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Effect of DIN and DON sources
on the nitrogen uptake of the
seagrass Zostera japonica and the
macroalgae Ulva pertusa
previously grown in different
light levels
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This study quantified the absorption ability of the seagrass Zostera japonica and the

macroalgae Ulva pertusa for dissolved inorganic nitrogen (DIN) (ammonium and

nitrate) and dissolved organic nitrogen (DON) (urea and glycine) under different

light conditions. The plants were cultured in filtered seawater (31‰, 25°C) for

2 weeks under three light levels. Macroalgae and the above- and belowground

parts of seagrasses were separately placed into four different manmade seawater

solutions with DIN (ammonium and nitrate) and DON (urea and glycine) stable

isotopes for 1 h. The results showed that macroalgae had higher absorption rates

for ammonium and nitrate after higher light (14.67 ± 2.50 and 1.29 ± 0.16 mg−1 dry

weight (DW) h−1) than after lower light (4.52 ± 0.95 and 0.18 ± 0.12 mg−1 DW h−1)

treatments. Compared to the belowground seagrass portions that had previously

been grown in high and low light conditions, the seagrass leaves assimilated

ammonium more quickly. Z. japonica preferred glycine to nitrate and urea after

the high- and low-light treatments; that is, the absorption rates of the belowground

seagrass parts for glycine were 14.71 ± 1.85 and 6.38 ± 0.52 mg−1 DW h−1 after the

high- and low-light treatments, respectively, which were higher than those of

ammonium, nitrate, and urea. The absorption rates of algae were lower than those

for ammonium previously grown under medium- and low-light treatments. These

results indicate that light reduction can impact the assimilation of DIN by Z. japonica

and U. pertusa, and both have the ability to directly assimilate DON. This study

provides information that could help reduce the negative effects of eutrophication

on macroalgae and seagrasses in order to protect seagrass meadows.

KEYWORDS

species competition, light reduction, organic nitrogen, inorganic nitrogen, macroalgal
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1 Introduction
Seagrasses provide important ecological services, including

altering nutrient cycling; producing organic carbon; enhancing

biodiversity and food sources; supporting critical habitats for

economic animals such as nereids, sipunculids, shellfish, shrimps,

crabs, and fish; and stabilizing sediments in coastal areas (Costanza

et al., 1997; Hemminga and Duarte, 2000; Beck et al., 2001; Orth et al.,

2006; Huang et al., 2017). In recent years, land-derived nitrogen

loading, largely from anthropogenic origin, has increased the

eutrophication in coastal areas, resulting in a decline in seagrass

meadows (Valiela et al., 1992; Duarte, 1995; Orth et al., 2006). More

than half of the seagrass areas are reduced when land-derived

nitrogen loads exceed 100 kg N ha−1 year−1 (Valiela and Cole,

2002). Seagrasses serve as one of the sensitive indicators of nutrient

pollution (Bricker et al., 2003). The nutrient concentrations in the

environment may alter the competitive advantage of seagrasses and

macroalgae. Seagrasses can absorb nutrients from seawater and

sediments in oligotrophic environments, although they have lower

nutrient absorption rates than macroalgae (Harvens et al., 2001; Han

and Liu, 2014). Eutrophication may result in fast-growing macroalgal

blooms (Duarte, 1995; Harvens et al., 2001), which often aggravate the

decline of seagrasses in temperate estuaries (Valiela et al., 1997;

Hauxwell et al., 2001; McGlathery, 2001; Burkholder et al., 2007) by

promoting light reduction and increasing nutrient turnover in

ecosystems, thereby altering the absorption ability of seagrasses for

nitrogen (Han and Liu, 2014 and references therein; Han et al., 2016).

Nutrients are some of the major environmental factors that

control the primary production of seagrasses (Harvens et al., 2001;

Leoni et al., 2008). Sea nitrogen is composed of dissolved inorganic

nitrogen (DIN), dissolved organic nitrogen (DON), and particulate

organic nitrogen (PON) (Gruber, 2004; Zhang et al., 2021).

Wastewater from aquaculture releases some inorganic and organic

nutrients from uneaten feed and from feces of farmed animals

(Holmer et al., 2008; Herbeck et al., 2013). DIN, such as

ammonium and nitrate, is considered an important nitrogen source

for seagrass and macroalgal assimilation (Valiela et al., 1997; Lee and

Dunton, 1999; van Alstyne, 2008; Fan et al., 2014; Alexandre et al.,

2015). Some seagrass species, such as Zostera noltii, can absorb more

nitrate when ammonium is absent (Alexandre et al., 2011).

Ammonium can be toxic to seagrasses because its accumulation can

increase protein breakdown (van Katwijk et al., 1997). DON

constitutes a large part of the total dissolved nitrogen pool in

coastal areas (Tyler et al., 2005; Wang, 2015 and references

therein). Urea and dissolved free amino acids are important

nitrogen sources for autotrophic organisms (Bronk, 2002). The

hydrolysis of seagrass leaf litter drives the rapid release of DON

during the early phase of decomposition (Wang et al., 2014; Delgado

et al., 2017; Prasad et al., 2019). To date, there have been few studies

on the DON absorption of seagrasses (Vonk et al., 2008; van England

et al., 2011; Alexandre et al., 2015). Some seagrasses (e.g., Cymodocea

nodosa and Z. noltii) can absorb nitrogen from small organic

substrates (van England et al., 2011). Alexandre et al. (2015) found

that DON was a complementary nitrogen source to DIN, although

Zostera marina preferred DON to nitrate. The macroalgal uptake of

DIN in coastal waters is also well known (Valiela et al., 1997; van
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Alstyne, 2008; Fan et al., 2014). The macroalgal absorption of DON

compounds is still not as well understood as that of DIN (Tyler et al.,

2005; Xu, 2020; Zhang et al., 2021b). Phytoplankton and detritus

supported by DIN are defined as PON (Zhang et al., 2021a), which

could be difficult for seagrasses and macroalgae to directly absorb.

