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Seasonal variations in
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intrusions into the Ross Sea
continental shelf
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and Michael S. Dinniman3

1School of Oceanography, Shanghai Jiao Tong University, Shanghai, China, 2Polar Research Institute
of China, Ministry of Natural Resources, Shanghai, China, 3Center for Coastal Physical Oceanography,
Old Dominion University, Norfolk, VA, United States
Intrusions of the warm and nutrient-rich Circumpolar Deep Water (CDW) across

the Ross Sea shelf break play an important role in providing heat for ice shelf

basal melting and setting the physical environment for biochemical processes.

Several mechanisms driving CDW intrusions into the Ross Sea were proposed

such as mesoscale eddies, tidal rectification, and interactions between the

Antarctic Slope Current (ASC) and topographic features. The seasonal

variations in the poleward transport of CDW are investigated using ERA-Interim

wind data and a Ross Sea circulation model based on the Regional Ocean

Modeling System (ROMS) between September 1999 and September 2014. The

analyses focus on the currents along the shelf break and deep troughs on the

Ross Sea shelf and discuss the wind-driven Ekman pumping in both shelf and

adjacent open ocean regions. The results reveal that the poleward intrusions

generally move up onto the continental shelf along the eastern flanks of deep

troughs. Seasonal variations of the ocean surface stress torque exerted by wind

and sea ice in the off-shelf area are correlated with CDW intrusions. The maxima

of CDW intrusions usually occur in austral summer. There is a significant

temporal correlation on the seasonal time scale between the on-shelf

intrusions in deep troughs in the western Ross Sea shelf and poleward

Sverdrup transports in the adjacent off-shelf open ocean driven by the Ekman

pumping. The analysis of ocean surface stress fields also indicates that the

vorticity fluxes through the Ekman pumping are in favor of southward and

northward transports in the eastern and western parts of the Ross Sea,

respectively. The relationships between currents, CDW intrusions, and ocean

surface stress fields imply the importance of air–sea interactions and potential

climate change to the environment in the Ross Sea.
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1 Introduction

The Ross Sea is an embayment lying in the Pacific sector of

the Southern Ocean between Cape Adare at 170°E and Cape

Colbeck at 158°W (Figure 1). South of the Ross Sea, there is the

floating Ross Ice Shelf, the largest ice shelf on Earth. The broad

Ross Sea continental shelf covers over 4.6 × 105 km2, and the shelf

break occurs at the 700-m isobath (Budillon et al., 2006; Smith

et al., 2012). On the continental shelf, there are a series of

southwest-northeastward-oriented submarine banks shallower

than 400 m (e.g., the Mawson and Pennell Banks) and troughs

with depths of 500–600 m (e.g., the Drygalski, Joides, and Glomar

Challenger Troughs). The predominant causes for the southwest-

northeastward-oriented bottom topography of the Ross Sea

continental shelf are the glacial erosion and extrusion by the

overlying ice sheets in the past (Anderson et al., 2014). The

circulation, mixing, and heat–salt exchanges of water masses in

the Ross Sea are significantly affected by the featured complex

topography, especially the deep troughs (Dinniman et al., 2011;

Morrison et al., 2020).

The hydrography, sea ice, and ecosystem in the Ross Sea and the

stability of the Ross Ice Shelf are long considered related to deep

intrusions of the warm Circumpolar Deep Water (CDW) into the

Ross Sea shelf (Smith et al., 2012). A number of water masses can be

found based on their formations and characteristics of potential

temperature q, salinity S, and neutral density gn on the continental

shelf (Jackett and McDougall, 1997; Orsi et al., 1999; Orsi and

Wiederwohl, 2009). The Antarctic Surface Water (AASW; gn< 28.0

kg·m−3) is usually fresh, and it is significantly affected by surface

processes such as cooling/heating, air temperature, wind, and

precipitation, which occupies the upper ocean. The Modified

Circumpolar Deep Water (MCDW; 28.0< gn< 28.27 kg·m−3, q >
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-1.5°C) is the warmest, and it is originated from CDW and modified

by cooling and mixing with shelf waters. The shelf waters (gn >

28.27 kg·m−3) occupy the bottom layer and consist of the High-

Salinity Shelf Water (HSSW; S > 34.62 psu, q ~ −1.85°C), Low-

Salinity Shelf Water (LSSW; S < 34.62 psu; q ~ −1.80°C), Modified

Shelf Water (MSW; q > −1.85°C), and Ice Shelf Water (ISW; q <

−1.95°C), which are primarily originated from cooling, brine

rejection from sea ice-formation processes, mixing processes, and

interactions with the base of the Ross Ice Shelf (Budillon et al., 2003;

Budillon et al., 2006). Exports of dense shelf waters with different

properties have subsequent impacts on the outflows adjacent to the

continental slope (Budillon et al., 2011). There are two major water

masses on the slope: the CDW (28.0< gn< 28.27 kg·m−3, q ~ 1.0°C),

a significantly warm and nutrient-rich water mass, intrudes the

continental shelf and consequently affects the ice shelf mass balance

and biological processes (Smith et al., 2012; Hillenbrand et al.,

2017); the Antarctic Bottom Water (AABW; gn > 28.27 kg·m−3, q >

−1.85°C), a mixture between shelf waters and CDW, forms the

bottom layer in the Southern Ocean and plays an important role in

abyssal circulations (Orsi et al., 1999; Budillon et al., 2006; Gordon

et al., 2009).

