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Bacteria in coastal waters drive global biogeochemical cycling and are strongly

related to coastal environmental safety. The bacterial community in offshore

shellfish farming waters of North China has its own characteristics and

particularities, while the knowledge is limited. In this study, the bacterial

community characteristics, the particularities of bacterial community in the

waters with surface cold patches (SCPs) and the variation of pathogenic

bacteria were investigated in the offshore shellfish farming waters in the

North Yellow Sea (NYS) from 2017 to 2019. For all studied samples,

Desulfobacterales acted as the keystone species taxon in microbial co-

occurrence networks, and the proportional abundance of Actinobacteriota

was found to be as low as 1.3%. The abundance of Marinobacter and

Synechococcus was remarkably prominent in 13 genera with nitrogen-

transforming function. The top two different bacterial functions in the spatial

analysis (between the waters with SCPs and the ambient waters) were

xenobiotics biodegradation and metabolism and metabolism of cofactors

and vitamins, which were same with that in the seasonal analysis (between

spring and summer). The abundance differences of most pathogenic bacteria

analyzed in this study (11 out of 12 genera) also had the same variation dynamics

between the spatial analysis and the seasonal analysis. An ANN predictive

model for Vibrio abundance was constructed for Vibrio forecasting, with

acceptable predictive accuracy. According to the above results, the bacterial

community in the shellfish aquaculture waters in this study was characterized

by the enhancing ability of nitrogen removal. Temperature was concluded as

the predominant environmental factor to drive the variation of bacterial

community function and pathogenic bacteria patterns in the offshore

shellfish farming waters with SCPs. The results of this study will further our

understanding of the bacterial community characteristics in offshore shellfish
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farming waters, and help for Vibrio forecasting and coastal environmental

safety in aquaculture seawater.
KEYWORDS

shellfish aquaculture, bacterial community, Vibrio, surface cold patches,
predictive model
Introduction

Bacteria are important components in the marine

ecosys tem, dr iv ing g loba l b iogeochemica l cyc l ing

(Falkowski et al., 2008). They play important roles in

maintenance and sustainability of microbial food webs and

contribute to the rapid adjustment towards marine

environmental changes and deterioration (Dash et al.,

2013). The marine planktonic bacteria, especially those

distributed near the coast, are of importance in people’s life

due to their close relationships to human and animal’s health,

industry and tourism, as about 60% of the world’s population

residing within 100 km of the coast (Vitousek et al., 1997).

Shellfish have been considered as “keystone species” and

“ecosystem engineers” in coastal environment (Gutiérrez et al.,

2003; Newell, 2004). The shellfish aquaculture industry, which is

always located near the coast, has greatly developed in recent

years to meet the growing global demand for protein (eg. 17.7

million tons in 2018) and contribute to world economic

development (FAO, 2020). Shellfish are known to modify

microbial assemblages by filtering water and transferring

nutrients in the water system. On one hand, shellfish

aquaculture can reduce water turbidity and improve nutrient

recycling in anthropogenic impacted coastal environment, thus

acting as an excellent nutrient bioextraction system in eutrophic

areas. On the other hand, the suspension filtering and deposition

through shellfish aquaculture are always involved in nutrient

flux regulation and plankton speciation, which sometimes

stimulates the growth of red tide species of plankton

(Dumbauld et al., 2009; He et al., 2017). The increasing

farming areas and stocking density have raised considerable

concern, due to their influence on the marine environment

(Yuan et al., 2010; Han et al., 2013). Even though there were

some reports about the microbiome in the coastal environment,

the bacterial community dynamics concluded from different

studies are not always in strong agreement, because of

different biogeographic and environmental features (Hartwick

et al., 2019). The effect of shellfish aquaculture on the microbial

community is quite complex, and the understanding of bacterial

community characteristics in offshore shellfish farming waters is

very limited.
02
The North Yellow Sea (NYS) is closed to a continental

margin of major economic importance in China and Korea

with unique oceanographic characteristics. Shellfish aquaculture

is an important industry in the NYS and plays critical roles in the

development of the marine economy. It is located near the

coastal areas, especially around the islands off the coast,

rearing Yesso scallop (Patinopecten yessoensis), Pacific oyster

(Crassostrea gigas) and bay scallop (Argopecten irradians

irradians), etc. In recent years, aquaculture and industrial

wastes run-off and atmospheric deposition also affected the

nutrient concentrations in the NYS, further leading to the

change of microbial community and dynamics and even

hypoxic dead zones (Lin et al., 2005; Tang, 2009). The NYS is

always considered as one of the most complicated continental

sea areas in the world, due to the seasonal variation of strong

currents, wind stress and nutrient-enriched freshwater outflows

in the shallow sea area (Hur et al., 1999). The Yellow Sea is also

well known because of the Yellow Sea ColdWater Mass, which is

a basin-scale water mass of relatively low temperature lying

under the seasonal thermocline. Surface cold patches (SCPs)

