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Polar regions have the most productive ecosystems in the global ocean but are

vulnerable to global climate changes. Traditionally, the long-term changes

occurred in an ecosystem are studied by using satellite-derived estimates of

passive ocean color remote sensing measurements. However, this technology is

severely limited by the inability to observe high-latitude ocean areas during lengthy

polar nights. The spaceborne lidar can address the limitations and provide a decade

of uninterrupted polar observations. This paper presents an innovative feed-

forward neural network (FFNN) model for the inversion of subsurface particulate

backscatter coefficients (bbp), chlorophyll concentration (Chl), and total

particulate organic carbon (POC) from the spaceborne lidar. Non-linear

relationship between lidar signal and bio-optical parameters was estimated

through FFNN. The inversion results are in good agreement with

biogeochemical Argo data, indicating the accuracy of the method. The annual

cycles of Chl and POC were then analyzed based on the inversion results. We find

that Chl, bbp, and POC have similar interannual variability but there are some subtle

differences between them. Light limitation appears to be a dominant factor

controlling phytoplankton growth in polar regions according to the results.

Overall, the combined analysis of bbp, Chl, and POC contributes to a

comprehensive understanding of interannual variability in the ecosystem in

polar regions.

KEYWORDS

chlorophyll, bbp, POC, CALIOP, polar oceans, phytoplankton
Highlights
- New FFNN algorithm was proposed to retrieve bbp, Chl, and POC from spaceborne

lidar

- CALIPSO measurements in the polar regions fill the gap of passive measurements
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Fron
- Comparison with in situ data indicates that FFNN-based lidar

products perform well

- Combined description of annual cycles of bbp, Chl, and POC in

polar regions

- Analysis of key factors governing phytoplankton growth in

polar regions
1 Introduction

Marine phytoplankton plays a key role in the marine food web

and biogeochemical cycles (Xu et al., 2020) and its photosynthetic

production of organic carbon is vital for regulating atmospheric

carbon dioxide (Parekh et al., 2006). Changes in phytoplankton

primary production have a critical impact on higher trophic levels

like zooplankton and ichthyoplankton (Capuzzo et al., 2018). As a

commonly used proxy of phytoplankton abundance (Gordon et al.,

1980; Li et al., 2022), the chlorophyll concentration (Chl) is

traditionally estimated by passive ocean color remote sensing

measurements for long-term studies (Alvera-Azcárate et al., 2021).

In fact, ocean color remote sensing has reshaped our understanding of

upper-ocean biogeochemistry for the global oceans as well as in

regional basins (Dickey et al., 2006; McClain, 2009; Blondeau-

Patissier et al., 2014; Brewin et al., 2017; Jackson et al., 2017).

However, passive remote sensing can only work during the daytime

because of the need for sunlight (Jamet et al., 2019), which leaves vast

high-latitude ocean areas unobserved during lengthy polar nights. As

a result, only a limited amount of data is available for polar regions.

Recently, an active remote sensing technique, light detection and

ranging (lidar) has drawn great attention because of its independence

from sunlight, which could address the limitations of passive remote

sensing. In practice, spaceborne lidar CALIOP has shown remarkable

potential in research of ocean carbon stocks (Behrenfeld et al., 2013)

and phytoplankton biomass (Behrenfeld et al., 2017). However,

previous studies heavily relied on the CALIOP particulate

backscatter coefficient (bbp) to derive total particulate organic

carbon (POC) and phytoplankton biomass. Besides, CALIOP bbp

inversion method needs to assume the conversion factor used to

derive bbp from the backscatter coefficient at 180° (bp ) (Behrenfeld

et al., 2019; Bisson et al., 2021). However, variabilities and

inconsistencies of the conversion coefficient affect uncertainties to

the retrieval of CALIOP bbp substantially (Berthon et al., 2007;

Sullivan and Twardowski, 2009; Zhang et al., 2012; Chami et al.,

2014; Hu et al., 2020).