CDW carried by the Antarctic Circumpolar Current (ACC) is

the most voluminous water mass in the Southern Ocean

(Worthington, 1981). Deep waters from different ocean basins

(e.g., the North Atlantic Deep Water, the Pacific Deep Water, and

the Indian Deep Water) mingle and mix in the ACC to form CDW

(Orsi et al., 1995). For CDW to reach the Ross Sea continental shelf,

it must cross the Antarctic Slope Front (ASF) and Antarctic Slope

Current (ASC) (Gordon et al., 2009; Thompson et al., 2018). As a

dynamic barrier, the ASF is locked on the Ross Sea continental

slope, and the ASC is associated with the baroclinic pressure

gradient resulting from the cross-front density gradient formed

by the typically colder and denser deep shelf water south of the ASF

and the warmer and lighter CDW north of the ASF (Budillon et al.,

2011; Rintoul, 2018). Therefore, water mass exchanges crossing the

ASF are well recognized as southward intrusions of CDW into the

Ross Sea shelf and northward outflows of shelf waters. The

movement and gradient of the ASF may adjust the currents on

the slope, overflow of dense shelf water, and inflow of CDW

(Gordon et al., 2009; Budillon et al., 2011; Gordon et al., 2015;

Thompson et al., 2018).

The spatial–temporal variations and the mechanisms of CDW

intrusions have been studied by field observations and numerical

simulations in the past several decades (Klinck and Dinniman,

2010; Morrison et al., 2020). These studies indicated several

mechanisms for CDW intrusions, including mesoscale eddies

spinning from the ASF (Stewart and Thompson, 2015; Thompson

et al., 2018), tidal rectification (Padman et al., 2009; Wang et al.,

2013), topographic stirring of the ASC in deep troughs (Dinniman

et al., 2007; Dinniman et al., 2011), vorticity balance adjustment

induced by local topography and bottom friction (Palóczy et al.,

2020), sea surface gradients due to dense shelf water transport off

the shelf (Morrison et al., 2020), and variations of large-scale

atmospheric forcings such as the Amundsen Sea Low, the

Southern Annular Mode, and Southern Hemisphere westerlies

(Thoma et al., 2008; Nakayama et al., 2018; Zhang et al., 2020).
FIGURE 1

Bathymetry of the Ross Sea and its adjacent open ocean derived
from ETOPO1 (Amante and Eakins, 2009). Major troughs include the
Drygalski Trough (DT), the Joides Trough (JT), and the Glomar
Challenger Trough (GCT); major banks include the Mawson Bank
(MB), Crary Bank (CB), Pennell Bank (PB), and Ross Bank (RB). TNB,
Terra Nova Bay. Transect 1 is indicated by the northwest–southeast
solid black line close to the Ross Sea shelf break. Transects 2 and 3
are indicated by two southwest–northeast solid black lines along
the western and eastern flanks of the Drygalski Trough (DT).
Transects 4 and 5 are indicated by two southwest–northeast solid
black lines along the western and eastern flanks of the Joides
Trough (JT).
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The warm CDW occupies the geostrophic interior of the water

column, with a core typically at 600–1,000-m depth in the open

ocean near the Ross Sea slope. It is studied that the cross-shelf heat

transport is related to local wind stress torque, while the vortex

stretching over the shelf and slope also strongly influences the cross-

shelf transport (Rodriguez et al., 2016; Palóczy et al., 2020). In the

study of the eastern Amundsen Sea, the results indicate that the

volume of CDW entering the deep trough on the shelf is driven by

uplifts of both the undercurrent under the ASF and isopycnals by

the Ekman pumping (Dotto et al., 2019). Off the shelf slope,

previous results also revealed that the heat from the CDW core

can be transported up to the continental slope where eddies

associated with topographic features are responsible for

transporting heat further into shelf regions. Strong correlations

between meridional transports of water masses and heat and

patterns of the Ekman transport convergence at both seasonal

and interannual scales are found (Wåhlin et al., 2012; Dotto et al.,

2019). As a result, based on the vorticity budget, meridional

transport in a continental shelf region and its adjacent open

ocean can be interpreted by the potential vorticity balance

between topographic change, friction, baroclinic pressure

gradients, and potential vorticity (Thompson et al., 2018; Palóczy

et al., 2020).

In the open ocean, the dominant terms in the vorticity balance

below the mixed layer and away from boundaries are reduced to the

balance between the advection of planetary vorticity and vorticity

input by wind stress torque (Thompson et al., 2018). The

meridional Sverdrup transport driven by cyclonic wind fields in

the open ocean has been considered one of the primary processes to

maintain the ASF; the dynamics of the ASC is considered similar to

a western boundary current compensating the deep southward

Sverdrup transport (Nakayama et al., 2018; Thompson et al.,

2018). Thus, seasonal and long-term variations of ocean surface

stress fields in the Ross Sea and Southern Ocean will affect the

Sverdrup transport, the strengths and locations of the ASF and ASC,

and hence the intrusions of CDW into the Ross Sea shelf.