could be observed scattering around the Yellow Sea Cold Water

Mass in boreal summer, in contrast to the ambient waters with

relative higher sea surface temperature (Xia and Guo, 1983; Zou

et al., 2001). The environmental particularity of SCPs was

speculated to result in different bacterial communities in

shellfish farming waters, while the principal environmental

parameter involved in this was not clear. The dynamics of

bacterial community variation in the NYS or even in its

offshore shellfish farming waters are attracting increasing

interest in recent years.

Pathogenic bacteria in coastal waters are strongly related to

the health of human and animals. The environmental problems

caused by microbiome change and the infections caused by

pathogenic bacteria have been reported frequently in shellfish

farming waters (Azandégbé et al., 2012; He et al., 2017). Among

various potential pathogenic bacteria, the prevalence patterns of

Vibrio spp. in marine environment are attracting widespread

concern, since they include some pathogenic species that could

infect to human and other organisms, such as V .

parahaemolyticus and V. vulnificus. Pathogenic species of

Vibrio spp. in seawater can cause seafood-borne illnesses
frontiersin.org
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through consumption of contaminated seafood and cause

wound infections by exposure of an open wound to seawater,

probably resulting in diarrhea, septicemia and even death (Hsieh

et al., 2008). The forecasting of Vibrio abundance and breakout

would help to prevent human illness by identifying and

reporting the forecasting information and making it publicly

available (Froelich et al., 2013; Izumiya et al., 2017).

In short, investigating the characteristics and dynamics of

bacterial community variation and potentially pathogenic

bacteria in the offshore shellfish farming waters in the NYS

would contribute to coastal environmental safety. To achieve

this, in the present study, seawater samples were collected

from two offshore shellfish farming areas (the waters with

SCPs and the ambient waters) in the NYS from every March

to August in 2017-2019 with the aims to (1) illuminate the

characteristics of bacterial community in the offshore

shellfish farming waters and its seasonal dynamics; (2)

reveal the particularities of bacterial community in the

waters with SCPs; (3) analyze the variation patterns of

pathogenic bacteria abundance and develop a predictive

model for Vibrio abundance level.
Material and methods

Sample collection

Two sampling regions (location X and location Z) were

set for the offshore Yesso scallop farming waters in the NYS

(Figure S1). The geographic coordinates of location X and Z

are N39°17’44”–E122°40’38” and N39°1’7”–E122°42’2”,

respectively. According to Lü et al. (2010), the location X

could be considered as within SCPs and the location Z was

among the ambient region with relative higher sea surface

temperature, because our three-year data also showed that the

surface water temperature in summer in location X was

generally 2-3°C lower than that in location Z. There were

three sampling sites included in each region as three parallels.

The sampling experiments were carried out from March to

August in 2017-2019, as March to August was the main

period of scallop farming. In this study, spring was defined

from March to May, and summer from June to August.

Seawater samples were collected at 3 m of depth where

scallops were suspension-cultured and were then stored at

4°C within 1 h before further processing as previous

description (Yu et al., 2019a; Yu et al., 2019b).
Determination of water parameters

Water temperature (T), salinity (Sal), pH and dissolved

oxygen (DO) were monitored using an YSI Professional Plus

meter (YSI, Yellow Springs, Ohio, USA) in situ. According to the
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procedures of the National Specification for Marine Monitoring

