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The ecosystem parameters are critical for precisely determining the marine

ecological process and improving the simulations of the marine ecological

model. In this study, based on the NPZD (nutrient, phytoplankton, zooplankton

and detritus) model, the surface chlorophyll-a observations obtained from Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) data were assimilated to estimate

spatially ecosystem parameters in the Bohai, Yellow, and East China Seas using

an adjoint assimilation method with characteristic finite difference scheme. The

experiments of the moving Gaussian hump indicated that the characteristic

finite difference method (CFDM) can get rid of the limit of stability and permit

using large time steps, which reduces long computation durations and large

memory requirements. The model performance was significantly improved

after data assimilation with CFDM using a large time step of 6 hours. Moreover,

the distributions of parameters of the NPZD model in winter in the Bohai

Sea, the Yellow Sea, and the East China Sea were simulated by our method.

Overall, the developed method can efficiently optimize the ecosystem

parameters and the results can be beneficial for determining reasonable

parameters of the marine ecological model.

KEYWORDS

adjoint assimilation method, characteristic finite difference method, nutrient-
phytoplankton-zooplankton-detritus (NPZD) model, parameter optimization,
spatial distributions
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Introduction

With the development of ocean exploitation, a series of

ecological and environmental problems appeared, which caused

serious harm to the coastal economic development. Therefore, it

is very important to analyze the marine ecological environment

data and rationally exploit marine resources. Marine

biogeochemical models are useful tools that help to

understand and predict marine environmental processes and

are increasingly applied in ecological research, management

advice, policy exploration, and environmental impact analysis

(Link et al., 2011; Serpetti et al., 2017; Peck et al., 2018; Borja

et al., 2020; Kytinou et al., 2020; Steenbeek et al., 2021). Riley

et al. (1949) established the first marine ecosystem models and

simulated the phytoplankton and zooplankton. Recently, marine

ecological models have diversified from the simpler NPZ

(nutrient, phytoplankton, zooplankton) model (Franks, 2002)

or NPZD (nutrient, phytoplankton, zooplankton, and detritus)

model to the more complicated North Pacific Ecosystem Model

(Kishi et al., 2007). The model used in this paper is the NPZD

model, which lies in the middle range of complexity (Heinle and

Slawig, 2013).

Marine biogeochemical models usually comprise numerous

parameters that describe biological and chemical rates of change

such as growth, mortality, and degradation rates, and estimating

their values is a non-linear problem (Matear, 1995; Athias et al.,

2000; Jones et al., 2016). To tune and improve models, several

studies have been carried out to estimate and optimize these

parameters. Schartau and Oschlies (2003) used a micro-generic

algorithm to estimate model parameters in the North Atlantic

and found that there were different optimal parameter values at

three locations. Rückelt et al. (2010) applied a hybrid quantum-

evolutionary and deterministic optimization algorithm to a one-

dimensional marine biogeochemical model of NPZD type and

obtained the optimal parameter vectors lying in a wide range.

Tashkova et al. (2012) estimated parameters in a nonlinear

dynamic model of an aquatic ecosystem by four meta-heuristic

optimization methods. Prieß et al. (2013) proposed one SBO

approach to optimize parameters in a biogeochemical model of

NPZD type in a single water column. Kuhn et al. (2015)

estimated NPZD model parameters in different regions of the

central North Atlantic by an evolutionary algorithm and the

parameters varied in the space defined by the possible range of

parameter values. Gharamti et al. (2017) developed an efficient

data assimilation system and demonstrated that the estimated

parameters varied spatially between different regions. Overall,

the above in situ estimated parameters of the NPZD model vary

by region in a range with apparent spatial variations.

Data assimilation, one approach of improving model fidelity

for estimation, can determine the optimal parameter sets that

minimize the difference between simulations and observations.

Mattern et al. (2017) applied four-dimensional variational (4D-

Var) data assimilation to improve the state of the NPZD model.
Frontiers in Marine Science 02
The adjoint method is a typical four-dimensional variational

data assimilation method and has been widely used to optimize

uncertain parameters in numerical models (Qian et al., 2021;

Wang et al., 2021; Wu et al., 2021). Pelc et al. (2012) provided a

useful theoretical background for different 4D-Var approaches

and showed how this adjoint method can be used to estimate

ecosystem model parameters jointly with a large number of

initial condition parameters. Lawson et al. (1996) applied the

adjoint assimilation method to a five-component, time-

dependent ecosystem model to get initial conditions and

parameters. Gunson et al. (1999) applied the adjoint method

to a 1-D marine biogeochemical model of NPZD type and

adjusted parameter values via variational data assimilation.

The variational adjoint technique was used to adjust six

parameters of a five-component (phytoplankton, zooplankton,

ammonium, nitrate, and detritus) ecosystem model in the study

of Friedrichs (2001). Tjiputra et al. (2007) applied the adjoint

method to a three-dimensional global ocean biogeochemical

cycle model to optimize parameters based on Sea-viewing

Wide Field-of-view Sensor (SeaWiFS) surface chlorophyll-a

observation; The SeaWiFS chlorophyll-a data was assimilated

into a simple NPZD model by the adjoint method in a

climatological physical environment in the study of Fan and

Lv (2009). Qi et al. (2011) estimated the spatially varying control

parameters of a marine ecosystem dynamical model in the Bohai

Sea, the Yellow Sea, and the East China Sea by using the adjoint

method; Li et al. (2013) applied the adjoint variational method to

a three-dimensional marine ecosystem dynamical model in

North Pacific.

When using the adjoint assimilation method to treat

problems of fluid flow, heat transfer, and pollutant transport,

these are all governed by the convection-diffusion equation. Due

to the large computational region and the long period of

prediction, developing efficient and highly accurate numerical

approaches to the problem is important and is a challenging

task. Much effort has been made to solve convection-diffusion

equations. The often-used methods include several implicit-

explicit schemes, such as the first-order Lax-Friedrichs scheme

(Lax, 1954), central difference scheme (Gao et al., 2015; Liu et al.,

2017) and upwind difference scheme (Anderson et al., 1984;

Wang et al., 2016), which are easy to implement. However, these

kinds of schemes for calculating convection-diffusion problems

were subject to severe Courant–Friedrichs–Lewy (CFL)

restrictions (Ascher et al., 1995; Baba and Tabata, 1981;

Kurganov and Tadmor, 2000; Celledoni and Kometa, 2009).

Therefore, when the state variables of the NPZD model are

simulated, small time step sizes have to be used, which causes a

very high computational cost. The characteristic difference

methods have been developed to overcome the CFL condition.