This study intends to propose an innovative feed-forward neural

network (FFNN) method to retrieve bbp, Chl, and POC from

CALIOP measurements and study the interannual variability of

phytoplankton based on the CALIOP-derived estimates of ocean

variables. The remainder of the manuscript is organized as follows:

data and methods are described in Section 2; after validation of the

accuracy of the proposed method, the interannual variability is

studied in Section 3; a discussion about the key factors governing

phytoplankton growth in polar regions is presented in Section 4;

conclusions and perspectives are provided in Section 5.
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2 Materials and methods

2.1 Data

The data including CALIOP Level-1B V4.1 data products, Level-2

Merged Layer V4.20 products, and MODIS Level-3 9 km monthly

averaged data are mainly used here. Launched in April 2006,

CALIPSO flew in the “A-Train” constellation and followed Aqua

within 2 minutes (Kim et al., 2013), which provided for near-

simultaneous observations between them. As the main payload

onboard CALIPSO, CALIOP is a nadir-pointing two-wavelength

polarization-sensitive elastic backscatter lidar. CALIOP provides

attenuated backscatter at 532 nm perpendicular component, 532

nm parallel component, and 1064 nm. The receiver footprint

diameter is 90 m and the horizontal resolution is 333 m (Winker

et al., 2009). The vertical resolution in water is 22.5 m (Lu et al., 2014).

CALIOP Level-1B V4.1 product, which has significantly improved

calibration accuracy compared with previous versions (Getzewich

et al., 2018), is used for the ocean optic property inversion. Level-2

Merged Layer V4.20 product provides integrated attenuated

backscatter (IAB) and aerosol optical depth (AOD) parameters.

MODIS is a key instrument aboard the Terra and Aqua satellite.

As Aqua flies in the “A-Train” constellation as well, only MODIS

products onboard Aqua are used for the simultaneity between

different observations. The algorithms developed for the inversion

bbp include Garver-Siegel-Maritorena algorithm (GSM) (Maritorena

et al., 2002), Quasi Analytical Algorithm (QAA) (Lee et al., 2002), and

Generalized Inherent Optical Property algorithm (GIOP) (Werdell

et al., 2013). Since GIOP outperformed other inversion methods

(Bisson et al., 2019), MODIS GIOP bbp443 L3 9 km product is used

here. MODIS POC is produced using blue-to-green band ratios

(Stramski et al., 2008). MODIS Chl is derived based on the

standard Ocean Color Chlorophyll (OC2) (O'Reilly et al., 1998)

band ratio algorithm merged with the color index (CI) (Hu et al.,

2012). In situ Chl were obtained from biogeochemical Argo data

(Claustre et al., 2019) available from the Argo Data Assembly Center

(ftp://ftp.ifremer.fr/ifremer/argo/dac/, last access: 20 May 2022) and

used to validate the lidar-derived results. The spatial distribution of in

situ data is shown in Supplementary Figure 1A, where blue dots

represent all in situ data and red asterisks represent the matched data.

Histograms of all data and matched data are shown in Supplementary

Figures 1B, C. The mean values of all data and matched data are 0.50

mg/m3 and 0.81 mg/3, respectively. Sea ice extend is obtained from

the Copernicus Climate Change Service (https://climate.copernicus.

eu/sea-ice, last access: 5 June 2022) which is derived based on EAR5

(Hersbach et al . , 2020; Bell et al . , 2021). Estimates of

photosynthetically available radiation (PAR) are from NASA Ocean

Color website (https://oceancolor.gsfc.nasa.gov/, last access: 7 June

2022) that are derived from MODIS (Frouin et al., 2012). Monthly

global reprocessed products of physical variables from ARMOR3D L4

distributed through the Copernicus Marine Environment Monitoring

Service (https://resources.marine.copernicus.eu/product-detail/

MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012, last access:

7 June 2022) are used for sea surface temperature (SST) and mixed

layer depth (MLD).
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2.2 Methods

2.2.1 CALIOP data preprocessing
For CALIOP data, the backscatter signal separated by the

polarization beam splitter (PBS) at 532 nm is detected by

photomultiplier tubes (PMTs). Due to the transient response of the

detector, the subsequently measured signal intensity following the

signal peak is greater than the true backscatter signal. The measured

signal should be corrected by using deconvolution as follows (Lu et al.,

2014):

b 0(z) = ½F�−1b(z) (1)

where b′(z) is the corrected backscattered signal, b(z) is the measured

signal and [F] is the matrix form of the transient function.