(SOA of China, 2007), the concentration of TAN, NO2–N, NO3–

N, PO4-P and SiO4-Si of the water were analyzed using

indophenol blue spectrophotometric method, N-(1-naphthyl)-

ethylenediamine dihydrochloride spectrophotometric method,

Zn-Cd reduction method, Phosphomolybdenum blue

spectrophotometric method and Silicon molybdenum yellow

Spectrophotometry method, respectively. The concentration of

Chl-a was measured with spectrophotometry after extraction

with acetone (Lorenzen, 1967).
DNA extraction and high−throughput
sequencing

One liter of seawater was filtered using 0.22 mm pore size

membranes (Sagon, Shanghai, China) to enrich the microbial

cells for each sample, which was then used for genomic DNA

extraction using the Water DNA Kit (Omega, GA, USA)

following the manufacturer’s instruction. DNA quality and

quantity were analyzed by 1% agarose gel electrophoresis and

NanoDrop spectrophotometer (Thermo Fisher Scientific, DE,

USA). The high-throughput sequencing of the V3–V4

hypervariable region of 16S rDNA genes was performed using

the Illumina HiSeq platform by Novogene (Beijing, China) with

low-quality reads filtered.
Amplicon sequence analysis

The raw reads of the 16S rDNA sequence were processed

using Quantitative Insights into Microbial Ecology (QIIME 2)

pipeline (Bolyen et al., 2019). Paired-end reads were

imported, then trimmed and denoised using DADA2 to

remove chimeras and obtain amplicon sequence variants

(ASVs). The abundance of nitrogen-transforming bacteria

was calculated as log10 (relative abundance proportion *

10000 + 1). Taxonomy was assigned at the single nucleotide

level to the ASVs using a feature classifier against a trained

SILVA 138 SSU database. Alpha diversity and beta diversity

were evaluated using the Shannon diversity index and

unweighted UniFrac distances, respectively.
Statistical analysis

MicrobiomeAnalyst (http://www.microbiomeanalyst.ca)

was used to compare the abundance and diversity of the

bacterial community and to generate visual exploration, with

ASV data and the metadata files (Chong et al., 2020). The

functional profiles and metabolic pathways of the bacterial

communities were predicted using Phylogenetic Investigation

of Communities by Reconstruction of Unobserved States
frontiersin.org
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(PICRUSt) 2 software (Douglas et al., 2020). KEGG database

was used for the annotation of predicted genes. STAMP

software was used for differential analysis of functional

profiles (Parks et al., 2014). The co-occurrence ecological

network was analyzed using the online Molecular Ecological

Network Analysis (MENA) pipeline (http://ieg2.ou.edu/

MENA) (Deng et al., 2012), and the network construction

was performed using Cytoscape software (Shannon et al.,

2003). Redundancy analysis (RDA) was conducted to reveal

the effect of environmental factors on the abundance and

diversity of bacterial communities using CANOCO software

(version 5) (Šmilauer and Leps ̌, 2014). Correlations between
the Vibrio abundance and environmental factors were

investigated through Spearman’s correlation analysis and

Pearson’s correlation analysis using SPSS 26 (SPSS Inc.

Chicago, IL) statistical software package. P-value<0.05 was

considered statistically significant. P-value<0.01 was

considered extremely significant.
Construction of the predictive model

A predictive model was constructed for the level of Vibrio

abundance in this study. First, the co-occurrence relationships

between the Vibrio abundance and the bacterial abundance at

order level were investigated using MENA pipeline to get the

order taxa (VAO) that were directly associated with the Vibrio

variation. Second, all tested environmental factors and the VAO

abundance were analyzed for their correlation with the Vibrio

abundance in the next month using Spearman’s correlation

analysis and Pearson’s correlation analysis, to get the factors

(VAF, including environmental factors and order taxa) that had

significant associations with Vibrio variation in the next month

in both results of correlation analysis. Third, three levels of

Vibrio relative abundance were set as High Level (proportional

abundance ≥ 2%), Moderate Level (2% > proportional

abundance ≥ 0.5%), and Low Level (proportional abundance<

0.5%). The multi-layer feed-forward artificial neural network

(ANN) modeling was used to construct and test the neural

networking by SPSS 26, using the VAFs as input variables and

the Vibrio level in the next month as output variable. The

feasible ANN model was constructed by trial and error. The

ANN was classified into three layers, including input, hidden

and output layers. The three layers processed signals and

searches to obtain the best linear and nonlinear relationships

between the input and output data. In this model, about 70% of

the input data was used for training, with the remaining 30%

used for testing. Levenberg–Marquardt algorithm was applied

for modeling and calculating the weights among the input,

hidden and output layers through modifying the learning rate

and the number of hidden layers and neurons.
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Results

Composition, function and co-
occurrence of bacterial community

High-throughput sequencing of 16S rDNA was performed to

obtain 12,988,676 sequences, which were clustered into 16,747

ASVs. A total of 415 orders across 56 phyla in all samples were

detected through direct taxonomical classification and annotation.