Douglas and Russell (1982) first proposed a modified

characteristic method to solve convection-diffusion equations.

Shen et al. (2013) used the characteristic finite difference method

to solve the variable-order fractional advection-diffusion
frontiersin.org
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equation with a nonlinear source term. Fu et al. (2015) used an

efficient time second-order characteristic finite element method

for the nonlinear multicomponent aerosol dynamic equations.

The characteristic difference methods incorporate the fixed

Eulerian grids with Lagrangian tracking along the

characteristics to treat the advective part of the equations,

which allows one to use large time step sizes (Fu and Liang,

2019). The characteristic difference methods make use of the

physical characteristics of the convection-diffusion equations

and have no stability constraints required on the time step.

Recently, several other methods were developed to achieve the

numerical results of the advection-diffusion equations. Arbogast

et al. (2020) developed a Runge–Kutta WENO scheme for

advection–diffusion equations; Ebrahimijahan et al. (2020)

proposed the compact local integrated radial basis functions

(Integrated RBF) method for solving the system of non–linear

advection-diffusion-reaction equations; Zhang and Ge (2021)

used high-order compact difference method to solve the one-

dimensional nonlinear advection diffusion reaction equation.

However, for convection-diffusion problems in high dimensions,

it is very difficult to achieve high order while maintaining a high

order accuracy in both time and space. In this study, the adjoint

method is used to estimate the spatially varying parameters of

the NPZD model by combining a characteristic finite difference

scheme, which permits the use of large time step sizes to get

highly accurate solutions.

The paper is organized as follows. After the introduction,

Section 2 describes the NPZD model and the adjoint

assimilation method with the characteristic finite difference

scheme. The numerical experiments are carried out and the

results are analyzed in Section 3. Conclusions are given in

Section 4.
Model and method

The marine ecological model used in this study is a four-

compartment NPZD model. In this paper, the adjoint

assimilation method includes the NPZD model, the adjoint

model, and the assimilation processes. The NPZD model was

used to simulate the distribution of phytoplankton with priori or

adjusted parameters. Then, the optimal parameters were

determined by comparing simulated values to observations.

The adjoint model was used to compute the gradient of cost

function on parameters. In the assimilation processes, the

steepest descent method with the gradient was applied to

adjust parameters.
The marine ecological model

Generally speaking, marine ecosystems are affected by

physical, biological, chemical, and other processes. Based on
Frontiers in Marine Science 03
nitrogen and dissolved inorganic nitrogen (N), phytoplankton

(P), zooplankton (Z), and detritus (D), the governing equation of

the ecosystem model is given as below (Gunson et al., 1999; Losa

et al., 2006; Qi et al., 2011):

∂C
∂ t

+ u
∂C
∂ x

+ v
∂C
∂ y

+ w
∂C
∂ z

=
∂

∂ x
Ar

∂C
∂ x

� �
+

∂

∂ y
Ar

∂C
∂ y

� �
+

∂

∂ z
Kr

∂C
∂ z

� �

+ sms(C) (1)

where C represents the state variables of the marine ecological

model of nitrogen (N), phytoplankton (P), zooplankton (Z), and

detritus (D); t is time, and x, y, z are components of the Cartesian

coordinate system; u, v, w are the water velocity in the direction

of x, y, z, respectively; Ar and Kr are the horizontal and vertical

diffusivity coefficients, respectively. The last term on the right-

hand side is the source-minus-sink term for each state variable

(Franks and Chen, 2001; Fan and Lv, 2009; Qi et al., 2011) and is

given by

sms(N) = −
VmN
Ks + N

·
I
Io
· exp 1 −

I
Io

� �
· AQ

T−10
10
10 · P + q · Gm

· BQ
T−10
10
10 · (1 − e−fP) · Z + eDD (2)

sms(P) =
VmN
Ks + N

·
I
Io
· exp 1 −

I
Io

� �
· AQ

T−10
10
10 · P − Gm

· BQ
T−10
10
10 · (1 − e−fP) · Z − DPP − wp

∂ P
∂ z

(3)

sms(Z) = gGm · BQ
T−10
10
10 · (1 − e−fP) · Z − DZZ (4)

sms(D) = (1 − g − q)Gm · BQ
T−10
10
10 · (1 − e−fP) · Z + DPP

+ DZZ − eDD − wd
∂D
∂ z

(5)

where T is the temperature of water; I = Iparexp(Kext·z) and Ipar is

the photosynthetically active radiation. The meaning of each term

is listed in Table 1 and the values are organized according to

previous studies (Franks and Chen, 2001; Franks, 2002; Fan and

Lv, 2009; Qi et al., 2011).Constant boundary conditions are used

at the inflow boundary GIN , and non-gradient boundary

conditions are used at the outflow boundary GOUT,

∂C
∂ t = 0 , on  G IN ,

∂C
∂ n = 0 , on  G OUT :

(
(6)

The marine ecological equation (1) can be solved by several

different numerical schemes. The central difference scheme is

usually used in the adjoint assimilation method, but it is limited
frontiersin.org
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by the stability constraint and needs small time steps. To reduce

the computation cost, we adopt a characteristic finite difference

scheme that enables using large time steps. The variations of

state variables (nitrogen (N), phytoplankton (P), zooplankton

(Z), and detritus (D)) are small along the characteristic curve.

Therefore, by computing along the characteristic direction, more

accurate results of models can be obtained even using large time

step sizes.

Let Dx , Dy and Dz be the spatial step size along x-, y-, and z-
directions. The velocity U=(u(x,y,z), v(x,y,z), w(x,y,z) is given

at the center of the grid. Dt is the time step. As shown in

Figure 1, let Cn
i,j,k be the concentration of the state variables at

~x = (iDx, jDy, kDz) and t n=nD t . A s suming tha t t h e

concentration at each grid point at t = tn is known, we want

to know the concentration at t=tn+1 . Let X (t ;~x, tn+1) be the
characteristic curve with the characteristic direction t (Liang

et al., 2016),

dX t ;~x, tn+1
� �
dt

= U X t ;~x, tn+1
� �

, t
� �

, t ∈ tn,   tn+1
� �

, (7)

X(tn+1;~x, tn+1) =~x (8)

Denote the intersection point of X(t ;~x, tn+1) with the time

level tn by~x*(�xi,�yj,�zk) (point D in Figure 1). We solve~x* from

the equations (7)-(8) by~x* = X(tn;~x, tn+1) ≈~x − U(~x, tn+1)Dt

~x* = X(tn;~x, tn+1) ≈~x − U(~x, tn+1)Dt (9)