Due to the polarization crosstalk caused by the nonideal

characteristics of PBS, a portion of the parallel polarization

component is transformed into the perpendicular component. The

effects of crosstalk can be removed as follows:

b∥,c =
b∥,m

1 − CT
(2)

b⊥,c = b⊥,m − CT � b∥,c (3)

where b∥,c and b⊥,c are corrected parallel and perpendicular signals,

respectively. b∥,m and b⊥,m are measured parallel and perpendicular

signals, respectively.

Then, the subsurface column-integrated backscatter of the

perpendicular components, bw+ can be calculated as follows

(Behrenfeld et al., 2013):

bW+ = dT
bS

1 − 10dT
(4)

where, bs is the lidar surface backscatter that can be evaluated using

co-located surface wind speed (Hu et al., 2008). dT is the total column-

integrated depolarization ratio that can be calculated as follows

(Dionisi et al., 2020):

dT = o
i=p+2
i=p b⊥,c

oi=p+2
i=p b∥,c

(5)
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where p is the range bin of the peak surface return.

Generally, CALIOP bbp estimates were based on b;w+, which has

bCALIOPbp ≈ bw+
0:32*   0:982  

(Bisson et al., 2021). However, the conversion

coefficient of 0.32 has its uncertainty and inconsistency. This value

was reported as 1.43 in some studies (Sullivan and Twardowski, 2009;

Zhang et al., 2014), or 1.06 in some other studies (Lee et al., 2013;

Churnside et al., 2014; Churnside and Marchbanks, 2015). While

others reported a value of 0.5 (Boss and Pegau, 2001; Chami et al.,

2006; Whitmire et al., 2010). The variability of the conversion

coefficient may introduce uncertainties to the retrieval of CALIOP

bbp. Compared with previous studies, the nonlinear deep neural

network algorithm does not require predetermined knowledge, which

could be an effective alternative method.

2.2.2 Network configuration and
evaluation protocol

In previous studies, CALIOP bbp was calculated based on b;w+

(Lu et al., 2014; Bisson et al., 2021). Then, POC and phytoplankton

biomass were estimated based on CALIOP bbp (Behrenfeld et al.,

2013; Behrenfeld et al., 2017). The FFNN algorithm is used here to

derive bbp, POC, and Chl from b;w+ directly. Previous studies showed

that dT parameters can provide valuable information about bbp and

Chl (Dionisi et al., 2020). Overall, b;w+, dT and latitude are used as

input variables (or predictors). The FFNN algorithm could adjust the

relationship between the output and CALIOP variables in terms of

latitude (Murphy and Hu, 2021). As shown in Figure 1, a multilayer

perceptron using a backpropagation network (MLP BPN) is used for

the FFNN model. The model comprises an input layer, 10 hidden

layers, and an output layer. The hidden layers have 100 nodes each.

The configuration of the model is based on a series of tests and their

statistical results. A sigmoid function was chosen as an activation

function for neurons in hidden layers (Sharma et al., 2020), and a

linear function was used for the output layer to generate the final

results. The model was trained by using the optimization algorithm of

root mean square prop (RMSprop) which divides the gradient by a

running average of its recent magnitude (Hinton et al., 2012). In this

study, CALIPSO lidar backscatter measurements at daytime in 2008

and collocated bbp, POC, and Chl products from Aqua/MODIS are

used for the training model. CALIOP variables are averaged 9 km

along-track to match the MODIS data. There are 1,144,878 matched
FIGURE 1

Flow chart of the FFNN including its architecture.
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points and the dataset was randomly divided into 70% for FFNN

training, 15% for model validation, and 15% for its evaluation. The

evaluation data did not participate in the training. As shown in

Supplementary Figure 2, the matched data cover almost all of the

global oceans. Then, the FFNN algorithm is applied to bbp, POC, and

Chl inversion between 2008 and 2021.

2.2.3 Evaluation metrics
Coefficient of determination (R2), root mean square error

(RMSE), bias, mean absolute (MAE), and mean absolute percentage

error (MAPE) are used to evaluate the results as follows:

R2 = 1 −o
(yi − fi)

2

o(yi − �y)2
(6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(yi − fi)

2

N

s
(7)

bias =
1
No

(yi − xi) (8)

MAE =
1
No

 yi − xij j (9)

MAPE =
1
No

 yi − xij j
xi

(10)

where xi is the true value, yi is the prediction, fi is the linear regression

of yi, and �y is mean of yi.