Proteobacteria (58.6%), Bacteroidetes (18.6%), Cyanobacteria

(12.3%), Firmicutes (3.4%) and Verrucomicrobiota (2.0%) were

dominant phyla in seawater accounting for 95.0% of the total

abundance (Figure 1A). The average proportional abundance of

Actinobacteriota was 1.3%. The abundance of nitrogen-

transforming bacteria was investigated, and 13 genera were

found in our samples (Figure 2). Among them, Marinobacter

and Synechococcus were consistently present in all samples, and

their abundance was markedly higher than that of the other

nitrogen-transforming bacteria.

The KEGG pathways that the bacterial community involved

were predicted to explore the potential biosynthetic and

ecological functions. By searching against the KEGG database

using PICRUSt2, a total of 188 third-level pathways were

identified, including Valine, leucine and isoleucine

biosynthesis, C5-Branched dibasic acid metabolism and

Biosynthesis of ansamycins, etc. After grouping into second-

level pathways, 36 pathways were determined, including

carbohydrate metabolism, infectious disease and replication

and repair, etc. For the further grouped first-level pathways,

six types were identified (Figure 1A). The co-occurrence analysis

was performed to investigate the interaction relationships

among specific taxa and to construct the microbial co-

occurrence networks. A total of 114 orders (belong to 22

phyla) were included in the network construction (Figure 1B).

In general, complex co-occurrence relationships were showed

for the whole bacterial community in this result. Among all

orders listed in this work, the orders in Proteobacteria processed

dominate positions in co-occurrence relationship, which

occupied 48.1% of the co-occurrence degree in the whole

microbiota. Desulfobacterales was suggested to be the keystone

species taxon, as it was most directly associated among all orders

in this network.

For the composition variation of bacterial community

between spring and summer, some apparent patterns could be

observed among different years, indicating that bacterial

compositions differed in interannual patterns (Figure 3A). In

the PCA analysis of bacterial beta diversity, the bacterial

community differed obviously between spring and summer

(Figure 3B). This difference could be investigated more clearly

in the analysis among different months. Progressive changes

could be outlined in bacterial community patterns from March
frontiersin.org
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to August (Figure 3B). Microbiota comparisons were conducted

between spring and summer by LEfSe analysis. Firmicutes and

Bacteroidota were identified as discriminative features at phylum

level (Figure 3C). Seven genus taxa were identified as

discriminative features at genus level, in which Vibrio genus

was found to be significantly abundant in summer (Figure 3C).
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The variation of bacterial functional patterns was pronounced at

seasonal scales, and the seasonal variation could be

discriminated from PCA analysis (Figure 3D). The differently

predicted pathways between spring and summer were mainly

related to metabolism and cell functional pathways, in which the

top two different pathways were xenobiotics biodegradation and
B

A

FIGURE 1

Composition, function and co-occurrence of bacterial community. (A) Distribution profiles of phylum taxa and functional pathways of the
bacterial community; (B) Microbial co-occurrence networks at phylum-order level.
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metabolism and metabolism of cofactors and vitamins

(Figure 3E). The pathways related to infectious disease were

also found to be differently enriched between spring

and summer.
The composition and function
characteristics of bacterial community in
the waters with SCPs

The difference in alpha diversity was non-significant

between the two locations (Figure 4A). Differences could be
Frontiers in Marine Science 06
found in some of the most dominant phyla between locations,

that the samples from location X had a higher relative

abundance of Bacteroidota and Actinobacteriota, and lower

relative abundance of Firmicutes (Figure 4B). The differences

became even more pronounced in specific seasons or months.