The concentration �Cn
i,j,k at ~x* is determined by the

interpolation of the values of the points surrounding ~x*Then

the characteristic finite difference scheme is given as:
Frontiers in Marine Science 04
C1i,j,k−�C
n
i,j,k

Dt =
Ar
Dxj

C1i+1,j,k−C1i,j,k
Dxj

� 	
−

C1i,j,k−C1i−1,j,k
Dxj

� 	� 	
+ sms Cn

i,j,k

� 	
,

C2i,j,k−C1i,j,k
Dt =

Ar
Dy

C2i,j+1,k−C2i,j,k
Dy

� 	
−

C2i,j,k−C2i,j−1,k
Dy

� 	� 	
,

Cn+1
i,j,k −C2i,j,k

Dt =
Kr
Dzk

Cn+1
i,j,k+1−C

n+1
i,j,k

Dzk+12

� �
−

Cn+1
i,j,k −C

n+1
i,j,k−1

Dzk−12

� �� �
,

8>>>>>>><
>>>>>>>:

(10)

where

�Cn
i,j,k =

(�xi − xp)(�xi − xp+1)

2Dx2j
Cn
p−1,j,k −

(�xi − xp−1)(�xi − xp+1)

Dx2j
Cn
p,j,k

+
(�xi − xp−1)(�xi − xp)

2Dx2j
Cn
p+1,j,k,  xp +

Dxj
2

< �xi < xp+1 −
Dxj
2

� �

C1i,j,k =
(�yj − yq)(�yj − yq+1)

2Dy2
C1i,q−1,k −

(�yj − yq−1)(�yj − yq+1)

2Dy2
C1i,q,k

+
(�yj − yq−1)(�yj − yq)

2Dy2
C1i,q+1,k,  yq +

Dy
2

< �yj < yq+1 −
Dy
2

� �

C2i,j,k =
(�zk − zl)(�zk − zl+1)

2DzlDzl+1
C2i,j,l−1 −

(�zk − zl−1)(�zk − zl+1)
2Dzl−1Dzl+1

C2i,j,l

+
(�zk − zl−1)(�zk − zl)

2Dzl−1Dzl
C2i,j,l+1, (zl +

Dzl
2

< �zk < zl+1 −
Dzl+1
2

)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(11)
The adjoint model

According to the adjoint method, a cost function is defined

to describe the difference between the simulated and observed

surface phytoplankton:
TABLE 1 The meaning and initial values of parameters in the marine ecological model.

Parameter Symbol Value Unit

maximum growth rate of phytoplankton (P) Vm 1.0 day-1

maximum growth rate of zooplankton (Z) Gm 0.5 day-1

mortality rate of phytoplankton (P) Dp 0.1 day-1

mortality rate of zooplankton (Z) Dz 0.2 day-1

remineralization rate of detritus (D) eD 0.05 day-1

attenuation coefficient of light Kext 1.0 m-1

half-saturation constant for N uptake Ks 1.0 mmol·m-3

temperature coefficient for phytoplankton (P) growth at 10°C AQ10 2.08 \

temperature coefficient for zooplankton (Z) growth at 10°C BQ10 3.10 \

sinking velocity of phytoplankton (P) wp 0.73 m·day-1

sinking velocity of detritus (D) wd 1.00 m·day-1

Ivlev constant of zooplankton (Z) f 0.2 m3(mmol N)-1

assimilation ratio for zooplankton (Z) g 0.75 \

excretion ratio for zooplankton (Z) q 0.03 \
f
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 J(~S) =
1
2

Z
W�T

K(P − Pobs)
2dWdt (12)

where P is the simulated surface phytoplankton by the NPZD

model and Pobs is the observed surface phytoplankton;W denotes

the spatial domain and T is the time domain; K is the weighting

matrix and the elements in K are 1 where observations are

available and 0 otherwise. Rewrite equation (1),

F(C,~S) =
∂C
∂ t

+ u
∂C
∂ x

+ v
∂C
∂ y

+ w
∂C
∂ z

−
∂

∂ x
Ar

∂C
∂ x

� �

−
∂

∂ y
Ar

∂C
∂ y

� �
−

∂

∂ z
Kr

∂C
∂ z

� �
− sms(C) (13)

where the parameters in the NPZD model are represented by~S.

Based on the Lagrange multiplier method (Thacker and Long,

1988), the Lagrangian function is defined as:

L(~l,N , P,Z,D,~S) = J(~S) + 〈~l, F 〉 

= J(~S)+
Z

W�T

lP · F(P,~S) + lN · F(N ,~S) + lZ · F(Z,~S) + lD · F(D,~S)
� �

dWdt,

(14)

where~l = (lP , lN , lZ , lD) is the Lagrange multiplier of the state

variables (nitrogen (N), phytoplankton (P), zooplankton (Z) and

detritus (D)), respectively. Based on Lagrange multiplier theory,

the first-order derivatives of the Lagrange function should be

zero to minimize the cost function:
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∂ L
∂ lP

= 0, 
∂ L
∂ lN

= 0, 
∂ L
∂ lZ

= 0, 
∂ L
∂ lD

= 0, (15)

∂ L
∂ P

= 0, 
∂ L
∂N

= 0, 
∂ L
∂Z

= 0, 
∂ L
∂D

= 0, (16)

∂ L

∂~S
= 0 (17)

Equation (15) is equation (1) of the NPZD model. The

adjoint equations can be derived from (16),

−
∂~l
∂ t

−
∂

∂ z
Kr

∂~l
∂ z

 !

=
∂

∂ x
(u~l) +

∂

∂ y
(v~l) +

∂

∂ z
(w~l) +

∂

∂ x
Ar

∂~l
∂ x

 !