Linear correlation coefficient (r) is calculated to measure the

strength of the linear relationship between phytoplankton

parameters (Y) and marine environmental factors (X) as follows:
Frontiers in Marine Science 04
r =
cov(XY)
s (X)s (Y)

(11)

where s is the standard deviation of variables and cov(*)is

their covariance.
3 Results

3.1 FFNN training results and model
evaluation

The training process including the decreases in losses and

increases in R2 is shown in Figure 2. An early stopping callback was

used when the losses of the model used for validation data are no

longer reduced. The early stopping callback could avoid overfitting

effectively. Generally, the R2 of the validation data for bbp, POC, and

Chl could be around 0.8. The evaluation of the model is shown in

Figure 3. The subset of data used for evaluation did not participate in

the training. Therefore, the evaluation data represented independent

observations. The RMSE and R2 of bbp are 0.0011 m-1 and 0.75,

respectively. The RMSE and R2 of POC are 36.74 mg/m3 and

0.82, respectively. The RMSE and R2 of Chl are 1.3 mg/m3 and

0.84, respectively. Overall, the FFNN results have a good agreement

with MODIS products.

Figure 4 shows the spatial distribution of climatologically

averaged CALIOP bbp and MODIS bbp in polar regions in

summer (the Arctic in June, July, and August; the Antarctic in

December, January, and February) from 2009 and 2021, which did

not participate in the development of the model. The results of

CALIOP have similar spatial distribution compared with MODIS

products. The percent difference shown in Figures 4C, F is around
A B

D E F

C

FIGURE 2

Loss and R2 versus epoch during the model training. (A) Loss of bbp, (B) loss of POC, (C) loss of Chl, (D) R2 of bbp, (E) R2 of POC, and (F) R2 of Chl.
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10%. Besides, the comparison with the Oregon State University

(OSU) bbp data produced in previous studies (Behrenfeld et al.,

2019), which can be downloaded from http://orca.science.

oregonstate.edu/lidar_public_v2.php (accessed on 20 August 2022),

is shown in Supplementary Figure 3. DNN-based CALIOP bbp have

similar results and spatial distribution compared with previous

studies in a global scale, but more details have been retained. The

comparison of Chl between CALIOP and MODIS is shown in

Figure 5. The difference in the Antarctic is slightly greater than that

in the Arctic. But the percent difference is less than 25% shown in
Frontiers in Marine Science 05
Figure 5F. The similar spatial distribution of POC between CALIOP

and POC can be found in Figure 6. The results indicate that the FFNN

method is effective for bbp, Chl, and POC inversion.

Figure 7 shows the data distribution in winter (the Arctic in

December; the Antarctic in June). The deep blue represents the sea ice

and the green color represents the distribution of Chl. It is clear that

MODIS has poor coverage in polar regions in winter. Oppositely,

CALIOP can observe high-latitude ocean areas even during lengthy

polar nights. Therefore, CALIOP measurements can be a useful

technique to study the phytoplankton and POC in polar areas.
A B

D E F

C

FIGURE 4

Comparisons of seasonal CALIOP bbp with MODIS bbp in polar regions in summer. (A) CALIOP bbp in the Arctic, (B) MODIS bbp in the Arctic,
(C) percent difference between CALIOP bbp and MODIS bbp in the Arctic, (D) CALIOP bbp in the Antarctic, (E) MODIS bbp in the Antarctic, and
(F) percent difference between CALIOP bbp and MODIS bbp in the Antarctic.
A B C

FIGURE 3

Evaluation of FFNN model. (A) Evaluation of bbp, (B) evaluation of POC, and (C) evaluation of Chl.
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A B

D E F

C

FIGURE 6

Comparisons of seasonal CALIOP POC with MODIS POC in polar regions in summer. (A) CALIOP POC in the Arctic, (B) MODIS POC in the Arctic,
(C) percent difference between CALIOP POC and MODIS POC in the Arctic, (D) CALIOP POC in the Antarctic, (E) MODIS POC in the Antarctic, and
(F) percent difference between CALIOP POC and MODIS POC in the Antarctic.
D F