Light reduction from eutrophication and extreme climatic events

such as hurricanes and tsunamis, resulting in pulsed turbidity, has

been considered as the primary factor that leads to seagrass decline

(Cambridge et al., 1986; Walker and McComb, 1992; Preen and

Marsh, 1995). Light reduction may increase the mortality of

seagrasses and decrease their growth and coverage (Preen and

Marsh, 1995; Collier et al., 2007; Collier et al., 2011) by contracting

respiratory and growth requirements with a combination of

photosynthetic carbon fixation and reallocation of reserves (Ralph

et al., 2007). Thin macroalgae (e.g., Ulva sp.) have lower light

requirements than seagrasses; therefore, macroalgae can use more

incidental light compared to seagrasses (Duarte, 1995). The growth

superiority of the two communities may depend on irradiance

(Moore and Wetezl, 2000), nutrient quantity (Lapointe et al., 1994)

and type.

Limited light may have negative effects on the nitrogen absorption

of seagrasses (Touchette et al., 2003). Because plants may have a

relatively fixed cell quota for proteins, lipids, and carbohydrates

(Hedges et al., 2002), they tend to absorb different elements with

relatively fixed ratios (Gruber, 2004). Energy is consumed when

plants assimilate nitrogen (Touchette et al., 2003). The metabolism

of nitrogen in plants is strongly linked to the photosynthetic fixation

of carbon (Turpin, 1991 and references therein) because nitrogen and

carbon are needed to build living organic tissues (Griffiths, et al.,

2020). Nitrogen assimilation requires carbon in the respiratory

pathway (Leoni et al., 2008). The synthesis of amino acids by

seagrasses requires more carbon in comparison with their carbon

fixation capacity under conditions of nitrogen enrichment (Turpin,

1991 and references therein; Brun et al., 2002), which will result in a

lower carbohydrate content, leading to an internal carbon limit

(Touchette et al., 2003; Inverse et al., 2004). Macroalgal blooms

resulting from eutrophication may lead to light reduction and may

impact the nitrogen cycle in seagrass ecosystems (Han and Liu, 2014;

Moreira-Saporiti et al., 2021), thus altering the ability of seagrasses to

absorb inorganic and organic forms of nitrogen.

Zostera japonica, one of the dominant seagrass species in the

Shandong coast of China, such as Swan Lake, has shown a decreasing

trend, although it invaded and expanded along the Pacific Northwest

coast (Ruesink et al., 2010; Han et al., 2017). The high nutrient and

organic matter loads originating from benthos aquaculture and

wastewater discharge could have contributed to the decline of Z.

japonica in Shandong coast (Zhang et al., 2014; Han et al., 2017). In

some areas along the Shandong coast, macroalgal mats (e. g., Ulva

pertusa) have replaced the seagrass meadows (Zhang et al., 2014).

Moreover, macroalgal mats cover the seagrass meadows during

extended algal blooms every summer from June to July in Swan

Lake, Shandong (Han et al., 2016). Until now, there have only been a

few studies on how macroalgal blooms induce light attenuation and

how they impact the capability of seagrasses and macroalgae to absorb

DIN and DON.

The overall aim of this study was to compare the ability of

seagrasses and green algae to absorb DIN and DON after light
frontiersin.org

https://doi.org/10.3389/fmars.2023.1015323
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Han et al. 10.3389/fmars.2023.1015323
stress. Our hypotheses were as follows: firstly, plants require different

amounts of energy for the two nitrogen forms (DIN and DON), and

the nitrogen absorption ability of plants is lower because of the small

amount of energy left for assimilation at lower light levels. Secondly,

the light availability and the amount of energy required for nutrient

uptake differ between seagrass and macroalgal species. Our results

could provide information for environment managers regarding the

control of nutrient inputs by intensive human activities and the

reduction of the negative effects of macroalgae when macroalgal

blooms result in more DIN and DON released into coastal

eutrophication ecosystems in early low-light stress.
2 Materials and methods

2.1 Experimental design

Z. japonica and U. pertusa were collected from Swan Lake,

whichis located in Rongcheng City, Shandong Province, China

(37.3382° N–37.3588° N, 122.5551° E–122.5793° E), and were

exposed for 2 weeks to three light levels: high light (HL

160 mol photons m−2 s-1), medium light (ML, 40% HL), and low

light (LL, 10% HL). The seagrasses and macroalgae were collected in

June when the daylight is longer than the dark, so light was set up with

a photoperiod of 18-h light and 6-h dark. Light intensity was

measured using an underwater fluorometer (DIVING-PAM, WALZ

company, Germany). Round macroalgae (wet weight, 2 g) were

placed in PVC cylinders with muddy sand (diameter, 11 cm;

height, 10 cm). On top of the cylinders were nets with large holes

to maintain sufficient light and to keep the plants inside. Z. japonica

propagules (one apical shoot plus the first lateral shoot, and respective

internodes; wet biomass, 11.35 ± 0.52) were buried in the same PVC

cylinders as mentioned above. The cylinders were filled with muddy

sand. The depth of the sediment cover of the propagules was 1.5 cm. A

total of 75 macroalgae and seagrasses were cultivated. There were 25

macroalgal replicates and 25 seagrass replicates for each light

treatment in three different tanks. The PVC cylinders were

submerged in aerated and filtered seawater (31‰). The seawater

flowed slowly and was changed once every 2 days. The temperature

was maintained at 25° using constant temperature system in the

climate laboratory. The temperature and salinity of the seawater were

measured using a YSI 30 portable meter (YSI, Yellow Springs,

OH, USA).
2.2 Stable nitrogen isotope treatments and
plant measurements

After 2 weeks, the seagrasses and algae were separately divided

into five groups for each light treatment, with five replicates for each

group. In one group, the dry biomass of the macroalgae was weighed.