+
∂

∂ y
Ar

∂~l
∂ y

 !
+ sms(~l), (18)

where the last term of each state variable’s Lagrange multipliers

(Fan and Lv, 2009; Qi et al., 2011) is

sms(lN ) =
VmKs

(Ks + N)2
·
I
I0
· exp 1 −

I
I0

� �
· AQ

T−10
10
10 · P · (lP

− lN ) (19)
FIGURE 1

The process of constructing characteristic finite difference schemes.
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sms lPð Þ = wp
∂ lP
∂ z

+
VmN
Ks + N

·
I
I0
· exp 1 −

I
I0

� �

· AQ
T−10
10
10 (lP − lN ) − DP · (lP − lD) − f · e−fP

· Gm · BQ T−10ð Þ=10
10 · Z

· lP − g · lZ − q · lN − (1 − g − q) · lD½ �
− K(P − Pobs) (20)

sms(lZ) = −Gm · BQðT-10Þ=10
10 (1 − e−fP)½lP − g · lZ − q

· lN − (1 − g − q) · lD� − DZ · (lZ − lD), (21)

sms(lD) = wd
∂ lD
∂ z

+ eD · (lN − lD) (22)
We propose the characteristic finite difference schemes of

(18)

~l1i,j,k−~l
n+1

i,j,k

Dt =
Ar
Dxj

~l1i+1,j,k−~l1i,j,k
Dxj

� �
−

~l1i,j,k−~l1i−1,j,k
Dxj

� �� �
+ sms ~ln+1

i,j,k

� 	
,

~l2i,j,k−~l1i,j,k
Dt =

Ar
Dy

~l2i,j+1,k−~l2i,j,k
Dy

� �
−

~l2i,j,k−~l2i,j−1,k
Dy

� �� �
,

~ln
i,j,k−

~l2i,j,k
Dt =

Kr
Dzk

~ln
i,j,k+1−

~ln
i,j,k

Dzk+12

� �
−

~ln
i,j,k−

~ln
i,j,k−1

Dzk−12

� �� �
,

8>>>>>>>>><
>>>>>>>>>:

(23)

where,

~l
n+1

i,j,k =
�xi−xpð Þ �xi−xp+1ð Þ

2Dx2j
~ln+1
p−1,j,k −

�xi−xp−1ð Þ �xi−xp+1ð Þ
Dx2j

~ln+1
p,j,k

+
�xi−xp−1ð Þ �xi−xpð Þ

2Dx2j
~ln+1
p+1,j,k,  xp +

Dxj
2 < �xi < xp+1 −

Dxj
2

� 	
~l1i,j,k =

�yj−yqð Þ �yj−yq+1ð Þ
2Dy2

~l1i,q−1,k −
�yj−yq−1ð Þ �yj−yq+1ð Þ

2Dy2
~l1i,q,k

+
�yj−yq−1ð Þ �yj−yqð Þ

2Dy2
~l1i,q+1,k,  yq +

Dy
2 < �yj < yq+1 −

Dy
2

� 	
~l2i,j,k =

�zk−zlð Þ �zk−zl+1ð Þ
2DzlDzl+1

~l2i,j,l−1 −
�zk−zl−1ð Þ �zk−zl+1ð Þ
2Dzl−1Dzl+1

~l2i,j,l

+ �zk−zl−1ð Þ �zk−zlð Þ
2Dzl−1Dzl

~l2i,j,l+1,  zl +
Dzl
2 < �zk < zl+1 −

Dzl+1
2

� �

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(24)

In the study of Fan and Lv (2009), the cost function is more

sensitive to five constant parameters of Vm (maximum growth

rate of phytoplankton), Gm (maximum grazing rate of

zooplankton), Dp (mortality rate of phytoplankton), Dz

(mortality rate of zooplankton) and eD (remineralization rate

of detritus) by sensitivity analysis. Therefore, these five

parameters are selected to be optimized. From equation (17),

the gradients of the cost function concerning the five constant

parameters (Fan and Lv, 2009; Qi et al., 2011) are obtained as

follows:

∂ J
∂Vm

= −
N

Ks + N
·
I
I0
exp 1 −

I
I0

� �
· AQ

T−10
10
10 · P · (lp − lN ) (25)
Frontiers in Marine Science 06
∂ J
∂Gm

= BQ
T−10
10
10 · (1 − exp( − fP)) · Z · ½lp − glZ − qlN

− (1 − g − q)lD� (26)

∂ J
∂DP

= P(lp − lD) (27)

∂ J
∂DZ

= Z(lZ − lD) (28)

∂ J
∂ eD

= −D(lN − lD) (29)

When the gradients are calculated, the spatially varying

parameters are estimated using the steepest descent method.

The details are shown in Wang et al. (2020).
Numerical experiments

Numerical experiment 1: The Gaussian
pulse moving

To test the performance of the characteristic finite difference

scheme, the transport of a Gaussian hump was simulated by the

characteristic finite difference scheme and the results were

compared to those simulated by the central difference scheme.

In this subsection, the transport of the Gaussian pulse of the

problem (1) with sms(C)=0 was considered. The spatial domain

is W=[0,2]×[0,2] and time domain is t∈(0,0.2]. The initial

condition is given by

c(x, y, 0) = exp −
(x − x0)

2 + (y − y0)
2

2s 2
0


 �
, (30)

where (x0,y0)=(0.3,0.3) , s0 =
ffiffiffi
2

p
=20 and the velocity is u=v=6 .

The exact solution was

c(x, y, t) =
s 2
0

s 2
0 + 2Art

exp −
(x − x0 − ut)2 + (y − y0 − vt)2

2(s 2
0 + 2Art)


 �
,

(31)

The diffusion coefficient is chosen as Ar=0.001. Let C
n(x,y)

denotes the approximate solution. The errors L∞ and L2 are

defined as follows:

En
∞ = max

i,j
c(xi, yi, t

n) − Cn(xi, yi)j jf g (32)

En
2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oi,jDxDy(c(xi, yi, tn) − Cn(xi, yi))

2
q

(33)

To examine the convergence rates in time of the

characteristic finite difference scheme and central difference

scheme, the small spatial step sizes Dx=Dy=1/500 and the time

step sizes Dt=T/5,T/10,T/15,T/20 were carried out. The
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numerical results are presented in Table 2. When the large time

steps were used, the results of the central difference scheme

(CDS) were not stable. After adopting small time steps ( Dt=T/
20000,T/21000,T/22000,T/23000 ), the stable results of CDS are

listed in Table 2. It is clearly shown that the characteristic finite

difference method (CFDM) and CDS exhibited a first-order ratio

of convergence in time. Moreover, the L∞ and L2 errors of

CFDM with the large time steps were less than those of CDS

using the small time steps, indicating the high accuracy of

CFDM. For example, when using Dt=T/5, the CFDM

produced 7.5769×10−4 of E∞ and 6.2334×10−5 of E2, while the

E∞ and E2 of CDS using Dt=T/20000 were 1.3394×10−2 and

1.4925×10−3, respectively.To further explore the effectiveness of

CFDM, the transport of the Gaussian pulse of the problem (1)

with sms(C)=0 in three-dimensional space was considered. The

initial condition is given as:

c(x, y, z, 0) = exp −
(x − x0)

2

Ar
−
(y − y0)

2

Ar
−
(z − z0)

2

Kr


 �
(34)

The exact solution of the problem is

c(x, y, z, t) =
1ffiffiffiffiffiffiffiffiffiffiffiffi

4t + 1
p

� �3

·exp −
(x − x0 − ut)2

Ar(4t + 1)
−
(y − y0 − vt)2

Ar(4t + 1)
−
(z − z0 − wt)2

Kr(4t + 1)


 �
(35)

where, the spatial domain is W=[0,2]×[0,2]×[0,2], the initial

center is (x0,y0,z0)=(0.5,0.5,0.5), the velocity is (u,v,w)=

(0.8,0.8,0.1), and the diffusivity coefficient is Ar=Kr=0.01. The

spatial step sizes were taken as Dx=Dy=Dz=0.025. The time step

size for CFDM was Dt=0.0625. With the limit of stability, a

smaller time step size of Dt=0.00625 was set for CDS.