A B

E

C

FIGURE 5

Comparisons of seasonal CALIOP Chl with MODIS Chl in polar regions in summer. (A) CALIOP Chl in the Arctic, (B) MODIS Chl in the Arctic, (C) percent
difference between CALIOP Chl and MODIS Chl in the Arctic, (D) CALIOP Chl in the Antarctic, (E) MODIS Chl in the Antarctic, and (F) percent difference
between CALIOP Chl and MODIS Chl in the Antarctic.
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3.2 In situ validation

Figure 8 shows the matched data between Argo Chl and Chl

derived from CALIOP and MODIS from 2010 to 2021. The data are

matched if they fall within 9 km and occur within 12 hours of each

other. The blue and red circles in Figure 8 represent the matched data

point of CALIOP and MODIS, respectively. Dashed lines represent

the best-fit functions and a green solid line represents the 1:1 line.

There are 134 matched points in total and they are distributed around

the green line. As shown in Table 1, R2, RMSE, MAE, and MAPE

between CALIOP and Argo are 0.5153, 0.6740, 0.5342, and 42.17%.

The corresponding values of MODIS is 0.5902, 0.6379, 0.5150 and

38.82%. The biases of MODIS and CALIOP are 0.0972 and 0.0549,

respectively. The Chl derived from CALIOP and MODIS agrees with

the in situ measurements. The similar metrics with previous studies
Frontiers in Marine Science 07
(Marrari et al., 2006; Moore et al., 2009; Hu et al., 2012; Moutier et al.,

2019) indicate the FFNN algorithm can be used for retrieval of Chl

from CALIOP.
3.3 Interannual variability

A spatial average of month Chl, bbp, and POC in polar regions has

been performed to assess interannual variability. A large interannual

variability and an apparent seasonal cycle in the average values can be

found in Figure 9. In Arctic areas, Chl, bbp, and POC usually begin to

increase in January and reach the maximum in summer. After that, the

values begin to decrease. In Antarctic areas, Chl, bbp, and POC usually

reach the peak in winter (in the northern hemisphere) and then begin

to decrease. For Chl and POC, the values in the Antarctic are generally
A B

DC

FIGURE 7

Distribution of CALIOP and MODIS in polar region in winter. (A) CALIOP data in the Arctic in December, (B) MODIS data in the Arctic in December, (C) CALIOP
data in the Antarctic in June, and (D) MODIS data in the Antarctic in June. The deep blue represents the sea ice. The green color represents the Chl.
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smaller than the values in the Arctic. Even the maximum values in the

Antarctic are still smaller than the minimum values in the Arctic. The

results show that the Arctic region may have a more productive

ecosystem, which is consistent with previous studies in which

phytoplankton biomass in north polar zone is much greater than that

in south polar zone (Behrenfeld et al., 2017) Besides, some previous

studies show that Chl in Arctic ocean is greater than that in Southern

Ocean (Lewis et al., 2016; Behera et al., 2020).as well. For bbp, there are

usually two peaks in Arctic areas as shown in Figure 9B. The first peak

is usually the maximum and occurs in July. The second peak is smaller

and occurs in October. The specific month in which the Chl

concentration, bbp, and POC reach the maximum values each year is

shown in Figure 10. The maximum in the Antarctic occurs at a more
Frontiers in Marine Science 08
concentrated time, usually in winter (north hemisphere), more

specifically, in January. The time may shift to December or February

in some years. The month in which the maximum of Chl

concentration, bbp, and POC occurs is more consistent. However,

the results in the Arctic are more complicated. The maximum can

occur in any month fromMay to October, not just in summer. In some

years such as 2007, 2019, and 2020, Chl, bbp, and POC can reach their

maximum simultaneously. But in some years, the months in which

maximum values occur are different. For example, the bbp reached its

peak in June 2014. Then, the Chl reached its maximum in July

subsequently and the maximum of POC occurred in August at last.