The leaf length, width, rhizome node diameter, node length, and root

length of seagrasses were measured, and the above- and belowground

dry biomass was weighed. The total dry biomass was also calculated.

Finally, the N content and d15N‰ of the macroalgae and the

aboveground (leaves) and belowground (roots with rhizomes) parts
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of seagrasses were measured using IRMS (MAT253; Thermo Fisher,

Waltham, MA, USA) (n = 5).

Four different artificial seawater solutions with DIN and DON

stable isotopes (Sigma-Aldrich, St. Louis, MO, USA) were prepared.

The DIN solution contained ammonium (ammonium chloride,

10 mmol/L) and nitrate (sodium nitrate, 10 mmol/L), while the

DON solution contained urea (10 mmol/L) and glycine (1 mmol/L).

The glycine concentration is lower than that of DIN and urea in

natural environments; therefore, the concentration of the glycine

solution was lower than that of ammonium, nitrate, and urea. In

the other four plant groups, the macroalgae and the above- and

belowground parts of seagrasses were separately placed in the above-

mentioned solutions. Each plant tissue was cultured in a container

with 1 L stable nitrogen isotope solution, for a total of 180 treatments

[three light treatments × four nitrogen solutions × three plant tissues

(macroalgae and aboveground and belowground parts of

seagrasses) × five replicates]. The seagrasses and macroalgae were

incubated for 2–3 h in stable nitrogen isotope solutions in order to

study their absorption ability (van England et al., 2011). Our

preliminary experiments indicated that 1 h was sufficient for the

absorption of DIN and DON stable isotopes by Z. japonica and U.

pertusa. Therefore, in this study, 1 h was taken as the absorption time

for plant tissues (macroalgae, aboveground parts and belowground

parts of seagrasses) to absorb stable nitrogen isotopes. The

temperature was maintained at 25°C. Lastly, the d15N‰ values of

macroalgae and the above- and belowground parts of seagrasses were

measured using IRMS (MAT253; Thermo Fisher) (n = 5).
2.3 Data calculation

d15N‰, which can be used to compare the amount of nitrogen

absorbed by plants or plant tissues, was calculated as follows:

d 15N‰   =   Rsample  −  Rstandard

� �
=Rstandard   *   1, 000 (1)

In Equation 1, Rstandard and Rsample denote the 15N/14N of the

standard and the sample, respectively. Nitrogen in air was used as the

analysis standard for stable nitrogen isotopes.

Isotope excess (Esample) was calculated as the difference between

the isotope fraction in the sample (Fsample) and the natural abundance

(i.e., initial isotope fraction, Fnat) (van England et al., 2011), as follows:

Esample   =   Fsample  −   Fnat (2)

The specific uptake rate of 15N, Vsample [in micromoles 15N per

milligram dry weight (DW) per hour], was calculated using the

following equation:

Vsample   =   POM   x   Esample= time  �   dry weightð Þ (3)

where POM is the value of the stable nitrogen isotope in the plant

tissue (in micromoles 15N) (van England et al., 2011). Correction of

varying substrate concentrations was accomplished by dividing

Vsample by the substrate concentration (nitrogen added, Nadded) and

multiplying by 100 to convert to % (mg DW)−1 h−1.

%Vsample   =   100   x  Vsample=Nadded (4)
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%Vsample can be used to compare the nitrogen uptake rates of the

different plants or plant tissues.
2.4 Statistical analysis

For the effects of light treatments on macroalgal dry

biomass, seagrass leaf length, leaf width, rhizome node diameter,

node and root lengths, total dry biomass, and above- and

belowground dry biomass, the d15N values of plants were analyzed

using one-way ANOVA and post-hoc tests. The light and nitrogen

effects on the %Vsample of algae and the above- and belowground

components of seagrasses were separately analyzed using two-way

ANOVA and post-hoc tests. Differences in the %Vsample values among

groups (light × nitrogen × plant tissues) were analyzed using three-

way ANOVA and post-hoc tests. When ANOVA was significant

(p < 0.05), Tukey’s test was applied to determine which treatments

were significantly different.

3 Results

3.1 Physiological and morphological
parameters of algae and seagrasses

The N% and d15N‰ of algae after light treatment were not

significantly different (Table 1). The dry biomass of U. pertusa after

HL treatment was significantly higher than that after ML and LL

treatments (p < 0.01) (Table 1). The highest (0.32 ± 0.05 g) and the

lowest (0.25 ± 0.05 g) values were recorded for the HL and ML

treatments, respectively (Table 1).

The total dry biomass of Z. japonica in the HL treatment was

significantly higher than that in the lower light treatments (p < 0.05)

(Table 2). The highest and the lowest total dry biomass values in the

HL and LL treatments were 2.14 ± 0.39 and 1.19 ± 0.23 mg,

respectively (Table 2). The belowground dry biomass of Z. japonica

was significantly different after the three light treatments (p < 0.05)

(Table 2). The highest (1.04 ± 0.17 mg) and the lowest

(0.55 ± 0.13 mg) belowground dry biomass values were found in

the HL and LL treatments, respectively (Table 2).

