vectors into rasters

of 10-m resolution and concatenated them with the corresponding S2

pixel values. To minimize the creation of mixed pixels through this

approach, we used the minimum and the 80th percentile of the

seagrass validation data to filter both validation and training data.

This reduces the number of high-reflectance mixed pixels which are

likely to represent a combination of the sand and seagrass habitat.

Moreover, it harmonizes training and validation data by discarding

training data pixels that do not fall into the spectral properties of the

validation data. To prevent spatial auto-correlation between training
1 https://developers.google.com/earth-engine/datasets/catalog/

COPERNICUS_S2_CLOUD_PROBABILITY

2 https://developers.google.com/earth-engine/guides/arrays_eigen_analysis
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and validation data, a 2,000m buffer was applied around the

validation data and used as a mask for the training data. Figure 2

shows the spectral ranges of all four classes of the training and

validation data.

2.3.3 Supervised machine learning classification
We designed 20 different supervised classification frameworks

which were based on different input features (Supplement Table S1,

S2) and the ensemble machine learning classifier RF. This classifier

incorporates multiple self-learning decision trees and is robust

against noise and outliers (Breiman, 2001). Following Lyons et al.

(2020), the number of seeds was set to 42 and the number of trees

to 15.

Each framework was based on training and validation points

aggregated across the same locations (Figure 3). The RF classifier was

trained using 2,000 seagrass data points and 800 points per non-

seagrass class (sand, coral/algae, and rock/rubble). The validation data

were based on 500 seagrass data points and 200 points per non-

seagrass class. Due to the main focus of this work being the detection

of seagrass, non-seagrass classes were later merged into one class to

create a binary accuracy assessment.

The final results for the seagrass ecosystem extent were created by

combining multiple classification frameworks. First, a hard

classification of each framework was used to identify the three

models with the highest F1-scores (the harmonized mean of

producer’s and user’s accuracy) for seagrass. The corresponding

maps of seagrass versus non-seagrass were then composed using

the most common class per stacked pixel (ee.ImageCollection.mode)

(Google Earth Engine, 2022). The resulting map equals the maximum

seagrass ecosystem extent. Next, classification frameworks with F1-

score for seagrass over 70% were used to generate per-pixel

probabilities for each class—the so-called soft classification. Pixels

which featured seagrass as the most probable class and which reached

probabilities over 50% were assigned to seagrass. Akin to the

maximum seagrass extent creation, the three frameworks with the

highest F1-scores for seagrass were composed and the resulting map

equals the minimum seagrass ecosystem extent. In the post-

processing stage, we visually assessed the classification results and

manually masked out optically deeper waters which were

misclassified as seagrass.
2.3.4 Accuracy assessment
The accuracy of the Bahamian seagrass ecosystem extent was

assessed using the metrics of overall accuracy (OA), producer’s

accuracy (PA), user’s accuracy (UA), and the F1-score through

error matrices based on 1,100 validation points for both the

seagrass and non-seagrass class (Story and Congalton, 1986).
2.4 Blue carbon accounting

2.4.1 Physical accounting
Bahamian seagrass carbon stock ranges were calculated by

multiplying our estimated minimum and maximum seagrass

ecosystem extent with the corresponding areal carbon stock range

(Supplement Table S3). We ran both Tier 1 and Tier 2 assessments
frontiersin.org
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following Howard et al. (2014). These assessments represent different

levels of certainty, with Tier 1 featuring the highest uncertainty based

on the use of published IPCC globally averaged carbon estimates. Tier

2 incorporates regional and/or county-specific carbon data (Section

2.2.3), therefore featuring reduced uncertainties (Howard et al., 2014).

Seagrass carbon sequestration rates were calculated based on our

calculated minimum and maximum seagrass ecosystem extent, and

country-specific average sequestration rates.
2.4.2 Monetary accounting
We estimated the yearly monetary value of Bahamian seagrass blue

carbon sequestration based on the European (European Commission,

2022) and California (C2ES, 2022) carbon credit market). Prices were

acquired from Carbon Credits (Carbon Credits, 2022) on the 13th

September, 2022 at 3.10pm and converted to EUR (Oanda, 2022).