This study aims to describe the detailed pathway, process, and

temporal variation of CDW intrusions into the Ross Sea shelf at

both seasonal and interannual scales, discuss the relation between

CDW intrusions in the deep troughs and large-scale wind-driven

meridional transport in the broad off-shelf Ross Sea based on a

high-resolution regional ocean circulation model, and hence bring

insight into cross-shelf exchange processes around Antarctica.
2 Materials and methods

This study uses a coupled ocean–sea ice–ice shelf model

covering the Ross Sea as described in Dinniman et al. (2018), which

is conducted with the Regional Ocean Modeling System (ROMS;

Shchepetkin and McWilliams, 2009). The model domain extends

from 67.5°S to 85°S and includes the ocean cavity underneath the

floating Ross Ice Shelf. The topography is using the International

Bathymetric Chart of the Southern Ocean (IBCSO; Arndt et al.,

2013) and Bedmap2 (Fretwell et al., 2013). The vertical sigma-layers

are set to 24 levels of varying depths, which are concentrated toward
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the bottom and surface. The simulated sea ice is from the ROMS

built-in dynamic ice model (Budgell, 2005), and its lateral boundary

conditions are derived from the Special Sensor Microwave/Imager

(SSM/I). In contrast, the ice shelf is simulated with a static model;

iceberg calving and the thickness and extent changes of the Ross Ice

Shelf are not considered. The dynamic and thermodynamic effects

of the Ross Ice Shelf at the ocean–ice interface are parameterized

(Holland and Jenkins, 1999; Dinniman et al., 2011). The model is

initialized with temperature and salinity fields from the World

Ocean Atlas 2001 (WOA01), which is also used on the lateral open

boundaries. The model atmospheric forcing fields such as 6-hourly

wind and air temperature and monthly sea level pressure and

humidity are obtained from the ERA-Interim reanalysis product

(Dee et al., 2011; Dinniman et al., 2018). In addition, the monthly

climatologies of precipitation and cloud cover are from the

Antarctic Mesoscale Prediction System (AMPS; Powers et al.,

2003; Bromwich et al., 2005) and the International Satellite Cloud

Climatology Project stage D2 (ISCCP D2; Rossow et al., 1996),

respectively. The ocean tides are not included in this model.

The simulation ran for 15 years (September 15, 1999 to

September 15, 2014) after a 6-year spin-up simulation, with the

data saved at a 5-day interval. The horizontal resolution of the

model is approximately 5 km. The topography, temperature,

salinity, ocean current, and sea ice fields used in this study are

produced by this model. The only exception is the bathymetry of the

Ross Sea and its adjacent open ocean and land (shown in Figure 1)

that is derived from ETOPO1, a 1 arc-minute global relief model

developed by the National Oceanic and Atmospheric

Administration (NOAA) (Amante and Eakins, 2009).

The monthly wind speed data at 10 m above the sea surface

between 1999 and 2014 with a horizontal grid resolution of 0.125°

were used for subsequent stress calculations, which were obtained

from ERA-Interim (Dee et al., 2011). This wind dataset is a global

atmospheric reanalysis dataset provided by the European Centre for

Medium-Range Weather Forecast (ECMWF).

The wind stress over open water is normally estimated using the

bulk formula (e.g., Dawe and Thompson, 2006; Dong et al., 2022)

~tao  =  raCD,ao
~U10

�� ��~U10, (1)

where ra= 1.29 kg·m−3 is the air density; ~U10 = (u10,v10) is the

10-m wind vector; (u10,v10) are the zonal and meridional

components, respectively; CD,ao is the air–ocean drag coefficient

generally calculated by Large and Pond (1981):

CD,ao  =  
1:2� 10−3,   ~U10

�� ��  <  11 m · s� 1

(0:49 + 0:065 ~U10

�� ��)� 10−3,  11 m · s−1  ≤   ~U10

�� ��  ≤  25 m · s−1

(

(2)

It is necessary to consider the significant seasonal variation of

sea ice due to freezing, melting, and drift in polar oceans. In the ice-

covered area, the stress exerted by winds depends on the relative

motions between the ice and the surface current vs. the 10-m wind.

Compared to the 10-m wind, surface ice and water movements are

negligible. Thus, the total wind stress ~ta is calculated by the

combination of two stresses: the air–ocean stress ~tao and the air–

ice stress~tai, which is calculated by Equation 1 using CD,ai in place
frontiersin.org
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of CD,ao:

~ta  =  (raCD,aiA + raCD,ao(1 − A)) ~U10

�� ��~U10, (3)

where A is sea ice concentration (0–1) and CD,ai = 1.89×10-3 is

the air–ice drag coefficient depending on sea ice characteristics and

distributions (Lüpkes and Birnbaum, 2005).

The ice–ocean surface stress ~t io is also calculated by the bulk

formula (Timmermann et al., 2009)

~t io  =  rwCD,io
~Uice − ~Uw

�� ��(~Uice − ~Uw) (4)

where rw = 1026 kg·m-3 is the seawater density; ~Uice  =

 (uice, vice) and ~Uw  =  (uw, vw) are respectively the sea ice and

ocean surface velocity, and the turning angle is negligible; CD,io =

3.0×10-3 is the drag coefficient between ice and ocean related to the

ice surface and bottom roughnesses, concentration, thickness and

length, and ridge distributions. Studies of drag coefficients have

been carried out, and CD,io generally increases at first and then

decreases with increasing sea ice concentration (Lu et al., 2011; Lu

et al., 2016). A rough estimate of CD,io certainly bears the lack of

detailed floe geometry and ice dynamics.