The leaf length, width, and rhizome diameter of the seagrasses

showed significant differences after the three light treatments (p < 0.05)

(Table 2). The highest (6.17 ± 0.81 mg) and the lowest (3.36 ± 0.69 mg)

values for seagrass leaf length were recorded in the HL and LL

treatments, respectively (Table 2), while the highest (0.96 ± 0.14 mm)

and the lowest (0.77 ± 0.09 mm) values for seagrass leaf width were

found in the HL and ML treatments, respectively (Table 2). On the
Frontiers in Marine Science 04
other hand, the highest (1.07 ± 0.12 mm) and the lowest

(0.96 ± 0.07 mm) values for seagrass rhizome diameter were

recorded in the HL and LL treatments, respectively (Table 2). The

rhizome node and root lengths of seagrasses did not differ significantly

among the three light treatments (Table 2).

The d15N values of algae after the absorption of ammonium by

plant tissues were significantly higher than those of the other three

nutrients and natural groups after each light treatment (p < 0.01)

(Figure 1). The highest (97.26 ± 30.84‰) and the lowest

(35.65 ± 9.15‰) d15N values of algae after ammonium absorption

were found after HL and LL treatments, respectively (Figure 1).

The d15N values of the aboveground seagrass tissues after the

absorption of ammonium were significantly higher than those of the

natural groups and other three nutrients previously grown under each

light treatment (p < 0.01) (Figure 2A). The d15N values of the

aboveground seagrass tissues after ammonium absorption were

62.99 ± 15.94‰, 91.95 ± 34.38‰, and 74.14 ± 22.49‰ after the

HL, ML, and LL treatments, respectively (Figure 2A). The d15N value

of seagrass belowground tissues after nutrient absorption was

significantly different after each light treatment (Figure 2B, p<0.05).

The highest d15N values of seagrass belowground tissues after

ammonium absorption appeared after HL (67.90±10.49‰), ML

(128.37±38.74‰) and LL (64.66±22.06‰) treatments (Figure 2B).

3.2 %Vsample value of alagae
and seagrasses

Both nitrogen and light significantly impacted the %Vsample values

of algae (p < 0.001) (Figure 3A and Table 3). The highest absorption

rates of algae for ammonium (14.67 ± 2.50 mg−1 DW h−1), nitrate

(1.29 ± 0.16 mg−1 DW h−1), and urea (1.67 ± 0.65 mg−1 DW h−1)

were found after HL treatment (Figure 3A). The lowest %Vsample

values of algae for ammonium (4.52 ± 0.95 mg−1 DW h−1)

and nitrate (0.18 ± 0.12 mg−1 DW h−1) occurred after LL
TABLE 1 Content of nitrogen, d15N, and dry biomass of Ulva pertusa after
light treatments.

High light Medium light Low light

N (%dry biomass) 4.81 ± 0.59 4.69 ± 0.49 5.37 ± 0.57

d15N‰ 6.49 ± 0.35 6.8 ± 0.36 7.05 ± 1.18

Dry biomass (g) 0.32 ± 0.05a 0.25 ± 0.05b 0.27 ± 0.07b
Lowercase letters indicate that there were differences between the two data points for each line
after different light treatments. The same letters indicate no significant differences in the same
line.
TABLE 2 Biomass and morphological parameters of Zostera japonica after
different light treatments.

High
light

Medium
light Low light

Total dry biomass (mg) 2.14 ± 0.39a 1.38 ± 0.24b 1.19 ± 0.23b

Aboveground dry biomass
(mg)

1.10 ± 0.29a 0.73 ± 0.17ab 0.64 ± 0.13b

Belowground dry biomass
(mg)

1.04 ± 0.17a 0.65 ± 0.15b 0.55 ± 0.13b

N (% aboveground dry
biomass)

2.17 ± 0.08 2.08 ± 0.09 2.11 ± 0.21

N (% belowground dry
biomass)

1.33 ± 0.11 1.32 ± 0.08 1.29 ± 0.07

Leaf length (cm) 6.17 ± 0.81a 4.98 ± 0.59b 3.36 ± 0.69c

Leaf width (mm) 0.96 ± 0.14a 0.77 ± 0.09b 0.79 ± 0.08b

Rhizome diameter (mm) 1.07 ± 0.12a 1.00 ± 0.09b 0.96 ± 0.07b

Node length (mm) 3.28 ± 0.94 3.69 ± 0.33 3.72 ± 0.29

Root length (cm) 2.02 ± 0.24 1.96 ± 0.18 2.31 ± 0.40
fr
Lowercase letters indicate differences between the two data points for each line after different
light treatments. The same letters indicate no significant differences in the same line.
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treatment (Figure 3A). The lowest %Vsample value of algae for

urea was 0.58 ± 0.41 mg−1 DW h−1, which was found after ML

treatment (Figure 3A).

Nitrogen had significant effects on the %Vsample values of the

aboveground seagrass parts (p < 0.001) (Figure 3B and Table 3). The

%Vsample values of the aboveground seagrass parts for ammonium

were higher than those for glycine after all light treatments

(Figure 3B). The highest ammonium absorption rates of the

aboveground seagrasses were 8.27 ± 1.97, 9.93 ± 2.42, and

9.70 ± 2.12 mg−1 DW h−1 after HL, ML, and LL treatments,

respectively (Figure 3B). For glycine, the highest absorption rates of

the aboveground seagrasses were 3.92 ± 1.11, 3.35 ± 1.99, and

5.32 ± 0.27 mg−1 DW h−1 after HL, ML, and LL treatments,

respectively (Figure 3B).