The European carbon credit market price for one ton of CO2 was 67.71

EUR, while the California market price was 26.93 EUR.
3 Results

3.1 Ecosystem extent accounting

Figure 4 displays the mapped minimum and maximum extent of the

seagrass ecosystem for Bahamian shallow waters at 10m resolution.

Seagrasses cover an area between 39,210 and 46,792 km2, which equals 6

to 8% of the country’s Exclusive Economic Zone, and 35 to 41% of its

optically shallow area. About 9 to 11% of the ecosystem lies withinMarine

Protected Areas (Dataset UNEP-WCMC, S.F, 2021).
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Our mapping frameworks for minimum and maximum extent reach

OAs of 71.00 and 76.55%, respectively. F1-scores for seagrass extent are at

61.71 and 74.76%, PAs at 51.40 and 76.40%, andUAs at 77.18 and 73.18%,

respectively. Accuracies for the non-seagrass class can be found in the

Supplementary Tables S4 and S5.
3.2 Blue carbon accounting

3.2.1 Physical accounting
Based on our classified ecosystem extent and the globally averaged

aerial carbon estimates of the Tier 1 assessment, Bahamian seagrass can

store between 35.7 million and 3.9 billionMg C. Using the region-specific

carbon data of the Tier 2 assessment, we estimate a Bahamian seagrass

carbon storage of 594 to 723 million Mg. Moreover, we estimate that the

classified ecosystem extent can sequester between 103 and 123 Mt CO2,

annually. Therefore, in 2018, Bahamian seagrasses had the potential to

remove 57 to 68 times their annual CO2 emissions (Friedlingstein

et al., 2020).

3.2.2 Monetary accounting
At a European carbon market price of 67.71 EUR per ton of CO2,

Bahamian seagrass carbon sequestration is valued at 178,296 EUR per

km2 per year. This, combined with our classified ecosystem extents,

translates to a total sequestration potential value of 6.99 billion to 8.34

billion EUR per year. The California carbon market price of 26.93

EUR per t CO2 results in a yearly sequestration potential value of

70,913 EUR per km2 and a total sequestration potential value of 2.78

billion to 3.32 billion EUR per year.
FIGURE 2

Spectral ranges of the training and validation data for the first five multi-temporal Sentinel-2 below-surface reflectance (rrs) bands. [sr
-1] denotes the

unit of the below-surface remote sensing reflectance.
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4 Discussion

4.1 National seagrass ecosystem accounts in
The Bahamas

Leveraging our cloud-based, multi-temporal Earth Observation

ecosystem accounting framework with country and region-specific

reference data inventories, we produced the first national high-

resolution (10m), spatially-explicit, ecosystem accounts of seagrass

extent, carbon stock, and sequestration rate for The Bahamas, across

more than 113,000 km2 of shallow seafloor (Figure 3). Featuring a

multitude of cutting-edge technological novelties—big satellite and

reference data analytics, machine learning, cloud computing and

dense feature engineering—we mapped up to 46,792 km2 of

nationwide seagrass meadows with an observed F1-score of 74.76%

(Figure 4). Utilizing region-specific seagrass carbon data, this

spatially-explicit extent translates to a Tier 2 blue carbon

assessment up to 771.4 million Mg C and an annual blue carbon

sequestration rate of 123 Mt CO2 (Table 1). The second most

important finding is that our seagrass ecosystem accounting efforts

enrich our previously published research in 27 different tropical and

temperate countries across the Mediterranean, East Africa and the
Frontiers in Marine Science 06
Western Indian Ocean (Lee et al., 2022; Traganos et al., 2022a;

Traganos et al., 2022b). The common denominator of all 28

national seagrass ecosystem accounting endeavors is the utilization

of a standardized technological Earth Observation framework which

supports an effective qualitative and quantitative comparison of its

yielded physical accounts by minimizing both technological and

environmental differences.
4.2 Mapping comparisons

In a global context, our maximum mapped seagrass extent shows

that The Bahamas features the second largest seagrass meadow area

after Australia (74,555 km2). It is nearly three times larger than the
FIGURE 3

Distribution of the 4,400 training data and 1,100 validation data points of the four classes used in the supervised machine learning classification.
B CA

B1 C1A1 B2 C2A2

FIGURE 4

False-color Sentinel-2 composite (Bands 3-2-1) (A) overlaid with the mapped minimum (B) and maximum (C) seagrass extent, and Marine Protected
Areas across The Bahamas. The location of the zoomed-in insets (A1) - (C2) is shown in panel (A).
TABLE 1 Tier 1 and 2 carbon stocks for the classified minimum and
maximum seagrass ecosystem extent.

