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Global ocean colour trends in
biogeochemical provinces
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Hajo Krasemann1 and Burkard Baschek2

1Department of Optical Oceanography, Institute of Carbon Cycles, Helmholtz-Zentrum Hereon,
Geesthacht, Germany, 2Deutsches Meeresmuseum, Stralsund, Germany
Satellite-derived ocean colour data provide continuous, daily measurements of

global waters and are an essential tool for monitoring these waters in a changing

climate. Merging observations from different satellite sensors is necessary for

long-term and continuous climate research because the lifetime of these

sensors is limited. A key issue in deriving long-term trends from merged ocean

colour data is the inconsistency between the spatiotemporal coverage of the

different sensor datasets that can lead to spurious multi-year fluctuations or

trends in the time series. This study used the merged ocean colour satellite

dataset produced by the Ocean Colour Climate Change Initiative (OC-CCI

version 6.0) to infer global and local trends in optically active constituents. We

applied a novel correction method to the OC-CCI dataset that results in a

spatiotemporally consistent dataset, allowing the examination of long-term

trends of optically active constituents with greater accuracy. We included sea

surface temperature, salinity, and several climate oscillations in our analysis to

gain insight into the underlying processes of derived trends. Our results indicate a

significant increase in chlorophyll-a concentration in the polar waters, a

decrease in chlorophyll-a concentration in some equatorial waters, and point

to ocean darkening, predominantly in the polar waters, due to an increase in

non-phytoplankton absorption. This study contributes to broader knowledge of

global trends of optically active constituents and their relation to a

changing environment.

KEYWORDS

ocean colour, essential climate variables, climate research, climate change initiative,
satellite remote sensing, time series, temporal gap detection method
1 Introduction

Ocean colour remote sensing is a technique using satellite sensors for global

observations of optically active constituents in the upper layer of the ocean. Such

observations can be used to infer information about phytoplankton biomass, indicated

by the concentration of the pigment chlorophyll-a in water (hereafter Chl-a), as well as

other constituents, including organic- and inorganic carbon. These optically active

constituents are important indicators of ocean ecosystem health and productivity, and
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can be used to estimate the ocean’s role in the global carbon cycle

and to quantify feedbacks on climate variability and change.

Consistent, stable, and accurate datasets are essential for climate

research and ocean colour is considered one of the Essential Climate

Variables (ECVs) by the Global Climate Observing System (GCOS,

2011; GCOS, 2016). The Coastal Zone Color Scanner (CZCS) was

launched as a ‘proof of concept’mission in 1978. Since the launch of

the first operational ocean colour sensor with global coverage in

1997, various sensors have been developed and launched that

measure ocean colour. These sensors measure radiance at the top

of atmosphere from which the remote sensing reflectance (Rrs) can

be derived. This reflectance is used to infer various optically active

constituents in the water column. The most commonly used

constituent is the Chl-a , which is a proxy for marine

phytoplankton biomass (Cullen, 1982). Other estimated optical

properties in water include the diffuse attenuation (Kd),

absorption by phytoplankton (aph), absorption by detrital and

dissolved organic matter (adg), and particulate backscattering

(bbp) coefficients. In open ocean waters, phytoplankton and its

associated substances mainly determine the absorption and

scattering coefficients, whereas in coastal waters the non-

phytoplankton sources, e.g. organic matter from river discharge,

have a greater influence (Morel and Prieur, 1977; Kirk, 2011).

Climate change has a significant impact on the global aquatic

ecosystem, which in turn affect society, biodiversity, and the carbon

cycle (Bindoff et al., 2019). The temperature of global surface water

will continue to rise in the coming decades, in proportion to

greenhouse gas emissions (Gattuso et al., 2015). The response of

phytoplankton composition and dynamics to climate variability is

complex and depends on light and nutrient availability (Behrenfeld

et al., 2006). The direct and indirect effects of increasing water

temperature can result in different responses of phytoplankton

growth due to intricate interactions of physical and chemical

variables. One widely accepted theory of phytoplankton response

to warming surface waters is that the increased stratification of the

water column results in reduced nutrient flux into the surface and

consequently causes reduced productivity in nutrient-limited

surface waters (e.g. Behrenfeld et al., 2006; Boyce et al., 2010;

Racault et al., 2012; Lewandowska et al., 2014; Dunstan et al.,

2018). Conversely, warming of surface waters can also lead to

increased productivity because of higher metabolic rates of

phytoplankton, longer bloom seasons due to reduced ice cover, or

increased vertical migration (Brown et al., 2004; Pabi et al., 2008;

Kahru et al., 2011; Lewandowska et al., 2014; Wirtz et al., 2022).

Warming of surface waters may also shift the timing of blooms and

cause species migration (Ardyna et al., 2014; Deppeler and

Davidson, 2017; Friedland et al., 2018; Ardyna and Arrigo, 2020).

Climate change can also result in more frequent extreme events,

such as heatwaves (Bernhard et al., 2022) or intensified

precipitation (O’Gorman, 2015), which can increase inflow of

organic material, either detrital or dissolved, into the coastal

aquatic ecosystems that affects light availability and in turn can

limit phytoplankton growth (Bidigare et al., 1993; Mustaffa et al.,

2020). Several studies (Juhls et al., 2019; Mustaffa et al., 2020; Konik

et al., 2021) refer to this increasing absorption of the waters as

“ocean darkening”, and argue that the water transparency is
Frontiers in Marine Science 02
decreasing due to climate-driven changes of the environment.