Light and nitrogen significantly impacted the %Vsample values of the

belowground seagrass parts (p < 0.001) (Figure 3C and Table 3). After

HL, ML, and LL treatments, the %Vsample values of the belowground

seagrass parts for ammonium were 4.56 ± 0.04, 11.97 ± 1.89, and

3.87 ± 1.16 mg−1 DW h−1, respectively, while those for glycine were

14.71 ± 1.85, 3.98 ± 0.20, and 6.38 ± 0.52 mg−1 DW h−1,

respectively (Figure 3C).
Frontiers in Marine Science 05
Nitrogen also altered the %Vsample values of algae and the above-

and belowground seagrass parts under different light pressures

(p < 0.001) (Table 4). The %Vsample values of algae for ammonium

were higher than those of seagrass leaves after HL treatment, but were

lower than those of seagrass leaves after LL treatments (Figure 3). For

ammonium, the %Vsample values of the aboveground seagrass parts

were higher than those of the belowground parts after HL and LL

treatments (Figure 3). For nitrite, the %Vsample values of the

belowground seagrass parts were higher than those of the

aboveground seagrass parts and algae after all light treatments

(Figure 3). The %Vsample values of algae for nitrate after LL

treatments were lower than those of the aboveground seagrass

parts, while these values in the belowground seagrass parts for urea

after all treatments were higher than those in the aboveground

seagrass parts (Figure 3). For glycine, the %Vsample values of algae

were higher than those of seagrass leaves after all light treatments,

while these values in the belowground seagrass parts were higher than

those of the aboveground seagrass parts after HL treatment (Figure 3).

The three-way ANOVA (light × nitrogen × plant tissues)

illustrated the significant effects of nitrogen type on the ability of

plant tissues (algae and the above- and belowground parts of
FIGURE 1

The d15N value of U. pertusa. The different letters indicated significant differences in the same light treatment..
BA

FIGURE 2

d15N values in the aboveground and belowground tissues of Zostera japonica. (A) Aboveground seagrasses. (B) Belowground seagrasses.
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seagrasses) to absorb nitrogen and showed that light and the nitrogen

type altered the absorption ability of algae and seagrasses for

nitrogen (Table 4).
4 Discussion

This study showed that the dry weight of U. pertusa after HL

treatment was significantly higher than that after lower light

treatments (Table 1), which is similar to the results of van Alstyne

(2008) and Schmid et al. (2021), who found that macroalgae showed a

higher growth rate under higher light than under lower light

conditions. Macroalgae have evolved physiological responses to

light reduction, driving photosynthesis (Takahashi and Murata,

2008; Esteban et al., 2015), thereby impacting algal biomass. The

physiological responses of algae to stress can increase amino acids or

reduce sugars at the cellular level (Sharma et al., 2016). High light

intensity increases the concentrations of b-carotene and zeaxanthin in

marine macroalgae (Xie et al., 2020), resulting in an increase in

storage lipids in some algae (Khotimchenko and Yakovleva, 2005).

However, some macroalgae showed lower chlorophyll a (Chl-a) and
Frontiers in Marine Science 06
pigment composition under higher light conditions (see, for example,

Esteban et al., 2015; Schmid et al., 2021). Ulva fenestra exhibited

higher concentrations of lipids and higher proportions of

polyunsaturated fatty acids in low-light habitats than in moderate-

light conditions (Hotimchenko, 2002). Ulva lactuca grown under

high-light conditions had lower nitrogen, carbon, pigment, and

dimethylsulfoniopropionate concentrations relative to algae in low

light (van Alstyne 2008). This could be due to the physiological

responses and resource allocation of macroalgae to light reduction

being species-specific.

Light availability is the main factor limiting the growth and

distribution of seagrasses compared with all other factors

(Dennison et al., 1993; Lee et al., 2007). Seagrasses show

physiological and morphological responses to light reduction

depending on localized environmental conditions and timescales

(Bertelli and Unsworth, 2018; Kim et al., 2019; Zhang et al., 2020).

The responses of seagrasses to light reduction also include biomass

decrease (Holmer and Laursen, 2002) and growth reduction (Rruiz

and Romero, 2001). The total dry biomass and belowground biomass

of Z. japonica in the HL treatment were significantly higher than

those in the lower light treatments in this study (Table 2), which is in
B

C

A

FIGURE 3

The N absorption rates between algae and the aboveground and belowground parts of seagrasses for the different N sources afterlight treatments.
(A) Algae. (B) Aboveground seagrasses. (C) Belowground seagrasses.
TABLE 3 Analysis of variance of the effects of light and nitrogen on the %Vsample values of plant tissues.

Macroalgae Aboveground seagrass parts Belowground seagrass parts

df F p df F p df F p

Nitrogen 3 188.38 <0.001 3 91.06 <0.01 3 121.46 <0.001

Light 2 12.57 <0.001 2 1.38 n.s. 2 19.66 <0.001

Nitrogen × light 6 14.34 <0.001 6 0.77 n.s. 6 57.45 <0.001
fro
n.s., no significant differences.
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accordance with other reports on seagrass habitats (Z. marina and C.

nodosa: Silva et al., 2013; Collier et al., 2016; Z. muelleri: Griffiths

et al., 2020).

Exposure to low light may lead to carbonhydrate reduction in

seagrasses (Hasler-Sheetal et al., 2016; Kumar et al., 2017). Smaller

species are less resistant to light reduction (Collier et al., 2016), and

the responses of seagrasses to light reduction are species-specific

(Collier et al., 2007; Manassa et al., 2017; Statton et al., 2018). For

example, the low light requirements of Z. noltii, Posidonia oceanica,

Thalassia testudinum, Halodule pinifolia, and Syringodium filiforme

for survival were 2%, 10%, 14%, 14%, and 24% of surface irradiance

(SI), respectively (Leoni et al., 2008 and references therein). Our

results showed that the rhizome diameters of the seagrasses in the HL

treatment were significantly higher than those in the lower treatments

(Table 2). The lower rhizome diameters of seagrasses demonstrate

that carbon can be transported from belowground to the

aboveground parts of seagrasses under low-light conditions due to

disruption of the carbon fixation and energy metabolism (Griffiths

et al., 2020). In this study, the leaf length and width were longer and

thicker, respectively, in the HL treatment than in the ML and LL

treatments (Table 2). A smaller area of seagrass leaves further limits

photosynthesis. Our experiments prevented seagrasses from receiving

nutrients and carbon via adjacent plants, as a result of isolating plant

cultivation. This may be different from natural conditions, which

should be considered in the future.