Assessment Carbon stock min (Mg) Carbon stock max (Mg)

Tier 1 35,681,275.86 3,879,068,732.63

Tier 2 594,010,001.01 723,000,389.50
Mg denotes Megagrams.
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Cuban seagrass meadow area, which represents the third largest

seagrass habitat in the world (16,073 km2). Moreover, our mapped

maximum extent represents ~29% of the global seagrass extent

(McKenzie et al., 2020).

Zooming in on the Bahamian EEZ, our remotely sensed seagrass

extents can be quantitatively compared to five existing nationwide

seagrass areal estimates—three of which have been calculated using

moderate to high-resolution satellite image archives resulting in

equally spatially-explicit Bahamian seagrass extents.

In the first-ever national-scale seagrass mapping effort, Wabnitz

et al. (2008) employed the 30-m satellite image archives of Landsat 5

TM and 7 ETM+ to map 65,436 km2 of nationwide dense and sparse

seagrass meadows in The Bahamas; 33.2% more than our maximum

seagrass extent. Based on their reported PAs and UAs, and the

consensus that tropical seagrass beds are generally stable in their

extent, we infer that the areal deviation might have been induced by

technology: the 30-m spatial resolution of Landsat sensors results in a

nine-times greater mapping unit (900 m2) than the 10-m Sentinel-2

data (100 m2). This means that one potentially misclassified seagrass

pixel at 30 m would equal nine misclassified pixels at 10 m, amplifying

the overestimation of the former mapping endeavor and reflecting the

shortcoming of national seagrass extent mapping in Greece (Traganos

et al., 2018). The two most recent spatially coincident mapping efforts

utilized the 5-m PlanetScope image archive and a similar state-of-the-

art Earth Observation framework to map between 26,3543 and 53,930

km2 of Bahamian seagrass meadows (Schill et al., 2021). Our

minimum and maximum seagrass extents fall within the estimated

range of the two aforementioned efforts. We, however, infer that the

narrower quantitative differences between our nationwide extent and

these two estimates are induced more by environmental factors (e.g.,

challenging discrimination between seagrasses and hard bottom algae

of variable densities and, thus, spectral properties)—and less by

technological factors like the difference in the mapping units of

Sentinel-2 (100 m2) and PlanetScope (25 m2).

On the other hand, both remaining non-spatially-explicit

estimates by UNEP-WCMC and Short (2018) and McKenzie et al.

(2020) feature wide underestimating trends—2,227 and 2,250 km2,

respectively—approximately one order of magnitude less than our

mapped minimum seagrass extent of 39,210 km2. This observation

corroborates our recent findings in the Mediterranean and East Africa

(Traganos et al., 2018; Traganos et al., 2022a; Traganos et al., 2022b)

reflecting the potential biases introduced by the utilization of non-

data-driven and non-nation-specific mapping designs in blue carbon

and, more broadly, coastal ecosystem accounting at both the physical

and monetary level in and beyond The Bahamas (Bertram et al., 2021).

We expand more into this latter issue in Section 4.4, namely the

downstream implication regarding the uptake of such accounts in

policy and financial crediting frameworks. It is important to note that

all of the mapping comparisons were regionally-aggregated mapping

efforts, at a minimum, which might have introduced biases due to the

differences in spatial scales with the national scale of The Bahamas—in

contrast to our nationally-aggregated seagrass extent account.
3 https://allencoralatlas.org/atlas/#6.92/24.0443/-77.0209
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4.3 Current uncertainties

As every novel remote sensing assessment based on research and

development, our presented and utilized ecosystem accounting

framework is characterized by certain biases and uncertainties,

induced by environmental and technological factors, including the

reference data in use.