A group of surfaces obtained by CFDM and CDS in the

section of y=x and contour plots at z = 0.6 at different times of t=
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0.75, 1, and 1.25, which displayed the concentration

distributions are shown in Figures 2, 3. The results calculated

by CFDM almost coincided with the exact solutions and were

more accurate than those of CDS with 10 times smaller time

step, indicating that the Gaussian pulse could be simulated by

CFDM very well even using a much large time step.

Furthermore, the computed peaks and numerical errors in L∞
and L2 norms at different times shown in Table 3 demonstrated

that the model performance was improved by CFDM. For

example, at time t=1.25, where the maximum value of the

exact solution was 0.0675, the computed peak of CFDM was

0.0707, while that of CDS was 0.0827. Besides, at time t=1.25, the

errors of CFDMwere 3.1538×10−3 in L∞ -norm and 1.7879×10−3

in L2-norms, which were one order of magnitude smaller than

those of CDS ( 1.5155×10−2 in L∞ -norm and 1.3649×10−2 in L2
-norm). Overall, the simulation results of CFDM were much

closer to the exact solutions than those of CDS, demonstrating

that CFDM could significantly improve the model performance.
Numerical experiment 2: Parameter
optimization of NPZD model

In this subsection, the adjoint assimilation method

combining with CFDM was used to optimize the spatial

parameters SP (Vm, Gm, Dp, Dz, eD). The process of the

numerical experiment can be described as:
Step 1. Give the guess of distribution of parameters SP 0 as

the initialization of parameters.

Step 2. For n = 0, 1, ..., N (the number of iterations), do Step

3-Step 5.

Step 3. With the initial distribution of parameters SP n,

solve the NPZD model and get simulated results.
TABLE 2 Errors and ratios in time of the 2D Gaussian pulse for the experiment using large time steps by the CFDM and CDS method and using
small time steps calculated by the CDS method.

Dt T/5 T/10 T/15 T/20

CFDM E∞ 7.5769e-4 3.8919e-4 2.6460e-4 2.0196e-4

Ratio – 0.9611 0.9516 0.9389

E2 6.2334e-5 3.2124e-5 2.1990e-5 1.6945e-5

Ratio – 0.9564 0.9348 0.9060

CDS E∞ 4.7570e+4 8.4835e+11 9.7634e+17 2.6198e+24

Ratio – -2.4088 -3.4420 -5.1455

E2 2.5342e+3 2.6668e+10 3.7603e+16 1.9742e+22

Ratio – -2.3327 -3.4921 -4.5784

Dt T/20000 T/21000 T/22000 T/23000
CDS E∞ 1.3394e-2 1.2821e-2 1.2301e-2 1.1832e-2

Ratio – 0.8961 0.8899 0.8744

E2 1.4925e-3 1.4276e-3 1.3691e-3 1.3160e-3

Ratio – 0.9106 0.9004 0.8899
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B

C

FIGURE 3

The contour plots of the 3D Gaussian hump at z = 0.6 with different times (A) t=0.75, (B) t=1, (C) t=1.25.
A B C

FIGURE 2

The surface plots in the section of y = x of the 3D Gaussian hump at z = 0.6 with different times. (A) t=0.75, (B) t=1, (C) t=1.25.
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Fron
Step 4. Solve the cost function (12) by the simulations and

observations. If the cost function decreases to 10-5, exit

the loop and run Step 6.

Step 5. Run the adjoint model backward in the time

direction and calculate the gradient of the cost

function on the parameters SP n. Then get the

optimized parameters SP n+1 by adjusting SP n with

the steepest descent method.

Step 6. Output the final optimized parameters.
Experiment design
The studied region (24°N–41°N,117.5°E–131°E) covers the

Bohai Sea, the Yellow Sea, and the East China Sea. The

horizontal resolution is 10′×10′ with grid numbers of 103 (south-

north) ×82 (west-east). The vertical direction is 6 layers and the

thickness of each layer from top to bottom is 10m, 10m, 10m, 20m,

25m, and 25m respectively. The data over the simulation period,

such as the ambient physical velocities, the temperature, and eddy

diffusivities, etc., were interpolated to the vertical grid using the

results obtained by the three-dimensional Princeton Ocean Model

(POM) (Blumberg and Mellor, 1987). In addition, river sources of

Changjiang (http://xxfb.hydroinfo.gov.cn) were added to the model.

The initial fields of nitrogen and phytoplankton were converted

from monthly mean nitrate of World Ocean Atlas 2013 (WOA13)

and monthly mean surface chlorophyll-a concentrations of

SeaWiFS, respectively. The starting time was 1 January 2016.

Besides, the NPZD model was run for 30 days for spin-up to

obtain the initial fields of zooplankton and detritus. Then the

adjoint model was run for 5 days backward in time from 1

February 2016 with the spin-up ocean state as the initial conditions.

During the experiment, four state variables of the marine

ecological model of nitrogen (N), phytoplankton(P), zooplankton

(Z), and detritus (D) were converted to nitrogen units(

mmol N·m-3 ). For the NPZD model, satellite chlorophyll-a data

( mg·m-3 ) of SeaWiFS was converted to nitrogen units (

mmol N·m-3 ) using an equation (36) of the relation between

chlorophyll-a and carbon proposed by Semovski and Wozniak

(1995) and a constant phytoplankton carbon-to-nitrogen Redfield

ratio (Redfield et al., 1963; Faugeras et al., 2004) 106 mol C
16 mol N

C = rmax
Chla

Chla + K1=2
Chla (36)
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where rmax=90 and the half-saturation coefficient is K1/2=0.477

As indicated by Moisan et al. (2002), the parameters of the

marine ecological model were related to temperature. Therefore,

according to the initial values of parameters listed in Table 1 and

the trend of the surface temperature field, two types of

parameters were given to verify the accuracy of the adjoint

data assimilation with CFDM.