Light reduction and nitrogen availability can affect the

physiological or biochemical properties of seaweeds by altering

their carbon and nitrogen contents (Cruz-Rivera and Hay, 2003;

Buapet et al., 2008). Although van Alstyne (2008) found that light and

nitrate always independently affect the algal response, the absorption

of nutrients by some algae is related to light and carbon metabolism

(Dortch, 1990). The nitrogen concentrations in void tissues are often

correlated with the DIN concentrations of seawater (Fujita et al., 1989;

Björnsäter and Wheeler, 1990; Teichberg et al., 2010; Fan et al., 2014).

In this study, it was found that the d15N values of the algal tissues after

ammonium absorption were significantly higher than those of the

other three nutrients and natural groups after each light treatment
Frontiers in Marine Science 07
(Figure 1). The absorption rate of ammonium by algae is higher than

that of nitrate because the uptake of ammonium into cells requires

less energy than nitrate (Flynn, 1991).

During the macroalgal bloom and decay phases, Ulva sp. are an

important source of DON in the aquatic environment (Tyler et l.,

2001; Zhang et al., 2021). During the early period of macroalgal

blooms, green macroalgae can take up DIN, thus lowering the DIN

concentration in ambient seawater and effectively relieving

eutrophication (Zhang and Wang, 2017). Subsequently, algae

assimilate DIN into DON, continuously releasing DON into the

ambient environment, or depositing it into sediments (Li et al.,

2016). This explains the increase of the DON concentration in the

culture environment, mainly because the DON produced by Ulva sp.

was released into the ambient media (Sharp, 1977). Higher DON

concentrations may increase the soluble sugar and protein contents of

macroalgae (Xu, 2020). Tyler et al. (2005) found that Gracilaria

vermiculophylla can assimilate urea and amino acids and that U.

lactuca has higher uptake rates than G. vermiculophylla. The DON

and ammonium from decomposed algae can be important nitrogen

sources and take part in the nitrogen cycle in seagrass ecosystems,

thereby further changing the biochemical cycle processes in the long

term (Zhang et al., 2021b).

It is conceivable that the nitrogen uptake of seagrasses may

change during or after macroalgal blooms. Macroalgal blooms lead

to light limitations, which affect the functions of seagrass ecosystems,

such as nutrient uptake. In this study, light reduction and the nitrogen

type altered the absorption ability of seagrasses and algae for nitrogen

(Figure 3). After light reduction, seagrass growth is limited, which

may result in a reduction in the nutrient requirements for growth.

The physiological responses of seagrasses to low irradiance include

the increase in the nitrogen and amino acid contents in tissues (van

Lent et al., 1995; Longstaff and Dennison, 1999; Leoni et al., 2008;

McMahon et al., 2013). Nitrogen enrichment can promote the

demand for energy and carbon skeletons from photosynthates to

drive the assimilation of DIN (Inverse et al., 2004), affecting the

productivity and survival of seagrasses, which may aggravate the

deleterious effects of low light (Villazán et al., 2013). Our results

showed that the aboveground parts of seagrasses had higher

absorption ability for ammonium than for nitrate, urea, and glycine

after all light treatments (Figure 3). Some seagrass species have

increased affinity for ammonium over nitrate (Terrados and

Williams, 1997; Lee and Dunton, 1999). The preferential uptake of

ammonium by seagrasses may be due to the physiological demands

associated with nitrate uptake (Nayar et al., 2018 and references

therein). Furthermore, seagrass tissues require far less energy than

nitrate to transform ammonium into organic nitrogen (Nayar et al.,

2018). Sandoval-Gil et al. (2015) found that seagrass roots showed

reduced capacity to absorb ammonium compared to leaves because of

the very high availability of this nutrient in sediments. This is in

agreement with our results, in which the absorption rates of

ammonium by the aboveground parts of seagrasses were higher

than those of the belowground parts after HL and LL treatments

(Figure 3). Lee and Dunton (1999) found that ammonia is mostly

absorbed by the rhizomes and roots of seagrasses. The belowground

parts of seagrasses grow in sediments, where there is less oxygen

concentration than in coastal waters; therefore, seagrass roots and
TABLE 4 Analysis of variance of the three-factor model with the %
Vsample of plants as the response variable and light, nitrogen, and plant
tissues (algae and the aboveground and belowground seagrasses) and all
possible interactions.

Source df F p

Light 2 1.44 n.s.

Nitrogen 3 18.70 <0.001

Plant tissues 2 1.01 n.s.

Light × nitrogen 6 2.02 n.s.

Light × plant tissues 4 0.75 n.s.

Nitrogen × plant tissues 6 0.26 n.s.

Light × nitrogen × plant tissues 12 1.41 n.s.
n.s., no significant differences.
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rhizomes may adapt to environments with less oxygen through

evolved physiological responses. The substratum type can influence

the leaf versus root nutrient uptake, and fine-grained sediments

generally support a higher absorption rate of seagrasses for

ammonium (Bulthuis et al., 1992). We recommend further research

involving the combined effects of sediment types on the absorption

ability of seagrasses for organic and inorganic nitrogen nutrients to

lower the negative effects of eutrophication on seagrass ecosystems

through a long-term investigation.