Despite our testing of an intensive feature engineering of pixel, object,

colour and texture features (Section 2.3.1) and reference data

normalization (Section 2.3.2) in our RF supervised machine learning

models (Section 2.3.3), our seagrass ecosystem extent accounting was

impacted by misclassifications mainly due to mixed pixels, spectral

confusion between certain classes, and larger water depths. As shown

in Supplementary Tables S1 and S4, which indicate PAs and UAs of both

maximum seagrass and non-seagrass distribution, our tested models

feature a somewhat solid balance between PAs and UAs for the seagrass

class, with PAs consistently being 3-5% greater than UAs. Even the use of

Bands 1-5 as the only input features in our RF machine learning

experiments explain the variability in both classes, as demonstrated by

their larger PA than UA (77.6 vs 73.1%). This shows that our machine

learning feature engineering was already complex enough, as was the

mode of the best models (Supplementary Table S1). Yet a greater PA

means that our maximum seagrass extent is slightly overestimated while

we observe an underestimation of ~1.4% of the merged class of coral/

algae, sand, rocks and rubble. Additional biases might have been

introduced due to the issue of mixed pixels owing to the spectral

similarity between seagrasses and the mixed coral/algae class across the

first Sentinel-2 bands (Figure 2), as well as the coarse mapping unit of 100

m2 which is potentially unable to capture sparser seagrass meadows. Such

spectral confusion and mixed pixels’ impedance situation have been also

observed across 5 to 30-m resolution optical remote sensing endeavors in

The Bahamas (Wabnitz et al., 2008; Schill et al., 2021).

To test whether an improved training data design would benefit our

seagrass extent ecosystem accounting, we ran a metadata analysis

applying more accurate training data annotation for the seagrass and

coral class following the suggestions of C. Roelfsema (personal

communication, 10 August 2019). This analysis yielded qualitatively

more accurate minimum and maximum Bahamas-wide seagrass extents

of 55,388 and 64,481 km2, respectively, and are closer to the national

estimates of Wabnitz et al. (2008) and Schill et al. (2021). While the PA

of the new maximum seagrass extent is identical to the original

maximum one, the UA of the new maximum estimate dropped by

5.7% (Supplementary Table S6). This means that we introduced greater

spectral variability in the seagrass training data points compared to the

ones contained in the respective validation data points, which resulted in

a greater overestimation of the Bahamian seagrass meadows. This

indicates the need for more fit-for-purpose, i.e., spatially and

temporally richer, in situ validation data points to improve coastal

ecosystem accounting efforts using Earth Observation, like ours,

highlighting the logistical importance of allocating more funding

towards such high-quality field data collections.

The articulationof the various biases in our seagrass extent accounting

is important because it justifies cascading biases in our blue carbon

accounting. Utilizing the Tier 1 seagrass carbon assessment, and, thus,

globally-averaged carbon values, results in a 100-fold difference between

theminimumandmaximumblue carbon stocks for Bahamian seagrasses.

Utilizing theTier 2 assessment, region-specific total seagrass carbon stocks
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and bioregional averages, the range is narrowed to just a percentage

difference of around 24.2% (Table 2). Despite the lack of country-specific

seagrass soil carbon data in our blue carbon accounting, the Tier 2

maximum estimate (771.4 million Mg C) is only 3.8% lower than the

only other existing nationwide seagrass blue carbon stock estimate (801.4

million Mg C; Mandoske, 2017) which relied on a Landsat 7-derived

seagrass extent (57,481 km2) and biophysical modeling. Yet, seagrass blue

carbon features wide-ranging variability (due to e.g., soil carbon depth,

density, patchiness, edge effects, proximity to the coastline,mangroves and

tidal flats, seagrass bathymetry, species, sediment, inter-annual

productivity). Added to the considerable contribution of Bahamian

seagrass meadows to mitigate carbon emissions within the country,

according to our accounting, new intensive field data collections of blue

carbon stocks and fluxes, and respective blue carbon accounting should be

established to improve our current estimates and support their effective

uptake into current policy-making and carbon crediting frameworks for

The Bahamas.
4.4 Applications of blue carbon accounting
using Earth Observation

The synergy of Earth Observation technology and Ecosystem

Accounting has more recently showcased promising results towards

quantifying the nationwide natural climate solutions of blue carbon

ecosystems4 (Traganos et al., 2022a; Traganos et al., 2022b).