Increased water absorption leads to a higher rate of melting of sea

ice and alterations in the surface heat fluxes affecting the

atmosphere (Soppa et al., 2019). Evaporation, terrestrial runoff,

precipitation, and mixing processes all regulate surface salinity,

which can change growing conditions for phytoplankton species

(Wells et al., 2020). Global salinity changes are consistent with

broad scale surface water warming patterns (Durack and Wijffels,

2010). Previous studies have produced conflicting results regarding

trends of global Chl-a or phytoplankton productivity. Some studies

identified an overall declining trend (Behrenfeld et al., 2006; Boyce

et al., 2010; Boyce et al., 2014; Gregg et al., 2014; Hammond et al.,

2017), while others indicated no trend (Gregg et al., 2017; Kulk

et al., 2020) or even an increasing trend (Antoine et al., 2005;

Hammond et al., 2020). Regardless of these varying conclusions, all

these studies agree that the strength and direction of Chl-a varies

depending on the region.

The Ocean Colour Climate Change Initiative (OC-CCI) is a

project aims to produce a highly comprehensive and consistent time

series of multi-sensor global satellite data products suitable for

climate research (Sathyendranath et al., 2019). The dataset (version

6.0) consists of merged records measured by six different satellite

sensors; OrbView-2-SeaWiFS, MODIS-A, and SNPP-VIIRS by

NASA/NOAA (United States), and Envisat-MERIS, OLCI-A, and

OLCI-B by ESA/EUMETSAT (Europe). The use of different ocean

colour sensors, each with unique spectral-, spatial-, and temporal

characteristics, complicate the consistency of the time series. The

OC-CCI group applied a thorough bias correction to the dataset,

but inter-mission inconsistencies in the time series remain due to

the different coverage of the surface waters between the input sensor

datasets (Van Oostende et al., 2022). This can lead to higher average

Chl-a concentrations in the time series when, e.g. the MERIS sensor

is active, which is more capable of observing highly productive

coastal- and high latitude regions compared to most other sensors

in the dataset. Previous trend analysis studies that use merged ocean

colour data either omit coastal and polar waters due to the larger

uncertainty or the presented time series likely exhibit artefacts

related to the inter-mission coverage inconsistencies (e.g. in

Kahru et al., 2012; Kahru et al., 2015; Navarro et al., 2017; Sankar

et al., 2019; Kulk et al., 2020; Joseph et al., 2021). However, it is

important to monitor phytoplankton dynamics in polar and coastal

regions because they are under pressure from climate change and

anthropogenic activities (e.g. Burke, 2001; Deppeler and Davidson,

2017; Bindoff et al., 2019; Ardyna and Arrigo, 2020).

Recently, Van Oostende et al. (2022) introduced a method to

resolve the inter-mission coverage inconsistency issue: the

Temporal Gap Detection Method (TGDM). This method corrects

the different observation capabilities of the satellite sensors that

introduce artefacts in long-term fluctuations and trends,

independent from variable values. The TGDM homogenises the

temporal observation distribution per geographic pixel, minimising

the observation inconsistencies. The main advantage of this method

is that the resulting time series allow more reliable use of merged

ocean colour data for long-term statistical- and trend analysis. As

previous long-term studies that use merged ocean colour data rely

on uncorrected data, we aim to estimate global and regional trends
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in ocean colour variables, that is now unaffected by inter-mission

coverage inconsistencies. Climatic variables and indices, such as sea

surface temperature, sea surface salinity, and climate oscillations

were included to help explain the underlying processes of derived

ocean colour trends. Additionally, we include a trend analysis of

non-phytoplankton absorption (adg), to gain insight into the

phenomenon of ocean darkening.
2 Materials and methods

Table 1 contains all the variables and associated units used in

this study. Each variable is described in detail in the sections 2.1-2.3.
2.1 Optically active variables

The OC-CCI dataset, produced by the European Space

Agency’s (ESAs) Ocean Colour Climate Change Initiative project

(OC-CCIv6.0, https://esa-oceancolour-cci.org/), is a dataset

spanning nearly 25 years from September 1997 to June 2022. It is

composed of merged satellite data from five ocean colour sensors:

SeaWiFS, MERIS, MODIS, VIIRS, OLCI-A, and OLCI-B. The data

were atmospherically corrected, band-shifted to match MERIS

spectral bands (412, 443, 490, 510, 560, 665 nm), bias corrected,

and binned to derive a multi-sensor daily remote-sensing

reflectance (Rrs) product with a ~4 km spatial resolution. All

dependent ocean colour variables were determined from the

reflectance product: the Chl-a concentration, attenuation-,

absorption-, and backscattering coefficients. The Chl-a was

determined by a blended merge of several band ratio algorithms

(OCI, OCI2, OC2, and OCx) weighted by the relative levels of

optical water type classes (Moore et al., 2009). The diffuse

attenuation coefficient at 490 nm for downwelling irradiance

(Kd490) is an apparent optical property (AOP) related to light

availability and penetration in water bodies and depends on the

inherent optical properties (IOPs). IOPs depend only on the
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medium and are therefore independent of light availability (Kirk,

2011). The total absorption (atot) is the sum of absorption of the

water column, particles and dissolved matter. The absorption of

phytoplankton (aph), and absorption by detrital and dissolved

organic matter (adg) were distinguished in the dataset. The IOPs

were determined with the Quasi-Analytical Algorithm (QAA: Lee

et al., 2009) and the Kd490 with the semi-analytical Lee et al. (2005)

method. The optically active constituents that were used in this

study include uncertainty estimates provided in the dataset that

were determined with a large in situ match-up dataset (Valente

et al., 2019), except for atot and bbp. The atot is not included because

it is the sum of absorption of water (aw), aph, and adg for which

uncertainties were estimated. The backscattering (bbp) had

insufficient in situ data for the matchup analysis (Jackson et al.,

2022). The product validation report provided by the OC-CCI

group describes the validation process of the dataset (Jackson et al.,

2021) and additional details of this dataset can be found in e.g.