For instance, in summer, the variation of six phyla, such as

Actinobacteriota, Planctomycetota and Patescibacteria, etc., had

significantly different patterns between the two locations

(Figure 4C). When further focused on the situation of August,

Actinobacteriota was identified as the only discriminative

feature at phylum level between the two locations by LEfSe

analysis. The functional patterns of the bacterial community did
B

C

D

E

A

FIGURE 3

Temporal variation of bacterial community and function in shellfish farming areas. (A) Annual abundance heatmap at phylum level; (B) Seasonal
(left) and monthly (right) variation of alpha diversity; (C) Discriminative features of bacterial community at phylum level (left) and genus level
(right); (D) Principal components analysis (PCA) of bacterial functional characterization; (E) The functional pathways in significantly temporal
variation patterns.
FIGURE 2

The abundance variation of 13 genera of nitrogen-transforming bacteria in the offshore shellfish farming waters. The x-axis is samples in
chronological order. Green: 2017; blue: 2018; orange: 2019.
frontiersin.org

https://doi.org/10.3389/fmars.2022.997817
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gao et al. 10.3389/fmars.2022.997817
not differ markedly between locations, but still showing a few

differences that could be observed in PCA analysis on PC1 axis,

which explained 51.4% of the total variation (Figure 4D). The

differently predicted pathways between locations were mainly

enriched in metabolism pathways, in which the top two different

pathways were xenobiotics biodegradation and metabolism and

metabolism of cofactors and vitamins (Figure 4E).
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Variation patterns of pathogenic bacteria
abundance

During the sampling period of different months, the Vibrio

abundance generally increased with warming temperature

(Figure 5). In order to fully investigate the seasonal variation

of potential pathogenic bacteria, the abundance of 12 genera of
FIGURE 5

The monthly variation of Vibrio abundance in shellfish farming areas.
B

C

D

E

A

FIGURE 4

Spatial variation of bacterial community and function in shellfish farming areas. (A) Bacterial alpha diversity; (B) Bacterial relative abundance in
phylum level; (C) The phyla in significantly spatial variation patterns. (D) Principal components analysis (PCA) of bacterial functional
characterization; (E) The functional pathways in significantly spatial variation patterns.
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common pathogenic bacteria were analyzed (Figure 6). For the

comparison between spring and summer, the average abundance

of five genera were higher in spring than in summer (fold of

(log10 abundance): 1.02-2.70), including Shewanella ,

Pseudomonas, Streptococcus, Campylobacter and Escherichia.

The average abundance of the other seven genera were lower

in spring than in summer (fold of (log10 abundance): 0.34-0.97),
Frontiers in Marine Science 08
including Vibrio, Aeromonas, Photobacterium, Francisella,

Staphylococcus , Clostridium and Legionella . For the

comparison between the two locations, the average abundance

of four genera were higher in location X than in location Z (fold

of (log10 abundance): 1.02-1.41), including Shewanella,

Streptococcus, Campylobacter and Escherichia. The average

abundance of eight genera were lower in location X than in
FIGURE 6

The temporal and spatial variation of the abundance of 12 genera of potential pathogenic bacteria. X indicates location X. Z indicates location Z.
Spr. indicates spring. Sum. indicates summer.
frontiersin.org

https://doi.org/10.3389/fmars.2022.997817
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gao et al. 10.3389/fmars.2022.997817
location Z (fold of (log10 abundance): 0.51-0.99), including

Vibrio, Pseudomonas, Aeromonas, Photobacterium, Francisella,

Staphylococcus, Clostridium and Legionella.
Relationships between environmental
factors and bacterial community

The relationships between the environmental factors and

bacterial community were analyzed and were presented in the

RDA biplot (Figure 7A). The first and second RDA axes

explained 45.88% and 12.14% of the total variation,

respectively. The top three significant environmental factors

that constrained the bacterial community were DO, T and

Chl-a, with the explaining rate of 33.6%, 33.4% and 28.3%,

respectively. T and Chl-a had a strong negative influence on the

abundance of most phyla taxa located in the upper right

quadrant and the lower right quadrant, while DO had a strong

positive influence instead. WPS-2 generally had an opposite

relationship with environmental factors compared to some other

phyla that had a positive relationship with DO and a negative

relationship with T and Chl-a. T and DO almost had no

influence on the abundance of SAR324. For specific pairs of

environmental factors, T and DO had opposite influences on the

bacterial community, while Chl-a and SiO4 had similar

influences on the bacterial community. Through Spearman’s

correlation analysis and Pearson’s correlation analysis, the

environmental factors that were significantly associated with

the Vibrio abundance in both analyses were identified, including

T, DO, Chl-a, SiO4, PO4 and Si/N (Figure 7B). The

environmental factors that had correlation coefficients above

0.5 in both analyses were T and SiO4.
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Prediction for Vibrio abundance level

Before the construction of ANN model, 41 VAOs were

found to be directly associated with the Vibrio abundance.