Our targeted case study area, The Bahamas, is the first country to

include an explicit reference to seagrasses in its NDC and set a

measurable target for the protection of its nearshore marine

ecosystems—20% by 2020 (The Government of the Bahamas, 2015).

Our spatially explicit seagrass ecosystem accounting for The Bahamas

fills a significant mapping blank in the global estimates of seagrass

extent, blue carbon stocks and sequestration rates. According to our

accounts and the best available global estimates, Bahamian seagrass

meadows potentially comprise up to 29% of the global seagrass area

(McKenzie et al., 2020) and store up to 18.3% of the global seagrass blue

carbon stocks (Fourqurean et al., 2012). These data turn the spotlight

on The Bahamas as a global hot spot of seagrass distribution and blue

carbon pool. More importantly, they provide a comprehensive and

transparent basis for the uptake of seagrass meadows into Multilateral

Environmental Agreements (e.g., NDC, MPAs, etc.) and blue carbon

creditingmechanisms5 (Macreadie et al., 2022). Here, we estimated that

in 2018 Bahamas-wide seagrasses could sequester at least 57 times the

annual carbon dioxide emissions of the country (Friedlingstein et al.,

2020) with a potential annual value of at least 70,913 EUR/km2. Yet,

only up to 11% of these highly-productive seagrass meadows lie within

the current MPAs of The Bahamas (Figure 4; UNEP-WCMC, 2021).

The Bahamas and countries with equally extensive blue carbon

ecosystems should establish long-term monitoring systems and

policy-making strategies using the recent blueprint seagrass extent

and blue carbon mapping project of Seychelles—the first to leverage
4 https://www.abs.gov.au/methodologies/national-ocean-account-

experimental-estimates-methodology/aug-2022

5 http://www.tribune242.com/news/2022/apr/29/pm-were-first-sell-blue-

carbon-credits/
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dense Earth Observations and nationally aggregated field data to

account and incorporate nationwide seagrasses into the NDC and

climate change mitigation efforts (Lee et al., 2022).
4.5 Next steps

Our Bahamian seagrass ecosystem accounting increases the total

mapped seagrass extent of DLR’s Global Seagrass Watch project to

around 76,000 km2 across more than 306,000 km2 of mapped seabed,

74,000 km of coastline in 28 temperate and tropical countries, and three

seagrass bioregions (Lee et al., 2022; Traganos et al., 2022a; Traganos et al.,

2022b). All of these high-resolution spatially explicit seagrass ecosystem

extent accounts are produced through an ever-advancing standardized

Earth Observation framework. Here, the two main advances are the

synthesis of a harmonized nationally-aggregated reference dataset and

deep feature engineering for the machine learning classification

component. These resulted in qualitative and quantitative improvements

in our nationwide seagrass mapping in contrast to our initial mapping

endeavors in the Mediterranean and East Africa.

There are still considerable yet well-mapped showstoppers and

uncertainties towards mainstreaming the natural climate solutions of

blue carbon ecosystems to the biodiversity, societies and economies

(Section 4.3; Macreadie et al., 2019; Macreadie et al., 2022; Williamson

and Gattuso, 2022). While we showcase here that the state-of-the-art of

Earth Observation technology can now provide scalability, confidence,

and repeatability in blue carbon accounting, there is a notable lack of

high-quality nation-specific in situ data on seagrass distribution, blue

carbon stocks, and fluxes. Such data gaps impede the transparency,

standardization and funding of long-term blue carbon accounting

systems and their much-needed high-quality scalable insights. We

envisage that these holistic monitoring systems could benefit from

the amalgamation of Earth Observation technology, Ecosystem

Accounting, biophysical and socio-economic modeling, and targeted

nationally aggregated field data collections. This conceptual systems-

level approach would ultimately evolve into a long-term decision

support system for transparent and sustainable strategies for resilient

blue carbon ecosystems, societies and economies. This interconnected

resilience can and will be realized only through the effective

collaboration and communication of all the pertinent stakeholders—

scientists, NGOs, private technological entities, governments,

policymakers, investors, and philanthropic foundations.
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