Sandoval-Gil et al. (2019) found that nitrate is mainly absorbed

by seagrass leaves. This is contrary to our results, in which the

absorption rates of nitrate by the belowground seagrass parts were

significantly higher than those of seagrass leaves and macroalgae

after all light treatments (Figure 3). Nitrate enrichment in

sediments can stimulate the growth of seagrasses (Peralta et al.,

2003), while water column nitrate enrichment may lead to the die-

off of seagrasses (Leoni et al., 2008). Zimmerman et al. (1987)

reported that most nitrogen assimilation occurs in the roots;

however, limited light conditions interfere with the nitrogen

assimilation in the roots because the root–rhizome system is

photosynthesis-dependent (Pregnall et al., 1987). The nitrogen

uptake rates of seagrass roots depend on the belowground

biomass of seagrasses (Kraemer et al., 1997; Leoni et al., 2008).

Some seagrass species (e.g., Z. noltii) can absorb more nitrate in the

absence of ammonium (Alexandre et al., 2011). The assimilation of

seagrasses into nitrate requires more energy because it involves an

active transport system (Lepoint et al., 2002), which may aggravate

the potentially harmful effects of nitrate enrichment, such as

toxicity and metabolic costs (Burholder et al., 1992; Sandoval-Gil

et al., 2015). Our results demonstrate that limited light use did not

alter the absorption ability of the above- and belowground parts of

seagrasses for nitrogen, especially nitrate.

When the nitrogen requirement is lower than the uptake, the

absorbed nutrients may be reserved in the plant tissues as amino acids

or proteins (Udy et al., 1999; Invers et al., 2004). The carbon

requirements for synthesizing amino acids can exceed the carbon

fixation capacity under nitrogen enrichment conditions. The results

of this study showed that the absorption ability of seagrasses for

glycine was significantly higher than that for nitrate and urea after HL

and LL treatments (Figure 3), which is in agreement with Alexandre

et al. (2015), who found that Z. marina showed preferential uptake of

DON over nitrate and that DON was a complementary nitrogen

source compared to DIN. Seagrass tissues can limit the use of nitrogen

once they reach substrate saturation (Touchette and Burkholder,

2000). The lower concentration of glycine than nitrate and urea

may have enhanced the uptake ratio of seagrasses to glycine in this

study. The belowground parts of seagrasses had higher absorption

rates for urea than the aboveground parts after all light treatments

(Figure 3). The urea in coastal waters resulting from agricultural

fertilizers, coastal aquaculture, domestic sewage, and industrial waste

can be deposited in sediments (Li et al., 2015), thereby providing an

organic nitrogen source for the roots and rhizomes of seagrasses.

Organic nitrogen (e. g., amino acid nitrogen) can be mineralized and
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directly assimilated by plants and microbes (Dong et al., 2021). For

example, some dinoflagellates can absorb urea and nitrate (Wang,

2015). Vonk et al. (2008) found that seagrasses may prefer organic

nitrogen at low ambient nitrogen concentrations; however, several

studies have shown that seagrasses more preferred absorbing DIN

(Burkholder et al., 1992; Lee and Dunton, 1999; Sandoval-Gil et al.,

2015). The DON uptake of seagrasses may be more widespread than

is traditionally recognized (van England et al., 2011). Microorganisms

can facilitate the assimilation of DON by mineralizing amino acids in

the seagrass Posidonia sinuosa, which may promote the growth and

productivity of seagrasses (Tarquinio et al., 2018). However, the

microbial catabolism of amino acids can lead to exuded

ammonium, which is harmful to plant tissues at extremely high

concentrations (van Katwijk et al., 1997). The mechanisms by

which microorganisms affect the uptake of DON by seagrasses

require further research.

Under lower light conditions, seagrasses may need more

energy for the absorption of organic nitrogen in order to reduce

the negative effects of light limitation (Collier et al., 2010). A

reduced photosynthetic carbon fixation under low light conditions

leads to less carbon being transferred from the leaves to seagrass

roots and rhizomes. This may explain our results where the

assimilation of glycine by Z. japonica roots and rhizomes after

HL treatment was higher than that of the lower treatment

(Figure 3D). Processes that minimize the utilization of reserved

carbon by reducing the organic nitrogen assimilation within

seagrass roots and rhizomes may contribute to shading

tolerance. Our results indicate that Z. japonica quickly

responded to short-term light reduction due to changes in

organic nitrogen metabolism processes. The internal assimilation

to organic nitrogen and the transfer mechanism to carbon of

seagrasses should be considered in the future.
5 Conclusion

The eutrophication problem is complex because it may change

the primary producers and environmental variables through

ecosystem self-organization. Overall, this study provides evidence

that shading alters the absorption ability of macroalgae and

seagrasses for inorganic and organic nitrogen, although it is also

necessary to deeply understand the difference between the limited,

highly artificial study and the non-linear, highly interactive

responses in the seagrass meadows. Light reduction may alter the

competition status between seagrasses and macroalgae through a

change in their inorganic and organic absorption strategies. This

difference should be well considered in future coastal management

and seagrass protection. Regular seagrass monitoring, coupled with

long-term studies to assess the effects of macroalgal bloom

progression and duration on seagrass ecosystems, is required.