After the correlation analysis, 32 VAFs were found to be

significantly associated with the Vibrio abundance in the next

month. One hidden layer and 8 neurons in the hidden layer were

finally used for the ANN model training, with structure

exhibition in Figure 8A. The predictive accuracy was shown in

Table S1. The mean predictive accuracy for training samples was

95.8%, with each sub-accuracy above 85%. The mean predictive

accuracy for testing samples was 96.4%, with each sub-accuracy

above 85%. The prediction probability can also be seen in

Figure 8B, which showed acceptable performance of the ANN

model for the Vibrio abundance level prediction.
Discussion

Characteristics of bacterial community in
the offshore shellfish farming waters and
its seasonal dynamics

The bacterial phyla dominant in our samples were

investigated and were generally consistent with previous

studies, in which Proteobacteria, Bacteroidetes, Cyanobacteria

and Actinobacteriota, etc. were characterized as the top

ubiquitous phyla in the Yellow Sea or other adjacent sea areas

(Yu et al., 2018; Kim et al., 2019). However, the proportional

abundance of Proteobacteria in this study (58.63%) is relatively

higher than that in some other studies (generally below 50%)

(He et al., 2017; Yu et al., 2018). The higher abundance of
BA

FIGURE 7

Relationships between environmental factors and bacterial community. (A) RDA ordination plot for the first two principal dimensions of the
relationships between the phylum taxa abundance and environmental factors in shellfish farming areas. (B) The correlation between Vibrio
abundance and environmental factors using Spearman’s correlation analysis and Pearson’s correlation analysis. “**” represent an extremely
significant difference (P<0.01).
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Proteobacteria is in agreement with their dominant positions in

co-occurrence relationships of microbiota in this study.

Proteobacteria is always the dominant bacterial taxon in

seawater, and its further increase may preempt the space of

other bacteria and reduce microbiota diversification.

The seasonal and monthly variation of the bacterial

community was more pronounced than inter-annual variation,

mainly due to the intra-annual environmental changes. This

followed common sense and was in agreement with other

reports. Kim et al. (2019) found that bacterial abundance

closely fitted a chronological seasonal pattern in the bays of

the Yellow Sea, and temporal patterns of microbial communities

were also observed in the New Jersey coast and the Pearl River

Estuary area (Nelson et al., 2008; Xie et al., 2018). The monthly

progressive changes of bacterial community patterns were

probably caused by one factor that was in continuously

unidirectional changes, which was most likely the water

temperature. Water temperature was always considered as the
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most important environmental factors that drove the bacterial

community (Kim et al., 2019). We can also have this inference

according to the results of RDA analysis. The relative high T and

low DO in summer may play important roles in constraining

and shaping the bacterial community. Except for T and DO, in

the present study, Chl-a was another important environmental

factor that was associated with bacterial community variation.

Previous studies also reported that the Chl-a was the key

predictor of microbiota, and some bacterial taxa were clearly

correlated with Chl-a (Kim et al., 2019). It should be noted that

shellfish aquaculture always has a great influence on the

phytoplankton abundance and community, as phytoplankton

is the main food source of shellfish. Thus, the bacterial

community in the offshore shellfish farming waters would

have specific structure patterns, resulted from the

phytoplankton variation.

In the present study, Desulfobacterales acted as the keystone

species taxon in co-occurrence relationships of microbiota and
B

A

FIGURE 8

The artificial neural network (ANN) for Vibrio abundance prediction. (A) The structure of ANN layer; (B) The prediction probability of ANN model
at three abundance level of Vibrio. “I, II, III” indicate the three levels of prediction.
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may function in nitrogen metabolism with further effect on other

bac te r i a l communi t i e s through ni t rogen cyc l ing .