In short, CD,ao and CD,io are both the critical parameters that

determine the drag forces at the ocean surface, that is, the

momentum flux (Timmermann et al., 2009; Lu et al., 2011; Lu

et al., 2016). The total oceanic stress ~to, also named as wind- and

ice-stress, referring to the drag forces on surface water exerted by

winds and ice floes, can also be obtained by the area-weighted

average of ~tio and ~tao (Yang, 2006; Timmermann et al., 2009), i.e.,

~to  =  A ·~tio + (1 − A) ·~tao (5)

The Ekman vertical velocity Wek is related to the ocean surface

stress (Enriquez and Friehe, 1995; Yang, 2006), and it is calculated

as

Wek  =  
curlz(~to)
f rw

(6)

where ~to denotes the oceanic surface stress; f = 2Wsina is the

Coriolis parameter, in whichW is the rotation rate of the earth in the

fixed coordinates and a is the latitude.

The Sverdrup transport Vsv is given by

Vsv  =  
curlz(~to)
brw

(7)

where b   =   ∂ f∂ y i s the mer id iona l grad i ent o f the

Coriolis parameter.
3 Results

3.1 Along-trough intrusions of CDW

Five transects were selected to describe the water mass mixing,

transformation, exchange, and transport at the shelf break, of which

Transect 1 is on the shelf approximately in parallel to the shelf break

crossing all troughs and Transects 2–5 are along the western and

eastern flanks of the Drygalski and Joides Troughs (Figure 1).
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The depth-averaged currents in the austral summer (February)

and winter (August) seasons along Transect 1 are shown in Figure 2.

There are significant seasonal variations in the inflows and outflows

along Transect 1. The inflow velocity reaches the maximum on the

eastern flanks of the troughs, nearly 0.12 m·s−1 occurring in the Joides

Trough during the summer and reduces to 0.06 m·s−1 during the

winter; the outflow velocity reaches the maximum on the western

flank of the Glomar Challenger Trough, near 0.11 m·s−1 during the

summer and reduces to 0.10 m·s−1 during the winter (Figures 2A, B).

From the flow velocity distributions and temperature profiles, it can

be noted that the Drygalski, Joides, and Glomar Challenger Troughs

are the main channels for CDW intrusions into the Ross Sea

continental shelf. The temperature and salinity characteristics of

the summer and winter water mass distributions are shown in

Figures 2C–F. The surface water (0–100 m) is seasonally warm,

low-salt, and quasi-homogeneous, especially in the western Ross Sea,

where the temperature is higher than −0.5°C during summer and

seasonally colder down to −1.80°C and saltier in winter. The cores of

the MCDW (greater than −0.5°C) usually lie within a depth range

from 200 to 400 m in both summer and winter, which slightly vary

with topography and seasons. The warmestMCDW (~0.16°C) is seen

over the eastern flank of the Glomar Challenger Trough. The shelf

water is cold and salty. The saltier HSSW is concentrated at the

bottom west of 175°W, and it is below 200 m in February and 300 m

in August (Figures 2E, F). In contrast, the lighter LSSW spreads at the

continental shelf east of 175°W.

The seasonally mean inflows and outflows across Transect 1 are

calculated for periods between December and February, March and

May, June and August, and September and November representing

austral summer (DJF), autumn (MAM), winter (JJA), and spring

(SON), respectively (Figure 3). Warm CDW inflows are typically

found on the eastern flanks of the troughs, while shelf water

outflows are on the western flanks. To estimate the two-way

exchange of water masses in troughs, the off-shelf transports on

the western flanks, on-shelf transports on the eastern flanks, and

total net transports in the Drygalski, Joides, and Glomar Challenger

Troughs are computed based on the transport estimates along

Transect 1 (Figure 3) and in the shaded areas (Table 1). The

results indicate that on-shelf transports of these three troughs all

reach peaks in summer. The maximum on-shelf transport of 10.95

× 105 m3·s−1 occurs in the Joides Trough during summer, almost six

times higher than 1.86 × 105 m3·s−1 during winter. Similar results

are found in the Drygalski and Glomar Challenger Troughs where

the on-shelf transports reach the maxima in summer and are

relatively low in other seasons. The strong seasonality of on-shelf

transports matches the result that was found through the mooring

study in the Drygalski Trough (Castagno et al., 2017). The off-shelf

transports are stronger within the troughs in the western part. The

largest persistent off-shelf transport occurs up to 19.68 × 105 m3·s−1

in autumn with small seasonal variations. In the Drygalski and

Glomar Challenger Troughs, the total transports are positive in all

seasons representing major off-shelf transports of shelf waters.

The extensions of warm CDW/MCDWwithin the deep troughs

are further investigated from the horizontal velocities, potential

temperature, and salinity along Transects 2–5 in Figure 4. The

significantly tilted isotherms, isohalines, and isopycnals over the
frontiersin.org
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slope are associated with the ASF and ASC. The water masses

converge at the shelf break, including the AASW, CDW, MCDW,

MSW, HSSW, and AABW (Figure 5). The MCDW is filled between

the fresher AASW and saltier MSW/HSSW on the shelf, and CDW

is filled between the AASW and AABW in the open ocean.
Frontiers in Marine Science 05
The current vectors along all transects indicate a strong ASC on

the slope. The on-shelf currents deviate from the ASC and turn

southwestward along the eastern flanks of the Drygalski and Joides

Troughs (Transects 3 and 5); the northward off-shelf currents reach

and accelerate at the shelf break along the western flanks of the

Drygalski and Joides Troughs (Transects 2 and 4) (Figure 4A).