Sathyendranath et al. (2019) and Jackson et al. (2022). All

absorption coefficients in this study refer to a wavelength of 443

nm, except for bbp, where a wavelength of 510 nm was used. The

sinusoidal projection was used because of the equal area gridding,

which is beneficial for trend analysis (Jackson et al., 2022).
2.2 Climate variables

In addition to ocean colour variables, other essential climate

variables (ECVs: GCOS, 2011; GCOS, 2016) were used in this study,

namely sea surface temperature (SST) and sea surface salinity (SSS).

For these ECVs, the same time span was used as that of the OC-CCI

dataset (1997-2022). The climatological SST data were produced by

the ESA’s Climate Change Initiative programme (SST-CCIv2.1,

level 4). The data contain the daily temperature in units Kelvin

(K) adjusted to a standard depth of 20 cm that were merged from

multiple instruments with a spatial resolution of 0.05° x 0.05° (Good

et al., 2019). The source of the monthly composite salinity dataset

was the Ocean Reanalysis System 5 (ORAS5 v0.1), prepared by the
TABLE 1 An overview of the variables used in this study with their corresponding units.

Variable group Parameter Quantity SI Units

Optical constituents and properties Chl-a Pigment chlorophyll-a concentration mg m-3

Kd490 Diffuse attenuation coefficient of downwelling irradiance at 490 nm m-1

atot443 Total absorption coefficient at 443 nm m-1

aph443 Phytoplankton absorption coefficient at 443 nm m-1

adg443 Detrital and coloured dissolved organic matter absorption coefficient at 443 nm m-1

bbp510 Backscattering coefficient of particles at 510 nm m-1

Climate variables SST Sea surface temperature C°

SSS Sea surface salinity PSU

Climate indices SOI Southern Oscillation Index –

IOD Indian Ocean Dipole –

NAO North Atlantic Oscillation –
fron
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European Centre for Medium-RangeWeather Forecasts (ECMWF).

The salt concentration close to the ocean surface is expressed in

practical salinity units (PSU) with a spatial resolution of 0.25° x

0.25° (Zuo et al., 2018). Both the SST and salinity data were

constructed by combining data into a global gap-free consistent

dataset and were downloaded from the Copernicus’ website in June

2022: https://cds.climate.copernicus.eu/.
2.3 Climate indices

Three climate oscillations were included in the analysis: the

Southern Oscillation Index (SOI), the Indian Ocean Dipole (IOD),

and the North Atlantic Oscillation (NAO). The SOI is defined as the

normalised sea-level pressure difference index between Tahiti and

Darwin and is used as an indication of the intensity of the El Niño/

Southern Oscillation (ENSO). Negative values of the SOI coincide

with El Niño episodes and positive values with La Niña episodes.

The IOD is defined by the difference in sea surface temperature

between areas located in the western and eastern Indian Ocean.

Positive phases of the IOD are associated with reduced

precipitation, warm land surface anomalies, reversed direction of

wind in the central Indian Ocean, and lowered sea level in the east

and raised sea level in the central and western Indian Ocean (Saji

and Yamagata, 2003). The NAO describes the difference in

atmospheric pressure between the Icelandic Low and Azores

High. Its positive phase is linked to strong westerly winds and

increased sea surface temperature in the North Atlantic (Hurrell

et al., 2003; Wang et al., 2004). The indices are visualised in Figure 1

for the same time span as of the OC-CCI data (1997-2022) and were

all downloaded from the National Oceanic and Atmospheric

Administration’s (NOAA) website in June 2022: https://

psl.noaa.gov/data/climateindices/list/.
2.4 Longhurst provinces

The global waters were divided into the biogeochemical

provinces proposed by Longhurst et al. (1995); Longhurst, 2007).
Frontiers in Marine Science 04
These provinces are defined by distinct physical and biological

characteristics, such as mixed layer depth, solar irradiance, and

phytoplankton patterns. Each province belongs to one of four

different biomes: the polar-, coastal-, trade winds-, or westerly

wind biomes.

The 54 Longhurst provinces, each with associated province

codes, oceans, and biomes are illustrated in Figure 2 and listed in

Table A1 in the Appendix. The shape files of the Longhurst

provinces were obtained in April 2022 from the website:

https://www.marineregions.org.
2.5 Methods

2.5.1 Temporal gap detection method
First, the global daily OC-CCI data were partitioned into the

Longhurst provinces. The Temporal Gap Detection Method

(TGDM: Van Oostende et al., 2022) was then applied to each

Longhurst province separately. The aim of this method is to filter

out unequally observed data over time per geographic pixel and as a

result avoids biases in statistics and trends caused by the different

spatio-temporal coverage between the sensor input data. Apparent

jumps occur in time series of optical properties, when missions join

or drop out of the dataset. The main reasons for the inconsistencies

within the merged dataset are the different atmospheric corrections,

the inconsistent flagging for invalidity between missions, and the

overall capabilities of the sensors. Polar-, coastal-, and cloudy

regions generally are more affected by these inter-mission

inconsistencies. For example, the MERIS sensor has a significantly

better coverage of the highly productive shelf waters compared to

the SeaWiFS andMODIS sensors. Therefore, when MERIS joins the

dataset, much higher values of Chl-a suddenly appear in the global

time series. The higher Chl-a values are not incorrect, the only

change in the time series is that these type of waters are now

included in the dataset. The jumps in the time series should not be

confused with natural change, and must be corrected before

performing trend analysis.