Type 1:

a(lon, lat) = ½1:517 − 0:01083� lon(i) + 0:02508

� lat(j)�a0 (37)

Type 2:

a(lon, lat) = ½0:4827 + 0:01083� lon(i) − 0:02508

� lat(j)�a0 (38)

where a0 was the initial value of the parameter shown in Table 1.

Single parameter inversion
To test the effectiveness of the adjoint data assimilation with

CFDM, the experiments of single parameter inversion were

carried out. In these experiments, one of the five parameters

(Vm, Gm, Dp, Dz, eD) was assumed to vary spatially by Type 1 or

Type 2, and the other four parameters were constants in Table 1.

The NPZD model was run for 5 days from 1 February 2016 and

the time step was Dt = 6h. During the experiment, only the

parameter with given spatial distributions was inversed, and

initial guesses were set as the default values shown in Table 1.

The observations used were the simulated concentrations of

phytoplankton by the NPZD model with five assumed

parameters. The calculated mean absolute errors (MAE) and

mean relative errors (MRE) between the given parameter and the

corresponding inversed parameter values are listed in Table 4.

When the time step size was set to 6h, the numerical oscillations

occurred in CDS and the MAE and MRE were one order of

magnitude larger than those of CFDM. Therefore, the

experiment of CDS (Dt = 30min) was carried out.

As listed in Table 4, the MAEs between the inverted

parameters (Vm, Gm, Dp, Dz, eD) and the spatial values varying

as Type 1 of CFDM (Dt = 6h) were 1.9907×10−3 , 1.1762×10−3 ,

2.7284×10−4 , 1.2326×10−3 ,and 1.8694 ×10−4 day−1, respectively;

the MAEs of CDS ( Dt=30min ) were much larger values of

7.9687×10−3, 6.6683×10−3, 1.1074×10−3, 5.5154×10−3, and
TABLE 3 The maximum and minimum values and errors of the 3D moving Gaussian pulse.

T Exact solution CFDM CDS

Max. Min. Max. Min. L∞-error L2-error Max. Min. L∞-error L2-error

0.75 0.1197 0.0 0.1265 0.0 7.7320e-3 3.2321e-3 0.1431 0.0 2.3984e-2 1.6208e-2

1.00 0.0886 0.0 0.0932 0.0 4.7603e-3 2.3515e-3 0.1074 0.0 1.8787e-2 1.4855e-2

1.25 0.0675 0.0 0.0707 0.0 3.1538e-3 1.7879e-3 0.0827 0.0 1.5155e-2 1.3649e-2
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1.3193×10−3 day−1, respectively. The mean MRE of the five

parameters between the given Type1 and corresponding

inverted results was reduced to 0.36 % in CFDM ( Dt=6h ) from

2.09 % in CDS ( Dt=30min ). Similar results could also be obtained

in the Type2 experiments, indicating that the model performance

was improved by CFDM even using large time steps.

Simultaneous inversion of five parameters
As indicated by Li et al. (2013), the distributions of Vm, Dz,

and eD were consistent and Gm and Dp had a similar distribution.

Therefore, the five parameters were supposed to be spatially

varying, which were estimated synchronously. In this subsection,

the values of Vm, Dz, eD were assumed to vary spatially by Type1,

Gm, and Dp were distributed by Type 2. The observations used

for data assimilation were the simulated concentrations of

phytoplankton by the NPZD model with five assumed

parameters. To verify the effect of data assimilation with

CFDM, the data assimilation was implemented using CFDM

with Dt=6h and CDS with Dt=30min, and the initial guess values

of the five parameters were set to the default values shown in

Table 1 in Case 1.

In addition, previous studies have indicated that reasonable

initial guesses of target parameters can accelerate the

optimization rate and improve the simulations. Therefore, the

sensitivity analysis of the initial parameter values was designed

in this subsection. The initial parameter values were set as 0.8

and 1.2 of the default values shown in Table 1 in Case 2 and Case

3. The distributions of inversion results and given parameters are

shown in Figure 4. The estimated results of the three

experiments were all in good agreement with the prescribed

parameters. The cost function normalized by the value at the

first iteration step was shown in Figure 5. The normalized cost

functions of CFDM in Case 1 to Case 3 were both reduced by at

least three orders of magnitude, which dropped faster than those

of CDS. However, compared to Case 2 and Case 3, Case 1 had

the highest efficiency of convergence, and only 42 iteration steps
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were used to reach the minimum. Consequently, the initial guess

had a great impact on the efficiency of convergence and should

be reasonably selected. In the following experiments, the initial

guesses were all set as the default values shown in Table 1.

The errors in Case 1 are listed in Table 5. The inversed

parameters after data assimilation with CFDM and CDS had

similar spatial features with the given values, in which the high

errors of CDS were near the south boundaries; conversely, the

estimated parameters of CFDM were consistent with the given

spatial variations. Besides, in CDS ( Dt=30min ), the MAEs

between the inverted parameters (Vm, Gm, Dp, Dz, eD) and the

spatial values were increased to 8.0097×10−3, 1.0031×10−2,

1 .6888×10−3 , 5 .1425×10−3 , and 1.3063×10−3 day−1 ,

respectively, which were larger than 3.1432×10−3, 4.6792×10−3,

9.5625×10−4, 1.4997×10−3, and 6.1339×10−4 day−1 of CFDM (

Dt=6h). The mean MRE of the five parameters was reduced to

0.88 % by CFDM ( Dt=6h ) from 2.08 % by CDS ( Dt=30min ).

In addition, The MAE between simulated chlorophyll-a and

observations and running time of CFDM and CDS in Case 1 are

listed in Table 6. For CFDM, the normalized cost function was

less than 0.0016 after running 1351.55 s. For CDS, the

normalized cost function was less than 0.0826 after running

26697.83 s. The MAE between the simulated phytoplankton and

chlorophyll-a was 0.2434 mmol N·m-3 (0.2823 mmol N·m-3)

before data assimilation in CFDM (CDS); after assimilation,

the MAE was decreased to 0.0036 mmol N·m-3 (0.0197

mmol N·m-3) in CFDM (CDS), indicating that the model

performance was improved with a reduction of 98.52 % (93.02

%) in overall simulation error. Using about 1/30 of the time of

the CDSmethod, more accurate results were obtained by CFDM,

which further shows that CFDM can optimize five

parameters efficiently.