Warm saline CDW (q > 0.5°C, S ~ 34.7 psu) occupies an

intermediate layer between 600 and 1,000 m in the open ocean,

part of CDW is upwelled above the bottom depth of a trough

approximately 600 m near the slope, and parcels of CDW intrude

southward in a depth range from 200 to 400 m on the shelf. In the

Drygalski Trough, the coldest and saltiest HSSW fills the

depressions. In the Joides Trough, a warmer intermediate layer is

found, which results from more intense CDW intrusions.

Seasonal variations of water mass properties on Transects 2–5

are shown in Figure 5. The AASW is the lightest and freshest

water mass and has a wide range of salinity from approximately

33.5 psu in January to 34.2 psu in August. On the contrary, the

MSW and AABW lie in the bottom layer on the shelf. The shelf

waters in the Drygalski Trough are saltier than those of the other

troughs with the maximum salinity reaching 34.9 psu (Figure 5B).

There is a lack of MCDW presence on Transects 2 and 4

(Figures 5A, C), implying that the outflow of the cold shelf

waters dominates over the western flanks of the Drygalski and

Joides Troughs (Figure 4).
A B

D

E F

C

FIGURE 2

(A, B) Climatological depth-averaged currents (vectors) along Transect 1 and west–east components of velocities (blue, westward; red, eastward) in
February and August, respectively, and isobaths (gray lines). (C, D) Climatological vertical sections of potential temperature (colors) along Transect 1
in February and August and −0.5°C isotherms (black lines) marking the core of MCDW. (E, F) Climatological vertical sections of salinity (colors) along
Transect 1 in February and August and 34.62 psu isohalines (black lines) marking the HSSW and LSSW. MCDW, Modified Circumpolar Deep Water;
HSSW, High-Salinity Shelf Water; LSSW, Low-Salinity Shelf Water.
FIGURE 3

Climatological seasonal averages of depth-integrated cross-transect
transports in m2·s−1 (positive, off-shelf; negative, on-shelf) along
Transect 1. Gray areas indicate the DT, JT, and GCT. DJF, MAM, JJA,
and SON denote December–January–February, March–April–May,
June–July–August, and September–October–November,
respectively. DT, Drygalski Trough; JT, Joides Trough; GCT, Glomar
Challenger Trough.
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The depth-transect averaged along-transect component of

seasonal velocities within MCDW layers between 200 and 400 m

in the Drygalski Trough (Transect 3) and the Joides Trough

(Transect 5) is shown for the period between spring 1999 and

winter 2014 (Figure 6). Among four seasons, the strongest MCDW

seasonal on-shelf intrusions appear at approximately 86.7% and

66.7% in summer on Transects 3 and 5, respectively; the weakest

seasonal intrusions appear at 60.0% in spring and approximately

53.3% in winter on Transects 3 and 5, respectively. The MCDW

intruding velocities along Transect 5 are usually higher than those

of Transect 3. The maximum velocity is near 0.09 m·s−1 in the

summer period between December 2009 and February 2010 in the

Joides Trough (Figure 6B).
3.2 Ocean surface stress

The wind fields in the Ross Sea are featured by strong southerly

winds in the western Ross Sea and weak westerly winds in the
Frontiers in Marine Science 06
northeast (Figure 7). The Ross Sea is covered by sea ice for almost 9

months of the year in autumn, winter, and spring; is close to ice-free

in summer; and reaches the lowest sea ice level in February each

year. As a result of seasonal cooling, the sea ice quickly covers the

Ross Sea in early autumn, continues to thicken and expand, and

usually reaches the highest concentration in August and September

when the sea ice area over the shelf is nearly 4.5 × 105 km2. With the

seasonal growth of ice concentration and strengthening wind

between March and September, the deviations between ocean

surface stress and wind stress increase (Figures 7C, D). It is more

obvious in the western Ross Sea where the values of the ocean

surface stress are usually less than half of the wind stress due to sea

ice coverage. In winter and early spring, two kinds of stress have a

strong northward component in the western Ross Sea, while the ice

concentration is more than 80%, and the maximum wind and ocean

surface stresses reach 1.6 and 1.2 dyne·cm−2, respectively.

The spatial and seasonal distributions of the Ekman pumping

are shown in Figure 8. On the Ross Sea shelf, a west–east gradient

from prevailing downwelling to prevailing upwelling produced by
TABLE 1 The on-shelf (negative) and off-shelf (positive) transports across Transect 1 in the Drygalski Trough (DT), Joides Trough (JT), and Glomar
Challenger Trough (GCT), whose widths are shown in Figure 3 (gray areas).