The TGDM functions as follows: each day within the data of a

geographic pixel was scanned for observation availability within a

time window of ± n days. If there were no observations for that day

or in the time window around it, this day of the year was masked

out in every year of that specific geographical pixel. This scanning

and filtering is performed on all geographic pixels in the dataset. A

time window that is too long may not sufficiently reduce the biased

multi-year fluctuations or trends, whereas a time window that is too

short results in excessive removal of observations. An optimisation

procedure has been applied to find the optimal time window length.

This method is proposed and described thoroughly by Van

Oostende et al. (2022).

The filtering method used in this manuscript is essentially the

same as the TGDM offered by Van Oostende et al. (2022), with

some minor adjustments. Firstly, the optimal time window length

was determined for each Chl-a time series of the Longhurst

provinces separately. Secondly, thresholds of maximum

percentage data loss were applied for each biome to ensure that a

reasonable number of data records remained available for further
A

B

C

FIGURE 1

The climate indices of the (A) Southern Oscillation Index (SOI), (B)
the Indian Ocean Dipole (IOD) and, (C) North Atlantic Oscillation
(NAO). Red indicates positive phases and blue negative phases.
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analysis. The thresholds used were: trades and westerlies 50%, polar

85%, and coastal 75%. Lastly, this manuscript used version 6 of the

OC-CCI dataset, whereas Van Oostende et al. (2022) used version 5.

The main differences of the new version, which are of interest for

applying the TGDM, are that it has been extended to 2022, includes

the OLCI-B sensor, and the active periods of the sensors have been

changed. The MODIS and VIIRS sensors have been dropped after

2019 because of data quality concerns due to ageing sensors

(Jackson et al., 2022). There are now five, slightly altered broad

sub-periods that are used for the optimisation procedure:
Fron
1. 9/1997 - 4/2002 only SeaWiFS available

2. 5/2002 - 4/2012 MERIS and MODIS join

3. 5/2012 - 5/2016 VIIRS is launched and MERIS ends

4. 6/2016 - 12/2019 OLCI joins

5. 1/2020 - 6/2022 MODIS and VIIRS end of usage
The Appendix contains a table that shows all optimised time

window lengths, and the percentage of data masked per province

(Table A2).

Like for the OC-CCI data, the SST-CCI data are merged data

from different satellite sensors (Merchant et al., 2019). We expected

inconsistency between the missions to be only a secondary effect in

the SST data. Both the OC and SST compiling CCI teams already

eliminated pure instrumental inter-mission biases. Unlike the

analysis of OC data, where the algorithms are affected by the

different capabilities in Case-2 or coastal waters compared to the

open ocean and thus unevenly flag and discard these pixels that

have on the average higher loaded coastal waters, the SST analysis

only loses data mainly due to cloud coverage. Nevertheless, we

visually inspected the monthly mean time series of each Longhurst

region, and since they show no apparent inter-mission bias, we had

not applied the TGDM to the SST-CCI data.
2.5.2 Pre-processing of data
Monthly mean composites of Chl-a, Kd490, atot443, adg443,

aph443, and bbp510 were generated by combining all remaining

daily records that passed through the TGDM filter. Pixel centres of

the ocean colour variables within 4 km from the coastline were
tiers in Marine Science 05
excluded due to the larger error associated with these areas,

compared to pixels farther from the coastline (Lee et al., 2010). A

monthly means composite of the daily sea surface temperature was

prepared as well. The salinity data were already a monthly average

composite. Monthly average composites of the bias were prepared

of the SST, Chl-a, and adg443 datasets. These were used for

uncertainty estimation and validation of derived trends, i.e. the

trend should be larger than the inherent dataset bias. Unfortunately,

there was no per-pixel bias available for the salinity data.

All the following statistical- and trend analyses were performed

on de-seasonalised, monthly-averaged time series of each ocean

colour and climate variable because otherwise the annual cycle

would dominate the analyses. De-seasonalisation in this paper

always refers to the process of removing the signal caused by

seasonality from the time series. These de-seasonalised time series

were prepared by decomposing the monthly composites of each

variable into a trend-, seasonal- and residual component with

Seasonal-Trend decomposition using Loess (STL: Cleveland et al.,

1990). The resulting de-seasonalised, monthly-averaged time series

consist of the combined trend- and residual components of the

decomposed time series.