Desulfobacterales plays important roles in nitrogen cycling

and removal, and could contribute about 12% of the genes in

nitrogen pathways (Nie et al., 2021). Recently, dominant sulfate

reducing microorganisms (SRM) within Desulfobacterales were

also reported in the sediments of coastal oyster aquaculture

ecosystems (Mara et al., 2021). The proportional abundance of

Actinobacteriota (1.3%) in this study was obviously lower than

that in other studies, in which it was reported up to 5%-20% (He

et al., 2017; Yu et al., 2018). The abundance of Actinobacteriota

has been proved to be strongly correlated with nitrogen cycling,

and it can thrive under oligotrophic conditions and be

suppressed with high organic matter and inorganic nutrient

availability (Kulas ̌ et al., 2021; Wang et al., 2021). The impact of

shellfish farming on nitrogen cycling has been investigated in

previous reports by analyses of water/sediment quality

parameters (Erler et al., 2017; Jiang et al., 2020; Pan et al.,

2021). The understanding of the bacterial community

characteristics involved in nitrogen cycling in shellfish farming

water is very limited. In order to further explore the details of

nitrogen-transforming function of bacterial community, the

commonly reported nitrogen-transforming bacteria (Kuypers

et al., 2018) were investigated in our study. The presence of

Marinobacter and Synechococcus was remarkably prominent in

all 13 genera with nitrogen-transforming function.Marinobacter

and Synechococcus were mainly responsible for the process and

remove of organic nitrogen and NH4
+ in seawater. The bacterial

community characteristics involved in nitrogen cycling were

rarely reported in the Yellow Sea (Bai et al., 2012; Yu et al., 2018;

Jing et al., 2019; Yang et al., 2022). Together, the above results

indicated that the bacterial community in the shellfish

aquaculture waters in this study was characterized by the

enhancing ability of nitrogen removal.
The particularities of bacterial
community in the waters with SCPs

The bacterial community between the two locations had less

variation compared to the seasonal variation. Greater temporal

variation and less spatial variation of the bacterial community

were also found in the Yellow Sea area and some aquaculture sea

areas (He et al., 2017; Kim et al., 2019). Spatial differentiation

may superficially mask the environmental effects only when the

physicochemical factors are closely related to the spatial

conditions. Otherwise, persistent environmental heterogeneity

would cover the geographic difference and shape the microbial

diversity directly at intermediate spatial scales (Crossland et al.,

2005; Wang et al., 2015).

SCP is an important geographic feature of the Yellow Sea

and some other seas. Its formation results from the upwelling,

which carries the cold deep water up to the sea surface. The more
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water exchange in vertical direction may change the water

environment and bring more nutrients and attachments from

the bottom water layer to surface water layer (Lü et al., 2010;

Huang et al., 2018; Lin et al., 2019). In our study, the bacterial

community variation between the two locations had more

significant differences in summer than that in spring. It was

suggested that different geographic conditions may lead to the

variation of the bacterial community, mainly through the

environmental factor variation. Environmental factors always

play key roles in the spatial variation of the bacterial community.

For instance, the different concentration levels of Chl-a were

reported to be in charge of the bacterial community diversity

between two stations of the Yellow Sea (Kim et al., 2019).

Interestingly, consistency was found in two points between

the spatial analysis (location X vs location Z) and the seasonal

analysis (spring vs summer). First, the top two differently

predicted pathways of microbial function in both spatial

analysis and seasonal analysis were same, and they were

xenobiotics biodegradation and metabolism and metabolism of

cofactors and vitamins, which may indicate the occurrence of

environmental stresses and resultant activation of stress

responses (Huo et al., 2019; Ye et al., 2021). Second, 11 of the

12 common genera of pathogenic bacteria (except for

Pseudomonas) had the same dynamic patterns in the spatial

and seasonal analyses, in other words, if the abundance of one

pathogenic bacterial genus was higher (or lower) in the waters

with SCP than that in ambient waters, it was most likely that the

abundance of the pathogenic bacterial genus was also higher (or

lower) in spring than that in summer. Temperature was the

predominant environmental factor that drove the seasonal

dynamic of bacterial community variation between spring and

summer. Temperature was also the most critical feature that

distinguished the waters with SCP from ambient waters. As there

are highly similar dynamic patterns of bacterial community

variation between the seasonal and spatial analyses, it is

reasonable to speculate that temperature is the predominant

environmental factor to drive the variation of bacterial

community function and pathogenic bacteria patterns in the

offshore shellfish farming waters with SCPs.
Vibrio abundance variation and the
predictive model construction

The Vibrio abundance generally increased with the elevated

water temperature and showed clear seasonal patterns, consistent

with some other reports (Hsieh et al., 2008; Vezzulli et al., 2009;

Oberbeckmann et al., 2012; Froelich et al., 2015). The enrichment of

the pathways related to infectious disease in summer suggested that

the risk from pathogenic bacteria increased in summer and need

more attention. Shellfish aquaculture was found to play important

roles in shaping Vibrio characteristics (Joye and Anderson, 2008;

Feinman et al., 2018), probably through disturbing the structure of
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phytoplankton and zooplankton, both of which served as

determinants of Vibrio presence and abundance (Johnson, 2015).