Transport
105 m3·s−1

DT JT GCT

W E T W E T W E T

DJF 11.95 −5.32 6.59 6.90 −10.95 −3.76 19.56 −8.48 10.84

MAM 13.81 −4.12 9.54 6.58 −10.02 −3.06 19.68 −5.09 15.09

JJA 10.69 −2.47 8.35 4.90 −1.86 3.41 18.18 −5.90 12.60

SON 8.56 −2.79 5.84 2.84 −2.77 −0.24 18.47 −5.88 12.76
frontier
The short names DJF, MAM, JJA, and SON represent austral summer, autumn, winter, and spring, respectively, and W, E, and T represent western, eastern, and total, respectively.
A B D E

F G IH

J K L M

C

FIGURE 4

(A) Climatological February depth-transect averaged currents (vectors) along Transects 2–5 in Figure 1, south–north components (blue, southward;
red, northward), and the isobaths (gray lines). (B–E) Potential temperature q, (F–I) salinity S, and (J–M) potential density anomaly s along Transects
2–5. The black lines indicate the isotherms, isohalines, or isopycnals.
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the Ekman pumping can be found in all seasons. In summer,

upwelling and downwelling areas can be divided clearly by 177°E

(Figure 8A). The strong Ekman pumping is found near Terra Nova

Bay in the western Ross Sea shelf.
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The relationship between the ocean surface stress and water

transport in the Ross Sea is investigated by calculating the

meridional mean Ekman pumping velocity Wek using data in

the off-shelf area deeper than 700 m between 71.5°S–77°S and 169°
A B

DC

FIGURE 5

(A–D) Temperature–salinity diagrams on Transects 2, 3, 4, and 5 in Figure 1, respectively. Color codes represent four seasons; solid black lines are the
28.00 and 28.27 kg·m−3 neutral densities gn; the black horizontal line marks the upper q limit of ISW (−1.95°C); the thin gray lines are the isopycnals.
A

B

FIGURE 6

(A, B) The depth–transect averaged seasonal along-transect velocity component within the MCDW layer between 200 and 400 m along Transects 3
and 5, respectively. Negative values denote the on-shelf direction; the colors represent different seasons. MCDW, Modified Circumpolar Deep Water.
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A B

DC

FIGURE 7

(A–D) Seasonal average wind stress (red vectors) and ocean surface stress (green vectors) fields and sea ice concentration (colors) in DJF, MAM, JJA,
and SON, respectively. DJF, December–January–February; MAM, March–April–May; JJA, June–July–August; SON, September–October–
November.
A B

DC

FIGURE 8

(A–D) Seasonal average Ekman pumping velocities Wek (positive: upward) in DJF, MAM, JJA, and SON, respectively. Thin gray lines represent
isobaths, the black dash line is the 700-m isobath representing the shelf break, and the red solid line at the 180° longitude is arbitrarily chosen to
divide the western and eastern parts of the Ross Sea predominated by downwelling and upwelling. DJF, December–January–February; MAM,
March–April–May; JJA, June–July–August; SON, September–October–November.
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E–158°W. To understand the regional differences, the study area is

divided by the 180° longitude into the western and eastern areas.

To avoid potential influences from bottom topography and

bottom friction, a depth of 700 m is chosen. Both the eastern

shelf and off-shelf areas are predominated by positive Ekman

pumping, which is in favor to produce a southward vorticity-

induced transport, while the western shelf is predominated by

negative Ekman pumping, which is in favor to produce a

northward vorticity-induced transport (Figure 9). The

circulation in the shallow shelf with complex topography is

affected by viscosity, bottom friction, and density gradients

induced by the growth and retreat of sea ice and winds

(Assmann et al., 2003; Jendersie et al., 2018).

To further examine the temporal variations of CDW intrusions,

the time series of depth-transect averaged along-transect

component of seasonal velocity anomalies within the MCDW

layer between 200 and 400 m on Transects 3 and 5 in the
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Drygalski and Joides Troughs, the time series of the on-shelf

components of seasonal transport anomalies on the eastern flanks

of the Drygalski and Joides Troughs marked as the shaded areas in

Figure 3, and the time series of seasonal Sverdrup transport

anomalies within the western off-shelf area are computed

(Figure 10). Both the MCDW velocities and the on-shelf

transports are negative in the Drygalski and Joides Troughs

(Table 1 and Figure 6). The monthly, seasonal, and interannual

correlations between the along-transect MCDW currents and

transport vs. the Sverdrup transport in the off-shelf area are

shown in Table 2. The monthly and seasonal correlations pass the

significance test of p ≤ 0.01 with a correlation range from 0.19 to

0.76. The interannual correlations are negative in the Drygalski

Trough between −0.67 and −0.76 and pass the significance tests (p ≤

0.01), while interannual correlations in the Joides Trough are weak

between −0.17 and −0.08 and fail to pass the significance test

(p > 0.57).
A

B

C

FIGURE 9

(A–C) Averaged seasonal Ekman pumping velocity Wek (positive: upward) in the entire area between 71.5°S–77°S in the latitude and 169°E–158°W in
the longitude, the shelf area, and the off-shelf area, respectively. The shelf and off-shelf areas are divided by the 700-m isobath, and the black dash
line represents the 180° longitude.
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4 Discussions

4.1 Effects of winds on the hydrographic
fields and circulations on the shelf

Generally, the southerly winds dominate all seasons in the Ross

Sea (Figure 7). The strong winds are more eminent over the western

Ross Sea, especially over the Ross Bank and north of the Mawson

Bank west of the Glomar Challenger Trough where the seasonal

mean wind speed peaks range from 10 to 12 m·s−1. In addition,

katabatic wind from the highland and synoptic wind events result in

strong surface winds over the Ross Sea that can reach 10–25 m·s−1,

although the eastern Ross Sea is less directly affected by katabatic

winds (Parish and Cassano, 2003).