2.5.3 Statistical- and trend analyses
The statistical relationship between the time series of Chl-a and

each optically active constituent was derived globally and for each

biome and ocean. The purpose of this correlation analysis was to

infer statistical relationships between these optically active

constituents and reduce data processing. All ocean colour

variables were produced from the same reflectance data, and with

high and significant correlation between variables, it is redundant to

perform analyses on each product. The ocean colour time series

were tested for normality using the Shapiro-Wilk test (Shapiro and

Wilk, 1965) to determine the appropriate correlation method. The

Spearman correlation method can be applied to non-normally

distributed data, whereas the Pearson correlation method is not

appropriate in this case. Since approximately one third of the

optically active- and climate variables were not normally

distributed, all statistical relationships in this study were

performed using the Spearman’s rank correlation for the sake of

consistency. A significance of at least 95% was used for all
FIGURE 2

The Longhurst biogeochemical provinces with their four letter acronyms (in white) displayed within the province. The corresponding province
descriptions are detailed in Table A1. The colours indicate the four biomes that consist of multiple combined provinces.
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correlations. Statistical relationships were also determined between

Chl-a and the climate indices and variables to help explain

underlying processes.

The non-parametric Mann-Kendall test was used to identify

statistically significant trends over time (Mann, 1945; Kendall,

1948). When the resulting t is not zero and the p-value is greater

than 0.95, then the slope of the linear trend was estimated with the

non-parametric Sen’s slope (Sen, 1968). This method is insensitive

to outliers and has been used in numerous studies that derived

trends from ocean colour variables (e.g. Kahru et al., 2011; Frey

et al., 2021; Pitarch et al., 2021; Wang et al., 2021). The trend

analysis included seasonal and annual Chl-a-, temperature-, salinity

trends for each Longhurst province, and Chl-a trends of the

different biomes, oceans, and globally.
3 Results

3.1 Statistical relationships
between variables

The correlation coefficient between Chl-a and the other

investigated optically active constituents is positive globally and in

each biome and ocean (Figure 3). The adg443 is generally well

correlated to Chl-a because Chl-a degradation products are usually

the main source of adg443 in open waters. The slightly lower

correlation between these two variables in the Pacific Ocean,

which largely consists of oligotrophic waters, may be due to the

delay between the bloom and its breakdown products. These types

of waters generally have lower estimation errors for absorption and

Chl-a compared to high productive waters (Moore et al., 2009; Lee

et al., 2010). The lower correlation between Chl-a and adg443 in the

coastal biome indicates terrestrial carbon influx. The weaker

correlation between aph443 and Chl-a may seem counterintuitive

as they both are phytoplankton related quantities. However, the

relationship between aph and Chl-a is variable due to the package

effect and pigment composition (Bricaud et al., 1995). The aph is
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associated with larger inaccuracy compared to the other optical

variables (Moore et al., 2009; Lee et al., 2010).

Figure 4 demonstrates the correlation between Chl-a and the

climate variables and indices. The Chl-a in low latitude-, nutrient-

poor provinces are generally negatively correlated to temperature,

which implies that increased temperature causes ocean stratification

that limits vertical mixing and thus nutrient availability for

phytoplankton. The Chl-a in provinces located at higher latitudes

that receive limited sunlight, are generally positively correlated with

temperature. This could be explained by (a combination of):

increased light conditions because of melting ice, increased

metabolic rate, and poleward migration of phytoplankton species.

Many statistical relationship patterns between Chl-a and salinity are

similar to patterns between Chl-a and temperature, but reversed.

The positive relationship between Chl-a and salinity in the open

ocean provinces can be indirectly attributed to vertical mixing

processes related to temperature. Chl-a is generally indirectly

related to salinity in coastal provinces, as they are both influenced

by interactions between terrestrial runoff, precipitation, and mixing

processes. The Chl-a and SOI show the strongest correlation in

provinces that are near Tahiti and Darwin (e.g. PEQD and SUND).

El Niño phases may restrict phytoplankton growth in or near the

pacific equatorial upwelling zones and enhance phytoplankton

growth in Southeast Asian- and Australian waters. Thereby,

phytoplankton growth enhances in upwelling regions because of

enhanced sea level pressure that increases the upwelling nutrient

rich waters (Racault et al., 2017). La Niña phases can have the

opposite effect. During the time span of this study there have been

seven El Niño and seven La Niña phases (Figure 1). The correlation

patterns of Chl-a with IOD are quite similar to the correlation

patterns between Chl-a and temperature because the IOD is

calculated by the difference in sea surface temperature. The NAO

phases are linked to westerly wind strength that could either

enhance or limit phytoplankton growth through vertical mixing

or strat0ification.
3.2 Trends in the global
aquatic ecosystems

Both Figures 5, 6 demonstrate the linear trend direction and

magnitude of Chl-a over time. Figure 5 illustrates the time series of

Chl-a globally, and in the biomes and oceans, while Figure 6 shows

annual and seasonal relative trends of Chl-a, salinity, and

temperature in each Longhurst province. The absolute values of

trends shown in Figure 6 are available in Table A2 in the Appendix,

which also contains information on the averages, standard

deviations, and other details for each Longhurst region. The

global Chl-a is slightly increasing with 0.002 ± 0.001 mg m-3 per

decade. However, the underlying global uncertainty of the dataset

(0.021 mg m-3) is larger than the global trend. The Chl-a trend

direction and magnitude depend heavily on the latitude, as Chl-a

increases in most high latitude provinces and decreases in provinces

located nearer to the equator. The polar waters experience the

greatest increasing Chl-a trends, ranging between 0.027–0.132 ±
FIGURE 3

Spearman correlation between de-seasonalised, monthly-averaged
time series of Chl-a, and the optically active constituents in the
biomes, oceans, and globally (p < 0.005).
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FIGURE 5

(A–I) Monthly-averaged Chl-a time series of biomes, oceans, and globally with regression lines. The linear regression lines are based on the de-
seasonalised (using STL) time series and derived Sen slopes. They are only displayed when the Kendall’s t indicates significant (>95%) trend. The star
(*) behind the formula indicates that the derived trend is larger than the uncertainty of the dataset in the region.
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FIGURE 4

(A–E) Represent the correlation coefficient between the climate variables and the de-seasonalised, monthly-averaged Chl-a time series of each
Longhurst province. The correlation coefficient is shown only when the significance is greater than 95%. Slanted lines indicate that the correlation is not
significant.
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0.004–0.03 mg m-3 per decade. These observations indicate a

change in the growth conditions for phytoplankton.