The results show that there is a certain connection between Chl, bbp,

and POC, but there are some subtle differences between them.
FIGURE 8

Matched data between Argo Chl and Chl produced by CALIOP and MODIS. The blue and red circles represent the matched data point of CALIOP and
MODIS, respectively. Dashed lines represent the best-fit functions and a green solid line represents the 1:1 line.
TABLE 1 Statistical analysis results of in situ Chl and remote sensing measurements.

R2 RMSE (mg m-3) bias (mg m-3) MAE (mg m-3) MAPE

Argo vs MODIS 0.5912 0.6379 0.0972 0.5150 42.17%

Argo vs CALIOP 0.5153 0.6740 0.0549 0.5342 38.82%
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FIGURE 9

(Top) CALIOP-derived Chl spatial average in polar regions during 2007-2021. (Middle) bbp average in polar regions. (Bottom) POC average in polar regions.
FIGURE 10

Month in which the Chl concentration, bbp, and POC reach the maximum values each year.
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4 Discussion

The monthly change rate defined as dxm = xm−xm−1 is calculated

for Chl, bbp, and POC as shown in Figure 11, where m represents

month. In the north polar region, the change rates of Chl and bbp

usually become greater than zero from early spring when

phytoplankton begin to grow. This may be caused by the

combination of several factors. As shown in Figure 12, at this time

the ice begins to melt, SST and PAR begin to rise, and MLD shoals. In

May, the change rates of Chl and bbp reach the maximum, which

indicates that phytoplankton reproduces rapidly. This may be caused

by the proper PAR and SST as shown in Figure 12. The change rates

of Chl and bbp usually start below zero in August, indicating the

decline of phytoplankton. This is likely caused by the grazing of

predators (Behrenfeld et al., 2017). The change rate of POC is much

more complicated. There is no fixed month in which the change rate

of POC reaches its peaks and it varies dramatically from year to year.

This is related to the fluctuation of POC in the summer as shown in

Figure 9. The change rate of Chl in the south polar region is much

smaller than those in the north. This is largely because the prevalence

of iron-limiting conditions constrains phytoplankton growth (de

Baar, 2005; Boyd et al., 2007). As a result, the Chl and POC in the

south are far lower than the values in the north. Table 2 shows the

linear regression coefficient between bbp, Chl, POC, and

environmental parameters. Note that all of the p values are less

than 0.001, meaning that Chl, bbp, and POC are correlated with the
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SIE, PAR, SST, and MLD. But the impacts are different. It can be

found that SIE and MLD have a negative impact on bbp, Chl, and

POC. In terms of Chl, since the PAR has the highest correlation

coefficient, it seems that phytoplankton is more affected by the light in

polar areas. In fact, phytoplankton is often light-limited at higher

latitudes (Riebesell et al., 2009). MLD likely has a great influence on

bbp and the influence on POC of SIE in the Arctic is much greater

than that in the Antarctic. The results indicate that environmentally

driven factors of phytoplankton vary interannually at each pole

(Behrenfeld et al., 2017).

The monthly climatological averages of Chl, bbp, POC, SIE, PAR,

SST, and MLD and their corresponding change rate are shown in

Figure 13. In the north polar zone, Chl, bbp, and POC begin to

increase in March, after they have reached their minimum in

February. In March, SIE is still increasing and reaches its

maximum. The result shows that the phytoplankton blooms before

the sea ice starts melting in Arctic areas. SST barely changes at this

time. But PAR increases a lot in Match. Therefore, the growth of

phytoplankton in spring may be largely triggered by the increase of

PAR. The change rates of Chl, bbp, and POC have the maximum in

May, which indicates phytoplankton blooms. Meanwhile, PAR has

the largest change rate in May as well. MLD has the smallest change

rate meaning that MLD shoals rapidly at this time. Then, Chl and bbp

reach the peak in July and begin to decline in August subsequently.

POC is still increasing in August and reaches its peak at this time. In

the south polar zone, Chl, bbp, and POC begin to increase in August
FIGURE 11

(Top) Chl change rate in polar regions during 2007-2021. (Middle) bbp change rate in polar regions. (Bottom) POC change rate in polar regions.
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when SIE is still increasing and SST is still decreasing. PAR begins to

increase. Then Chl, bbp, and POC reach their maximums in January

simultaneously. It can be found that Chl, bbp, and POC have a

stronger correlation in Antarctic areas compared with Arctic areas.