Influence of errors of observations
In all the above experiments, the observations of chlorophyll-a

were perfect without errors. However, in practice, there might be
TABLE 4 The errors between the inversion results and the given parameters in the experiment of optimizing parameters separately.

Parameter CFDM (Dt = 6h) CDS (Dt = 6h) CDS (Dt = 30min )

MAE (day−1) MRE (%) MAE (day−1) MRE (%) MAE (day−1) MRE (%)

Type1 Vm 1.9907e-3 0.2077 5.2134e-2 6.8101 7.9687e-3 0.9491

Gm 1.1762e-3 0.2481 2.9389e-2 6.8627 6.6683e-3 1.6249

Dp 2.7284e-4 0.2967 5.3237e-3 6.2515 1.1074e-3 1.3328

Dz 1.2326e-3 0.6673 1.2844e-2 7.4986 5.5154e-3 3.3307

eD 1.8694e-4 0.4009 3.4199e-3 8.0113 1.3193e-3 3.2013

Type2 Vm 5.5599e-3 0.5035 6.0603e-2 5.3297 9.3864e-3 0.8142

Gm 1.2637e-3 0.2444 2.8248e-2 5.0008 8.4338e-3 1.4545

Dp 2.2292e-4 0.2172 6.5089e-3 5.7599 1.5961e-3 1.3772

Dz 1.4915e-3 0.6978 1.2206e-2 5.3740 4.4056e-3 1.8926

eD 2.0576e-4 0.3896 2.9709e-3 5.1449 1.0034e-3 1.7255
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20%-30% errors in the chlorophyll-a concentrations obtained by

SeaWiFS (Gregg and Casey, 2004; Cui et al., 2014), due to its

digitization round-off and noise errors (Hu et al., 2001). If the

available observations are not accurate, the estimation of

parameters might not conform to the actual distribution. Thus, it is

necessary to discuss the influence of observation errors on the

estimated parameters. To partly reflect reality, the observations over

random error within ±20%, ±30%, ±35%, and ±40%were considered

in Case 4 to Case 7. In these experiments, the values ofVm,Dz and eD
were assumed to vary spatially by Type1,Gm andDpwere distributed

by Type 2. During the experiment, five parameters were inversed

simultaneously and initial guesses was set as the default values shown

in Table 1. The observations used for data assimilation were the

simulations of phytoplankton by the NPZDmodel with five assumed

parameters with ±20%, ±30%, ±35%, and ±40% random errors.For
Frontiers in Marine Science 11
experiments of Case 4 to Case 7, when the percentage error became

larger, the estimated results worsened (Figure 6). With the 30%

errors, the estimated results in CFDM ( Dt=6h ) were close to the

prescribed parameters, and the high values of errors only occurred

near the boundary. There were lots of misfits between the estimated

results in CDS ( Dt=30min ) and the prescribed parameters. When

the maximum percentage of errors was up to 35%, the estimations of

eD differed greatly from prescribed eD. When the maximum

percentage of errors was up to 40%, the estimations of Gm differed

greatly from the prescribed Gm.

As listed in Table 7, with the 30% errors, the estimated

parameters contained more errors than in experiments without

observation errors, where the maximum MRE of CFDM (Dt=6h)
between the estimated results and the prescribed parameters

decreased from 1.34% to 2.92%, indicating that the estimated
A

B

D

E

C

FIGURE 4

Spatial variation of five inversion parameters in the experiment of optimizing parameters simultaneously (unit: day−1). (A) Vm, (B) Gm, (C) Dp,
(D) Dz, and (E) eD.
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parameters were still acceptable. The errors of CFDM were

smaller than those of the CDS method. For example, the MAE

and MRE of Vm obtained by CFDM were 9.6420×10−3 day-1 and

1.0184% respectively, while those of the CDS method were

3.0106×10−2day-1 and 3.2083%. Based on this analysis, we

concluded that the degree of errors of chlorophyll-a obtained by

SeaWiFS used in this paper was acceptable and the present model

and method could partly bear the influence of errors

of observations.
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Practical experiments and results analysis
In practical experiments, the monthly mean climatological

SeaWiFS data of the period 1997-2016 were interpolated into daily

data and the daily SeaWiFS data (Sathyendranath et al., 2020) was

used to correct the interpolated data. These observations were

assimilated to optimize the parameters (Vm, Gm,Dp,Dz, eD) and to

improve simulation results. The CFDM was selected in the

optimization algorithm. The initial conditions of nitrogen and

phytoplankton were obtained through spatial interpolation of the
FIGURE 5

The values of the normalized cost function (J/J1) versus the iteration steps.
TABLE 5 Same as Table 4, but for the experiment of Case 1 of optimizing parameters simultaneously.

Method Parameter MAE of parameters (day−1) MRE of parameters (%)

CFDM Vm 3.1432e-3 0.3388

Gm 4.6792e-3 0.9405

Dp 9.5625e-4 0.9356

Dz 1.4997e-3 0.8363

eD 6.1339e-4 1.3363

CDS Vm 8.0097e-3 0.9454

Gm 1.0031e-2 1.8279

Dp 1.6888e-3 1.5532

Dz 5.1425e-3 3.0414

eD 1.3063e-3 3.0513
TABLE 6 The J/J1, MAE of chlorophyll-a and running time assimilated by different methods.

Method J/J1 MAE of chlorophyll-a(mmol N·m-3) Running time (s)

Before assimilation After assimilation

Case 1-CFDM 1.5952e-3 0.2434 0.0036 1351.55

Case 1-CDS 8.2648e-2 0.2823 0.0197 26697.83
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FIGURE 6

Comparison of the five parameters obtained by the CFDM and CDS method and the prescribed values in (A) Case 4, (B) Case 5, (C) Case6,
(D) Case 7. This image shows the misfits between the estimations and their real values. (unit: day−1).
Frontiers in Marine Science frontiersin.org13

https://doi.org/10.3389/fmars.2022.997537
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2022.997537
A

B

D

C

FIGURE 7

The distribution of five parameters inverted by the CFDM (unit: day−1). (A) Winter (Jan-Mar); (B) Spring (Apr-Jun); (C) Summer (Jul-Sep);
(D) Autumn (Oct-Dec).
TABLE 7 Same as Table 5, but for the experiment of Case 5 with 30% observation errors.