Global warming is evident when looking at the sea surface

temperature trends that are increasing in 28 of 54 regions in the

range of 0.128–0.477 ± 0.021–0.104 C° per decade. These increasing

temperatures affect phytoplankton growth globally. The surface

waters of the open ocean are generally freshening, except in the

central Atlantic Ocean. The direction of the trend is variable in the

coastal provinces. The salinity increased in 20 of 54 provinces with

0.015–0.266 ± 0.006–0.038 PSU per decade and decreased in 25 of

54 provinces with 0.015–0.118 ± 0.003–0.035 PSU per decade.

These trends indicate changes in the hydrological cycle, e.g.

precipitation and glacier melting, that affect nutrient availability.

Additionally, our results suggest that the ocean is darkening, but

predominantly in the polar regions, since the non-phytoplankton

absorption increased in 13 of 54 provinces, with trends ranging

between 0.307–1.164 ± 0.053–0.356 x102 m-1 per decade. Darkening

of waters affect phytoplankton growth by changing the light

conditions and is caused by increased decomposition products

from marine organisms and increased terrestrial runoff inputs.

Coastal waters are usually influenced by terrestrial runoff, whereas

open waters are not. The polar waters are typically mentioned with

regards to darkening due to increased terrestrial input over time due

to climate change (e.g. Konik et al., 2021).
Frontiers in Marine Science 08
4 Discussion

4.1 Changes in global aquatic ecosystems

We detected trends in optically active constituents over a period

of almost 25 years, both globally and in different biogeochemical

provinces. This study used time series with improved consistency

that is necessary for climate research. All trends discussed here are

significant (p<0.05) and are larger than the inherent dataset bias

(Appendix: Figure A1), unless otherwise indicated. Our results

indicate that global Chl-a is mostly increasing in the polar waters

and decreasing in some equatorial waters. The overall global trend is

much smaller than the inherent uncertainty of the dataset (0.002 ±

0.001 mg m-3 per decade < 0.021 mg m-3), therefore we conclude

that there no clear global trend direction of Chl-a. This is in line

with findings by Gregg et al. (2017) and Kulk et al. (2020), but

contradicts other studies that found a global decreasing trend

(Behrenfeld et al., 2006; Boyce et al., 2010; Boyce et al., 2014;

Gregg et al., 2014; Hammond et al., 2017), or global increasing trend

(Antoine et al., 2005; Hammond et al., 2020). A direct numerical

comparison between our results and these studies is impossible

because differences can be explained by the use of different time

scales, regions, methods, and data sources. Our findings support the

conclusions of previous studies that demonstrated that the
FIGURE 6

The Sen’s slope of Chl-a, non-phytoplankton absorption at 443 nm (adg443), sea surface temperature (SST) and sea surface salinity (SSS) in percent
per year. The upper row figures show the trends over a full year and the other rows the trends of specific seasons. Seasons are indicated with a
combination of the first letter of the respective month (e.g. December, January, and February = DJF). The trend is only displayed when the Kendall’s
t is significant (>95%). The slanted lines indicate an insignificant t. The dots indicate provinces where the spatial coverage of the ocean colour
variables in the specified season is less than 20% compared to the annual spatial coverage. The trend is not shown when it is smaller than the
uncertainty of the underlying province dataset, and is indicated with squares (Appendix: Figure A1). The salinity data did not have any inherent
uncertainty information available.
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magnitude and direction of the Chl-a trends vary substantially

locally. We observed that Chl-a increased in 22 of 54 regions with

0.011–0.123 ± 0.002–0.026 mg m-3 per decade and decreased in 6 of

54 regions with 0.012–0.062 ± 0.004–0.019 mg m-3per decade.

Besides changes in phytoplankton dynamics, we indicate that

mainly polar waters and some coastal waters are darkening, as the

non-phytoplankton absorption increases significantly in

these provinces.

Admittedly, the current length of the time series is not long

enough yet for definitive conclusions regarding the effect of climate

change on phytoplankton dynamics (Henson et al., 2010). It is still

important to monitor the state of global waters and response of

phytoplankton to a changing environment. The necessary time scale

for deriving Chl-a trends is approximately 20–40 years and depends

on the region (Henson et al., 2010). With the current time scale, it is

possible that we detect trends that are caused by climate indices, e.g.

the North Atlantic Oscillation because it has been overwhelmingly

positive over the last decade (Figure 1) and may affect Chl-a trends

(e.g. Henson et al., 2009; Ferreira et al., 2019; Barbedo et al., 2020).