Additional tests of the thresholds of the different nitrogen

sources and their effects under different environmental, social,

and economic contexts are also required.
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Inverse, O., Kraemer, G. P., Pérez, M., and Romero, J. (2004). Effect of nitrogen
addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia
oceanica. J. Exp. Mar. Biol. Ecology 303, 97–114. doi: 10.1016/j.jembe.2003.11.005

Khotimchenko, S. V., and Yakovleva, I. M. (2005). Lipid composition of the red alga
Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66,
73–79. doi: 10.1016/j.phytochem.2004.10.024

Kim, M., Pernice, M., Watson-Lazowski, A., Guagliardo, P., Kilburn, M. R., Larkum, A.
W. D., et al. (2019). Effect of reduced irradiance on 13C uptake, gene expression and
protein activity of the seagrass Zostera mulleri. Mar. Environ. Res. 149, 80–89. doi:
10.1016/j.marenvres.2019.06.004

Kraemer, G. P., Mazzella, L., and Alberte, R. S. (1997). Nitrogen assimilation and
partitioning in the Mediterranean seagrass Posidonia oceanica.Mar. Ecology 18, 287–300.
doi: 10.1111/j.1439-0485.1997.tb00435.x

Kumar, M., Padula, M. P., Davey, P., Pernice, M., Jiang, Z., Sablok, G., et al. (2017).
Proteome analysis reveals extensive light stress-response reprogramming in the seagrass
Zostera muelleri (Alismatales, zosteraceae) metabolism. Front. Plant Science 7, 2023. doi:
10.3389/fpls.2016.02023

Lapointe, B. E., Tomasko, D. A., and Matzie, W. R. (1994). Eutrophication and trophic
state classification of seagrass communities in the Florida keys. Bull. Mar. Sci. 54, 696–
717. doi: 10.1515/botm.1994.37.3.277

Lee, K. S., and Dunton, K. H. (1999). Inorganic nitrogen acquisition in the seagrass
Thalassia testudinum: development of a whole plant nitrogen budget. Limnology
Oceanography 44, 1204–1215. doi: 10.4319/lo.1999.44.5.1204

Lee, K., Park, S. R., and Kim, Y. K. (2007). Effects of irradiance, temperature, and
nutrients on growth dynamics of seagrasses: a review. J. Exp. Mar. Biol. Ecology 350, 144–
175. doi: 10.1016/j.jembe.2007.06.016
Frontiers in Marine Science 10
Leoni, V., Vela, A., Pasqualini, V., Pergent-Martini, C., and Pergent, G. (2008). Effects
of experimental modifications of light levels and nutrient concentrations on seagrass: a
review. Aquat. Conservation: Mar. Freshw. Ecosystems 18, 202–220. doi: 10.1002/aqc.842

Lepoint, G., Millet, S., Dauby, P., Gobert, S., and Bouquegneau, J. M. (2002). Annual
nitrogen budget of the seagrass Posidonia oceanica as determined by in situ uptake
experiments. Mar. Ecol. Prog. Series 237, 87–96. doi: 10.3354/meps237087

Li, Z. L., Shi, X. Y., and Zhang, C. S. (2015). Distribution characteristics of urea and
constitution of dissolved nitrogen in the bohai sea and huanghai sea in spring. Environ.
Science 36, 3999–4004. doi: 10.13227/j.hjkx.2015.11.008

Li, H., Zhang, Y., Han, X., Shi, X., Rivkin, R. B., and Legendre, L. (2016). Growth
responses ofUlva prolifera to inorganic and organic nutrients: implications for macroalgal
blooms in the southern yellow Sea. Sci. Rep. 6, 26498. doi: 10.1038/srep26498

Longstaff, B. J., and Dennison, W. C. (1999). Seagrass survival during pulsed turbidity
events: the effects of light deprivation on the seagrasses Halodule pinfolia and Halophila
ovalis. Aquat. Botany 65, 105–121. doi: 10.1016/S0304-3770(99)00035-2

Manassa, R. P., Smith, T. M., Beardall, J., Keough, M. J., and Cook, P. L. M. (2017).
Capacity of a temperate intertidal seagrass species to tolerate changing environmental
conditions: significance of light and tidal exposure. Ecol. Indicators 81, 578–586. doi:
10.1016/j.ecolind.2017.04.056

McGlathery, K. (2001). Macroalgal blooms contribute to the decline of seagrass in
nutrient-enriched coastal water. J. Phycology 37, 453–456. doi: 10.1046/j.1529-
8817.2001.037004453.x

McMahon, K., Collier, C., and Lavery, P. S. (2013). Identifying robust bioindicators of
light stress in seagrasses: a meta-analysis. Ecol. Indicator 30, 7–15. doi: 10.1016/
j.ecolind.2013.01.030

Moore, K. A., and Wetzel, R. L. (2000). Seasonal variations in eelgrass (Zostera marina
l.) response to nutrient enrichment and reduced light availability in experimental
ecosystems. J. Exp. Mar. Biol. Ecology 244, 1–28. doi: 10.1016/S0022-0981(99)00135-5

Moreira-Saporiti, A., Hoeijmakers, D., Msuya, F. E., Reuter, H., and Teichberg, M.
(2021). Seaweed farming pressure affects seagrass and benthic macroalgae dynamics in
chwaka bay (Zanzibar, Tanzania). Regional Environ. Change 21, 1–12. doi: 10.1007/
s10113-020-01742-2

Nayar, S., Loo, M. G. K., Tanner, J. E., Longmore, A. R., and Jenkins, G. P. (2018).
Nitrogen acquisition and resource allocation strategies in temperate seagrass Zostera
nigricaulis: uptake, assimilation and translocation processes. Sci. Rep. 8, 17151. doi:
10.1038/s41598-018-35549-3

Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W.,
Heck, K. L., et al. (2006). A global crisis for seagrass ecosystems. BioScience 56, 987–996.
doi: 10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2

Peralta, G., Bouma, T. J., van Soelen, J., Pérez-Lloréns, J. L., and Hernández, I. (2003).
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