Method Parameter MAE of parameters (day−1) MRE of parameters (%)

CFDM Vm 9.6420e-3 1.0184

Gm 9.2129e-3 1.8401

Dp 1.8402e-3 1.8414

Dz 3.6162e-3 1.9518

eD 1.3783e-3 2.9177

CDS Vm 3.0106e-2 3.2083

Gm 1.7848e-2 3.4028

Dp 2.8342e-3 2.6650

Dz 1.0120e-2 5.5695

eD 3.4486e-3 7.3006
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WOA13 and SeaWiFS data measured at the initial time. Because

of the lack of the distributions of zooplankton and detritus, the

NPZDmodel was run for onemonths fromDecember 1st, 2015 to

January 1st, 2016, in which the initial guesses of zooplankton and

detritus in the surface layer were 0.2 and 0.1 mmol N·m-3 and the

concentration decreased exponentially with the increase of depth

P(k)=P(1)e-(z(k)-z(1))/zch (k=1,2,…,6), with zch = 100m (Losa et al.,

2006). The remaining model parameters were set as default

empirical values (Table 1). Then the simulated results were

taken as the initial conditions to optimize five parameters in 2016.

Figure 7 depicts the seasonal means of the five parameters

(Vm, Gm, Dp, Dz, eD), estimated in the practical experiments. The

estimated distributions of the five parameters showed a seasonal

cycle. The relatively high values of Vm, Gm and Dp appeared in

winter, then decreased through the spring and summer, and

increased again during autumn. Conversely, The Dz and eD
increased in spring and summer and decreased in autumn. In
Frontiers in Marine Science 15
winter, high values of the maximum growth rate of

phytoplankton (Vm) appeared in the near seas (~12 nautical

miles territorial seas) north of 34°N. The nutrient concentrations

varied seasonally and the highest concentrations of dissolved

inorganic nitrogen, dissolved inorganic phosphorus, and

dissolved silicate in the Bohai Sea was in winter (Zheng et al.,

2020; Ding et al., 2021). Therefore, the values of Vm were large in

the Bohai Sea, especially in Liaodong Bay. Previous studies

showed that temperature had a great effect on zooplankton in

the Yellow Sea during winter (Chen et al., 2011; Shi et al., 2018).

Affected by the Yellow Sea Warm Current, Taiwan Warm

Current, and Kuroshio, the values of Gm (maximum growth

rate of zooplankton) were large in the East China Sea and the

middle of the Yellow Sea.

Besides, based on the inversion results, the correlation

coefficients (R) between the five parameters were calculated.

There were strong correlations between Vm, Dz, and eD, in which
A

B

C

FIGURE 8

The sea surface phytoplankton obtained from SeaWiFS data (A), simulations of the NPZD model without optimized parameters (B) and
simulations of the NPZD model without optimized parameters (C). (unit: mmol N·m-3).
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R of Vm and Dz were 0.73, 0.67, 0.81 and 0.77, respectively, R of

Vm and eD were 0.69, 0.63, 0.75, and 0.76, respectively, and R of

Dz and eDwere 0.92, 0.92, 0.93, and 0.96, respectively, in different

seasons. Gm and Dp were strongly related. R of Gm and Dp were

0.90, 0.89, 0.94, and 0.89 respectively, in different seasons. The

result is consistent with the actual situation. When zooplankton

increased, the concentrations of phytoplankton would decrease.

Therefore, Gm and Dp (mortality rate of phytoplankton) change

consistently. The concentrations of phytoplankton and detritus

increased as zooplankton mortality increased. The Vm and eD
(remineralization rate of detritus) would vary with Dz (mortality

rate of zooplankton).

To further verify the accuracy of the result, the distributions of

phytoplankton simulated by the NPZD model with optimized

parameters were compared with those of the NPZD model

without optimized parameters. In the data assimilation

experiment, one-tenth of the observation data randomly selected

were not assimilated and used as independent observation to test

the results, which was called ‘test observation’. The seasonal sea

surface phytoplankton obtained from SeaWiFS data, simulated by

the NPZD model without optimized parameters and the NPZD

model without optimized parameters are shown in Figure 8.

Compared with the observations of SeaWiFS data, the results

simulated by the NPZD model with optimized parameters

matched the real data. The MAEs between the simulation of the

NPZD model with optimized parameters and the test observation

were 0.45, 0.50, 0.49 and 0.40 mmol N·m-3 in winter, spring,

summer and autumn, respectively, which were smaller than 1.01,

1.24, 2.18 and 0.97 mmol N·m-3 of the NPZD model without

optimized parameters.

The seasonal observations and simulations of the average value

of phytoplankton on the sea surface are shown in Figure 8. The

simulations reproduced the concentrations of the sea surface

phytoplankton and the seasonal cycle where the high values

appeared in winter and then decreased through the spring and

summer, and increased again during autumn. This variety tendency

was the same as that of Vm. The microbiology points out that the

maximum growth rate occurs when the population density is

optimum (Weaver and Grime, 1980). Once the population

density is larger than the optimum density, the growth rate will

reduce because of the limited nutrient and environmental

conditions. The estimations of Vm implied that there was a

connection between the growth rate and the phytoplankton

concentration. The experiments show that the adjoint

assimilation method with CFDM can invert the parameter values

in the ecosystem model very well using large time steps.
Conclusions

Based on the adjoint data assimilation method with CFDM,

the estimation of the parameters of the NPZD model is studied

in this paper. The CFDM reduced the calculation time by large
Frontiers in Marine Science 16
time steps and generated accurate numerical solutions. The

experiment of the Gaussian pule moving shows the

effectiveness of CFDM. Further, a series of experiments are

carried out to evaluate the adjoint data assimilation method

with CFDM and CDS and to examine the influential factors on

the inversions of the five parameters (Vm, Gm, Dp, Dz, eD) by

assimilating the chlorophyll-a concentrations obtained by the

SeaWiFS data. Considering the inversion errors and

convergence rates synthetically, the CFDM performs better

than CDS. Whether the five parameters were optimized

separately or simultaneously, the parameters obtained by

CFDM were more consistent with the distribution of the given

parameters. The errors in observations have little influence on

the estimated results, and the estimated results are all

satisfactory, indicating that this model has a strong parameter

estimation ability. According to the results of the twin

experiments, the adjoint data assimilation method with CFDM

is applied in a practical experiment to estimate the five

parameters in February 2016. The results indicate that the

improved data ass imi la t ion method can opt imize

the parameter values in the ecosystem model efficiently and

the CFDM which gets rid of the limitation of stability provides

an efficient choice for the study of high resolution model. Future

work will focus on the optimization of parameters of the NPZD

model in larger areas, longer time scales, and extreme weather

conditions using the adjoint method, thus further improving the

numerical simulations of the marine ecosystem.
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