The results indicate that Chl, bbp, and POC have similar interannual

variability but there are some subtle differences between them.

The total uncertainty (E) of DNN products can be expressed as

the root of the squared sum of uncertainties stemming from

measurement (M), representation (R), and prediction (P) errors: E =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 + R2 + P2

p
(Gregor and Gruber, 2021). The measurement error

includes the potential biases from the measurement MODIS and

CALIOP data. The uncertainties of CALIOP dT and b;w+ are about

1% and 10%, respectively(Lu et al., 2014). The uncertainty of MODIS

bbp is approximately 30% (Bisson et al., 2019). The uncertainty of

MODIS Chl is approximately 35% (Moore et al., 2009). The

uncertainty of MODIS POC is approximately 25% (Evers-King

et al., 2017). Therefore, the measurement errors of CALIOP-based

bbp, Chl and POC are 32%, 36% and 27%, respectively. As the result

of the fact that we developed the DNNmodel on a grid that is in many

places coarser in time and space than the typical scales of variabilities

of MODIS, the representation error is commonly assumed to be
Frontiers in Marine Science 11
normally distributed with a bias of 0 on a global average (Gregor and

Gruber, 2021). The prediction error is approximately 18% according

to the validation data. Overall, the total uncertainties of CALIOP-

based bbp, Chl and POC are 37%, 40% and 32%, respectively.
5 Conclusions

We proposed a new FFNN model for the retrieval of bbp, Chl, and

POC fromCALIOP. This data-based approach does not require additional

assumptions regarding the relationship between bbp and b(p). The FFNN is

trained using the CALIPSO total ocean column-integrated depolarization

ratio and subsurface column-integrated perpendicular backscatter together

with collocated MODIS products. Non-linear relationship between lidar

signal and bio-optical parameters was estimated through FFNN. Validation

with independent data between CALIOP and MODIS with RMSE and R2

of bbp are 0.0011m-1 and 0.75, those of POC are 36.7mg/m3 and 0.82, and

those of Chl are 1.3 mg/m3 and 0.84, indicates that the retrieval results

agree well with MODIS products and in-situ BGC-Argo data. In order to

assess the model further, it was compared to in situ Argo Chl with R2,

RMSE, MAE, and MAPE between CALIOP and Argo are 0.5153, 0.6740,
FIGURE 12

Spatial average of SIE, PAR, SST, and MLD in polar regions during 2007-2021. Solid and dashed lines represent the north and south polar zones, respectively.
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FIGURE 13

Monthly climatological average of Chl, bbp, POC, SIE, PAR, SST, and MLD represented by the blue solid lines, and their corresponding change rate
represented by red dashed lines in the north polar zone (left panel) and south polar zone (right panel). Vertical lines represent the maximum values and
the turning point when values begin to reduce or increase.
TABLE 2 Linear correlation coefficient between monthly average Chl, bbp, POC, and SIE, PAR, SST, MLD (N=178).

SIE PAR SST MLD

North polar region

Chl -0.59 0.70 0.63 -0.75

bbp -0.62 0.66 0.68 -0.78

POC -0.63 0.49 0.61 -0.71

South polar region

Chl -0.48 0.72 0.60 -0.76

bbp -0.63 0.79 0.76 -0.90

POC -0.46 0.64 0.58 -0.71
F
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0.5342, and 42.17%, which demonstrates the effectiveness of the model.

The performance of CALIOP product is close to MODIS after comparing

it with Argo data. Amerge product derived by combined active and passive

remote sensing data could have a greater coverage and the algorithm used

for the merge product will be further studied in the future to improve and

produce the merge product.

Apparent seasonal cycles of phytoplankton can be observed. It was

found that Chl, bbp, and POC have similar interannual variability but

there are some subtle differences between them. Chl, bbp, and POC have

a stronger correlation in Antarctic areas compared with Arctic areas. The

combined analysis of bbp, Chl, and POC contributes to a comprehensive

understanding of interannual variability in the ecosystem in polar

regions. The coincidence of phytoplankton changes with PAR and the

high linear regression coefficient indicates that sunlight is one key factor

governing phytoplankton growth in polar regions. Future work should

address the spatial variation of phytoplankton in polar regions.
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