In austral summer, when sea ice extensively retreats, the ocean

surface stress is mainly exerted by the wind, and hence the wind and

ocean surface stresses are similar; the downward and upward

Ekman pumping velocities are consistently found in the western
Frontiers in Marine Science 10
and eastern parts of the Ross Sea, respectively. In other seasons with

high ice coverages, sea ice alters the stress acting on the ocean, and

hence, the ocean surface stress significantly deviates from the wind

stress; the presence of sea ice introduces significant spatial

variability to the ocean surface stress, but the general pattern of

downwelling in the west and upwelling in the east persists

(Figures 7, 8). The magnitudes of Ekman pumping velocities are

even higher in autumn, winter, and spring due to stronger winds

than that in summer.

The Ekman pumping to produce heat and vorticity fluxes and

ice coverage to isolate heat flux and momentum can affect lateral

thermohaline gradients and subsequent baroclinic pressure

gradients, which drive the seasonal modulation of the deep

circulations (Assmann et al., 2003). Considering a three-layer

circulation pattern consisting of the surface mixed layer, middle

MCDW layer, and bottom shelf waters layer on the Ross Sea shelf,

the Ekman pumping and thermohaline gradients have significant

effects on the circulations of the MCDW layer.
TABLE 2 Monthly, seasonal, and interannual regression analyses between along transect components of MCDW layer velocity anomalies and
transport anomalies in DT and JT vs. Sverdrup transport anomalies.

r/p

DT JT

MCDW
layer Depth Integrated MCDW

layer Depth integrated

Sverdrup transport

Monthly 0.19/p ≤ 0.01 0.20/p ≤ 0.01 0.51/p ≤ 0.01 0.54/p ≤ 0.01

Seasonal 0.52/p ≤ 0.01 0.51/p ≤ 0.01 0.64/p ≤ 0.01 0.64/p ≤ 0.01

Interannual −0.67/p ≤ 0.01 −0.76/p ≤ 0.01 −0.17/p = 0.57 −0.08/p = 0.77
The transect components of MCDW layer velocities are computed by averaging between 200 and 400 m along Transects 3 and 5 in Figure 1 and transports in eastern DT and JT marked by the
shaded areas in Figure 3 vs. Sverdrup transports within the western off-shelf area in Figure 8A.
DT, Drygalski Trough; JT, Joides Trough; MCDW, Modified Circumpolar Deep Water.
A B

FIGURE 10

(A, B) Time series of depth-transect averaged along-transect component of seasonal velocity anomalies within the MCDW layer (red lines) between
200 and 400 m along Transects 3 and 5, respectively; on-shelf components of seasonal transport anomalies (black lines) on the eastern DT and JT;
and seasonal Sverdrup transport (Vsv) anomalies (blue lines) within the western off-shelf area. The negative values represent on-shelf or southward.
The correlation coefficients and p-values between these three time series are shown in Table 2. MCDW, Modified Circumpolar Deep Water.
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4.2 Uplift and southward intrusions of
CDW at the shelf break

In previous studies, the mechanisms for CDW intrusions have

been proposed as the compensation transport to surface Ekman

transport and topographic Rossby adjustment of geostrophic

currents at the curvatures of shelf breaks or deep troughs

(Dinniman et al., 2007; Dinniman et al., 2011). Both observations

and modeling results indicate that surface Ekman and

compensation transports occur within the upper 100–200 m,

which will not support a deep CDW transport (Schudlich and

Price, 1998; Elipot and Gille, 2009). There is a need for mechanisms

first driving CDW southward to the slope region, uplifting CDW up

to the shelf depth, and then driving CDW southward into the Ross

Sea continental shelf. The on-shelf transport of CDW for

maintaining the ASF and ASC has been proposed as the result of

the deep Sverdrup transport driven by cyclonic wind field in the

Southern Ocean (Thompson et al., 2018). The pooling of warm

CDW at the slope region shown in Figure 4 is presumably caused by

the southward Sverdrup transport, which is further shown by the

estimated results of the Ekman pumping in the off-shelf area of the

Ross Sea in Figures 8, 9.

The main body of CDW at the slope region is approximately

600–1,000 m. Intruding into the shelf region between 200 and

400 m, a significant lift of CDW must be achieved. A theory has

been proposed and studied by synoptic wind events and their

duration (Zhou et al., 2013; Dotto et al., 2019). For example, a 15

m·s−1 cyclonic wind would take 2.5 days to raise a water parcel from

a depth of 500 to 400 m. Because cyclones occur frequently with

different strengths and durations, intrusions on the shelf region are

a series of pulse events that are illustrated in Figure 4. Previous

studies suggested that wind can change the stability, strength, and

location of an ASF and hence affect the cross-shelf exchanges and

thermobaricity (Budillon et al., 2011; Rintoul, 2018). The Ekman

transport convergence can affect cross-shelf CDW transport by

uplifting the undercurrent enhancing intrusions in deep troughs,

enhancing sea surface gradients directly to drive cross-shelf CDW

transport, and strengthening or weakening the transport barriers

created by the ASF. Among other mechanisms, an increase in wind

stress can enhance the cross-shelf density gradient by deepening the

ASF so that shelf water overflow will increase and hence CDW

inflow will increase due to the sea surface lowering (Kida, 2011;

Morrison et al., 2020). The ASF is a transport barrier between CDW

and shelf waters. The strength and stability of an ASF are strongly

affected by wind-induced mixing and convergence, which in turn

affect cross-slope transport (Kida, 2011). Meridional variations of

ASF positions are also important, which are related to tidal

excursions, Kelvin waves, and the Ekman transport (Padman

et al., 2009; Budillon et al., 2011; Rintoul, 2018; Thompson

et al., 2018).

