AUTHOR=McCloskey Kieran P. , Radford Andrew N. , Rose Amelia , Casiraghi Giorgio , Lubbock Natalie , Weschke Emma , Titus Benjamin M. , Exton Dan A. , Simpson Stephen D. TITLE=SCUBA noise alters community structure and cooperation at Pederson’s cleaner shrimp cleaning stations JOURNAL=Frontiers in Marine Science VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2023.1058414 DOI=10.3389/fmars.2023.1058414 ISSN=2296-7745 ABSTRACT=

Recreational SCUBA diving is widespread and increasing on coral reefs worldwide. Standard open-circuit SCUBA equipment is inherently noisy and, by seeking out areas of high biodiversity, divers inadvertently expose reef communities to an intrusive source of anthropogenic noise. Currently, little is known about SCUBA noise as an acoustic stressor, and there is a general lack of empirical evidence on community-level impacts of anthropogenic noise on coral reefs. Here, we conducted a playback experiment on Caribbean reefs to investigate impacts of SCUBA noise on fish communities and interspecific cooperation at ecologically important cleaning stations of the Pederson’s cleaner shrimp Ancylomenes pedersoni. When exposed to SCUBA-noise playback, the total occurrence of fishes at the cleaning stations decreased by 7%, and the community and cleaning clientele compositions were significantly altered, with 27% and 25% of monitored species being affected, respectively. Compared with ambient-sound playback, SCUBA-noise playback resulted in clients having to wait 29% longer for cleaning initiation and receiving 43% less cleaning; however, cheating, signalling, posing and time spent cleaning were not affected by SCUBA-noise playback. Our study is the first to demonstrate experimentally that SCUBA noise can have at least some negative impacts on reef organisms, confirming it as an ecologically relevant pollutant. Moreover, by establishing acoustic disturbance as a likely mechanism for known impacts of diver presence on reef animals, we also identify a potential avenue for mitigation in these valuable ecosystems.