4.1.1 Polar biome
This study demonstrates a strong increase in Chl-a in all polar

provinces coinciding with warming trend of the surface waters. The

northernmost province has the highest increase of Chl-a of 0.123 ±

0.026 mg m-3 per decade. The diminishing ice cover, increased

growth rate, and possibly species migration are the likely reason for

the positive correlation that we found between Chl-a and

temperature (r: 0.2-0.4). The productivity in the polar waters is

typically light and temperature dependent (Sakshaug and Slagstad,

1991). Rising temperatures due to global warming lead to

decreasing ice cover, which extends the growing season and

intensity of phytoplankton blooms as more light is available (Pabi

et al., 2008; Ardyna et al., 2014; Arrigo and Van Dijken, 2015; Kahru

et al., 2016; Lewis et al., 2020; Frey et al., 2021). Thereby, increasing

surface temperatures in polar waters enhances the phytoplankton

growth rate and causes northward phytoplankton migration that

changes the species composition (Henson et al., 2021).

We observed significant increase of Chl-a in the polar water of

the Southern Ocean provinces (0.027–0.093 ± 0.004–0.03 mg m-3

per decade), consistent with findings of studies by Hammond et al.

(2020) and Sathyendranath et al. (2022). The water is freshening in

the open waters of the Southern Ocean, likely due to the ice melting.

We found a negative relationship between Chl-a and salinity in the

open water province of the Southern Ocean (ANTA: r 0.3). In

contrast, we found that the surface salinity is increasing near the

Antarctic coast, which was also reported by Chaigneau and Morrow

(2002) and Kolbe et al. (2021). In the coastal Southern Ocean

province the salinity is positively related to Chl-a (APLR: r 0.4),

which may be caused by the stronger vertical mixing in these

shallower coastal waters and larger brine rejection in the local

autumn and winter because of ice cover thinning (Chaigneau and

Morrow, 2002; Holland et al., 2006).

In addition to the increase of Chl-a, we also found significant

increase of non-phytoplankton absorption in 5 out of 6 polar

provinces (not in ANTA). The sources of this increased

absorption are increased terrestrial input and/or marine
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decomposition products. Several studies have found that the

dissolved organic carbon in the Arctic Ocean is increasing

because of permafrost thawing (Juhls et al., 2019; Mustaffa et al.,

2020; Konik et al., 2021; Bernhard et al., 2022). Whereas, Chl-a in

the Southern Ocean is highly correlated (r>0.8) with non-

phytoplankton absorption, which suggests that the absorption

originates from marine decomposition products. This increasing

non-phytoplankton absorption leads to darker waters that absorb

more light and result in stronger warming of the surface water

(Soppa et al., 2019).

4.1.2 Westerly winds biome
In this study, we present evidence that the Chl-a is generally

increasing in the westerly wind provinces (6 out of 13), but the

increase is not as strong as in the polar provinces (0.011–0.033 mg m-

3 ± 0.002–0.01 mg m-3 per decade). Interestingly, Chl-a is strongly

increasing in the autumn in northern subarctic waters of the Pacific

Ocean (PSAE and PSAW: 0.04–0.07 mg m-3 per decade), which

indicates that secondary blooms could be occurring more frequently

or have a larger biomass. The Antarctic Circumpolar Current is

experiencing strengthening westerly winds (Wang et al., 2011) that

possibly increases phytoplankton growth by enhancing vertical

mixing in the nutrient-limited Southern Ocean waters (SSTC and

SANT: 0.011–0.017 ± 0.002–0.006 mg m-3 per decade). Climate

change can affect the strength of winds in these provinces and thus

the mixed layer depth that affects the phytoplankton dynamics, but

definitive trends are difficult to derive (for now) because of

productivity correlation with natural oscillations, e.g. the El Niño

oscillation (Henson et al., 2009). Further research is needed to fully

understand the impacts of climate change on phytoplankton

dynamics in these dynamic regions.

4.1.3 Trade winds biome
We found decreasing Chl-a trends in the trade wind provinces

of the equatorial Pacific and Indian Ocean, in agreement with

several studies (Behrenfeld et al., 2006; Hammond et al., 2020;

Sathyendranath et al., 2022). However, almost all of these trends are

currently smaller than the inherent bias of the dataset. Except for

the North Pacific equatorial province (PNEC), which is decreasing

with 0.019 ± 0.006 mg m-3 per decade. This province has a high

negative correlation with SST (r: -0.8) and a high positive

correlation with salinity (r: 0.8). The negative correlation between

Chl-a and surface temperature in these nutrient-limited regions are

likely caused by global warming that enhances stratification of the

water column and as a result reduces phytoplankton growth rates

waters (e.g. Behrenfeld et al., 2006; Boyce et al., 2010; Racault et al.,

2012; Lewandowska et al., 2014; Dunstan et al., 2018).

4.1.4 Coastal biome
The coastal provinces are extremely diverse environments that

are influenced by land-water exchange processes. Climate change

and anthropogenic activities affect numerous regions of this

ecosystem (Bindoff et al., 2019). We demonstrated that the Chl-a

is changing in many provinces and highlight some of them here.

We observe increasing Chl-a trends in the China Sea (CHIN:

0.019 ± 0.018 mg m-3 per decade). This is supported by previous
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research that linked eutrophication of coastal waters to human

activities that increase nutrients in the river discharge (Zhou et al.,

2020; Wang et al., 2021).

The eastern boundary upwelling systems (BENG, CCAL, CHIL,

and CNRY) are highly productive waters defined by continuous

cold wind-driven upwelling nutrient-rich water (Kämpf and

Chapman, 2016). The upwelling in the Benguela current is forced

by global sea-level pressure that is a response to climate change,

whereas the upwelling in the other eastern boundary upwelling

systems are largely forced by climate oscillations (Bonino et al.,

2019). The Chl-a decreases in the Benguela province (BENG: -0.027

± 0.013 mg m-3 per decade), which could be explained by decreased

upwelling of nutrient-rich water. However, the trend of upwelling is

highly dependent on the time period chosen for trend analysis

(Bonino et al., 2019).