The consistencies and correlations between the CDW

intrusions in the Drygalski and Joides Troughs and the Sverdrup

transport in the off-shelf area are clearly shown in Figure 10. The

mechanism proposed by this study is as follows: in the off-shelf area,
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the negative wind stress torque leads the upward Ekman pumping

and consequentially drives a deep southward Sverdrup transport,

which not only maintains the ASF gradient but also provides the

warm CDW water mass for intruding into the shelf. The monthly

correlations between CDW intrusions and the southward Sverdrup

transport in the off-shelf area are quite low approximately 0.19 and

0.20 for MCDW inflow velocities and on-shelf transports in the

Drygalski Trough, respectively, while the correlations are high

approximately 0.51 and 0.54 for MCDW inflow velocities and on-

shelf transports in the Joides Trough, respectively. It can be

speculated that the Drygalski Trough is close to the coast and

that its currents are affected by local coastal winds and baroclinic

pressure gradients. At the seasonal scale, the correlations between

CDW intrusions and the southward Sverdrup transport in the off-

shelf area are significantly increased up to more than 0.5 in both the

Drygalski and Joides Troughs. However, at the interannual scale,

the correlations between depth-transect averaged velocities and on-

shelf transports vs. the Sverdrup transport in the off-shelf area

become negative in the Drygalski Trough and not significant in the

Joides Trough.

There are many potential intrusion mechanisms for further

studies such as interactions between eddies and jets, effects of

extreme wind events, time-dependent wind stress forcing, and

time-dependent Sverdrup dynamics including Rossby waves

(Parish and Cassano, 2003; Chen et al., 2022). The time-

dependent relationships between the meridional transport,

regional sum of wind stress torque, and layer thickness are

revealed at monthly and seasonal scales, which provide a detailed

framework of Sverdrup dynamics. Though details of time-

dependent Sverdrup dynamics in the open ocean are lost due to

using multi-year averaged seasonal and interannual variations and

regional averages in the analysis of this paper, the results support

the hypothesis on the Ekman pumping in the open ocean and CDW

intrusions into the Ross Sea shelf region mediated through the

meridional transport. Hence, wind-driven Sverdrup transport can

influence the transport of CDW across the shelf both directly by

altering the poleward flow of CDW and, indirectly, by altering the

ASF and ASC that regulate the cross-shelf transport of CDW

through eddies, topographic steering, and friction (Rintoul, 2018;

Thompson et al., 2018).
4.3 Northward transport of surface and
deep shelf waters

The northward outflows of waters on the western Ross Sea shelf

may be driven by multiple processes such as southerly winds in the

upper layer and density gradients at depth resulting from forming

denser deep shelf waters. The net downwelling in the western shelf

and net upwelling in the eastern shelf are consistent with basin-scale

circulation patterns revealed in previous studies (Figure 8) (Padman

et al., 2009; Stewart and Thompson, 2015).

The Ross Ice Shelf polynya and the Terra Nova Bay polynya in

the western shelf have been considered to produce HSSW and deep
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northward outflows (Budillon et al., 2006; Bowen et al., 2021). A

narrow western boundary current consisting mostly of the MCDW,

MSW, and HSSW is found along the Drygalski Basin and the

Drygalski Trough (Figures 2, 3, 4). The outflow exports via Cape

Adare; mooring observations in the Drygalski Trough near the shelf

break have revealed the dense plumes (Budillon et al., 2003;

Budillon et al., 2006; Gordon et al., 2009). The seasonal variations

of HSSW outflow within the Drygalski Trough match the results

that were revealed by moorings adjacent to Cape Adare and the

northern end of the Drygalski Trough, which have suggested an

approximately 8-month period for the northward transit of dense

water from the Terra Nova Bay polynya to the slope through the

time series of salinity (Bowen et al., 2021). The warm CDW inflow

may affect the HSSW outflow. For example, as the CDW intrusion

increases, the HSSW may be diluted in troughs (Gordon

et al., 2015).

In addition, the northward deep currents in the western area

counterbalance the southward CDW intrusions driven by the

Ekman pumping upwelling in the eastern Ross Sea shelf and the

open ocean. The pattern of CDW intrusions in the eastern Ross Sea

and outflows of HSSW in the western Ross Sea is very robust driven

by overall wind fields.
5 Conclusions

The Ross Sea circulation is featured by intense cross-shelf

water mass exchanges between warm CDW and cold shelf waters.

The heat fluxes contribute to ice shelf melting, AABW formation,

and then the global thermohaline circulation. The results from

analyzing monthly, seasonal, and interannual on-shelf intrusions

of CDW indicate that the intrusions mostly occur along the

eastern flanks of deep troughs, while there are also outflows

occurring along the western flanks of deep troughs. The on-shelf

intrusions are stronger in austral summer and weaker in austral

winter. The results from this study by analyzing stress torque

indicate that the causes for the seasonal changes of CDW

intrusions into the shelf are strongly associated with the

Sverdrup transport produced by ocean surface stress torque in

the off-shelf area and necessary uplift of CDW over the

shelf depth.
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