There were many reports about the Vibrio variation in water

environment, in which the key environmental factors that affect

Vibrio community were identified and the variation tendency of

Vibrio was speculated based on environmental factors (Hsieh et al.,

2008; Oberbeckmann et al., 2012; Johnson, 2015). In the present

study, except for T, SiO4-Si was also found to be significantly

associated with the Vibrio abundance. We speculate that: On one

hand, SiO4-Si exists in the sea-water column as a sol state, which

could provide attachment for the growth of Vibrio. On the other

hand, phytoplankton and Chl-a are key drivers of the bacterial

community. SiO4-Si is an important component of some

phytoplankton taxa such as diatom (DeLuca et al., 2020) and

could thus influence the Vibrio abundance. However, as shown in

Figure 6, the Vibrio abundance in the same month of the different

years differed apparently based on the three-year data, suggesting

that it is infeasible to estimate the Vibrio abundance only according

to environmental factors or historical values of Vibrio abundance.

In recent years, some studies of model establishment andVibrio

prediction have been reported. Hidemasa Izumiya et al. conducted a

multi-coastal study to examine relationships between

environmental factors and Vibrio and build a linear regression

model for Vibrio prediction (Izumiya et al., 2017). Brett Froelich

et al. conducted a five-parameter mechanistic model to predict

Vibrio abundance in the river based on environmental processes

(Froelich et al., 2013). According to the previous reports, the

construction of Vibrio predictive model is better to be improved

in two points. First, environmental factors were always included in

the predictive model construction as the only type of input variables

in most of the previous studies. Aside from the environmental

factors, Vibrio are also likely to respond to, or be associated with,

many other aquatic bacterial species (Johnson, 2015) in some ways,

such as quorum sensing. The interactions between Vibrio and other

bacterial communities should also be included in the studies of

Vibrio forecasting. Second, among the environmental factors, one

factor usually has weak or strong dependence on others. The

exclusive effect of one environmental factor on Vibrio abundance

is hard to assess. The relationship between Vibrio and input

variables of the predictive model is not a direct correlation but

rather the relation to which many variables contribute. Multiple

regression analysis is not good at the modelling with too many

input variables in the construction of Vibrio predictive model.

Therefore, an integrated model that has environmental factors

and bacterial species as input variables should be established to

better understand the variation of Vibrio abundance.

Our study improved the Vibrio predictive modelling by (1)

including the environmental factors as well as bacterial species as

input variables for more accurate prediction of Vibrio abundance;

(2) using ANN to solve the complex mapping relationships

between dozens of input variables and Vibrio abundance and to

construct the predictive model. The accuracy was acceptable, with

95.8% of accuracy for training samples and 96.4% for testing
Frontiers in Marine Science 12
samples. The spatial scope of model application and the accuracy

will be further improved in our future studies through the

inclusion of more data for model training, as the Vibrio

prediction is better to be processed according to regional

differences, rather than using a “one-size-fits-all” approach. The

results of this study will contribute to the monitoring and

modelling efforts of Vibrio abundance in the NYS for area-

specific Vibrio forecasting and public health risk prediction.
Conclusions

The main conclusions drawn from this study are as

following (Figure S2):
• The bacterial community in the shellfish aquaculture

waters in this study was characterized by the enhancing

ability of nitrogen removal.

• Temperature was the predominant environmental factor

to drive the variation of bacterial community function

and pathogenic bacteria patterns in the offshore shellfish

farming waters with SCPs.

• An ANN predictive model for Vibrio abundance was

constructed in this study for Vibrio forecasting, with

acceptable predictive accuracy.
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SUPPLEMENTARY FIGURE 1

Location X and location Z were set as the two sampling regions for the

offshore Yesso scallop farming waters in the NYS. Horizontal distribution
of mean sea surface temperature in August of 2004–2008 was showed.

This figure is cited from (Lü et al., 2010).

SUPPLEMENTARY FIGURE 2

Graphical abstract of this study.

SUPPLEMENTARY TABLE 1

The prediction accuracy of ANN model for Vibrio abundance for both

training samples and testing samples.
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