We show that the Chl-a in the southern coastal provinces of the

New Zealand and Eastern Australian shelves is significantly

increasing (AUSE and NEWZ: 0.012–0.025 ± 0.003–0.007 mg m-3

per decade). Our findings are supported by the increasing Chl-a

trends found by Kelly et al. (2015), who also reported rapidly

increasing salinity and temperature. They argue that the water is

more nutrient rich because of increased southerly extension of the

East Australian Current and its eddy field. Thompson et al. (2009)

reported opposing trends, but used different areas, time scales, and

data sources. Additionally, we found relatively high values of Chl-a

(and adg443) between 2019 and 2021 in the time series of these

waters, similar to Tang et al. (2021). They attributed this to the

increased forest fires that were caused by enhanced droughts and

climate change driven warming.

Many coastal waters in the Indian Ocean are associated with

climatic fluctuations of the IOD and SOI (INDW, ARAB, and

AUSW: r -0.4-0.4). The strongly seasonal productivity of the

western Indian coastal province (INDW) coincides with the

monsoon (June-September), whereas productivity in the eastern

Indian coastal province (INDE) is less dependent on the monsoon,

and is more affected by major river discharges (Longhurst, 2007).

Climate change induced glacier melt and increased precipitation in

the Ganges and Brahmaputra basins increase peak flow and

discharge into the eastern Indian coastal basin during the

monsoon (Nepal and Shrestha, 2015). We found that water is

freshening in the SON months, which supports their findings. We

found an increasing Chl-a trend in the eastern Indian waters (0.014

± 0.009 mg m-3 per decade), as opposed to e.g. Behrenfeld et al.

(2006) and Gregg et al. (2017). They found that Chl-a declines in

both the eastern and western Indian coastal waters. We do indicate

a negative Chl-a trend in the western Indian province (-0.054 ±

0.019 mg m-3 per decade).
4.2 Limitations

The limitation of using TGDM is that daily data records are lost

and that seasonality could change since records are filtered

depending on the recurrence of observations in every year. An

optimised filtering strength (time window) was used to minimise
Frontiers in Marine Science 10
initial data loss and find the optimal reduction of inter-mission

inconsistencies per Longhurst province. The strictness, i.e. the

length of the time window, and consequently the number of

records masked to achieve temporal consistency, differs greatly

per province (Appendix: A2A2). This resulted in a slightly larger

number of total retained data records of the original dataset, 74%,

compared to 70%, when using a universal time window of 27 days

for the full OC-CCI v5 dataset (Van Oostende et al., 2022). Data

gaps are effectively removed because the use of monthly composites.

Another limitation of this study is that some biogeochemical

provinces vary significantly optically and biologically and it would

be beneficial to separate some of them into smaller provinces. For

example, the Mediterranean- and Black Sea should be separated and

the Baltic Sea should be separated from the rest of the greater

North Sea.

It is important to note that the input SeaWiFS dataset (1997–

2010) was atmospherically corrected with l2gen (SeaDAS 7.5; Franz

et al., 2007), and the other sensors with POLYMER (v4.1: Steinmetz

et al., 2011; Steinmetz et al., 2016). The l2gen processor flags more

pixels for invalidity than POLYMER, e.g., observations that consist

of high-sensor zenith angels or high values of brightness (Müller

et al., 2015). The TGDM circumvents this issue by removing pixels

that have not been observed consistently over time (Van Oostende

et al., 2022).

There is larger uncertainty associated with optically active

constituents retrieved from coastal and polar waters and typically

have larger errors compared to other regions (Zheng et al., 2014;

IOCCG, 2019; Werdell et al., 2019). Since the Chl-a and adg443 are

produced by almost the same method (apart from atmospheric

correction) and validated extensively with in situ match-ups, we

believe it is justified to derive trends in these areas. Thereby, we only

show trends that are larger than the inherent uncertainty of the

dataset. Unfortunately, uncertainty estimates were not available for

the salinity dataset (in our timespan and regions). Due to the

limited timescale of the OC-CCI dataset, the bias is currently

larger than the trends in most provinces with lower constituent

concentrations (e.g. in the trade wind provinces). With future

temporal extensions of the dataset, we will likely able to derive

trends in these areas.
5 Conclusions

A key challenge in deriving long-term trends from merged

ocean colour data is the inconsistency between the spatiotemporal

coverage of the input sensor datasets, which can lead to both

spurious multi-year fluctuations and trends in the time series. We

corrected this inconsistency in the dataset and analysed the derived

global and local trends. Our main results demonstrate that global

phytoplankton dynamics change in response to different climate

feedbacks and indicate a darkening of predominantly polar waters,

associated with increasing organic carbon in water. We recommend

that future studies that intend to use time series based on merged

satellite datasets consider whether their data are affected by inter-

mission coverage inconsistencies and, if necessary, apply a method
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to minimise these. Additionally, previous studies that used time

series based on merged ocean colour datasets may benefit from re-

evaluating their findings. Future research should further investigate

global and local trends in optically active constituents, especially

when these time series become long enough to draw definitive

conclusions on the effects of climate change on global waters and

phytoplankton dynamics.
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