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Coral reefs are under stress throughout the world. To better understand the

molecular mechanisms underlying coral biology and their genomic evolution,

here we sequenced the genome and transcriptomes of elegance coral

Catalaphyllia jardinei (Euphylliidae). This monotypic genus stony coral is

widespread but rare, being found across the Indo-West Pacific, from the

northern Indian Ocean, Australia, Philippines, to the South China Sea. Due to

its popularity among aquarium hobbyists, it is an overexploited species

collected in large quantities from the wild for aquarium trade. The assembled

genome is ~ 651.3 Mb in total length and of high physical contiguity with a

scaffold N50 size of 28.9Mb. The gene copy numbers of abiotic stress regulator

(heat shock protein family genes) and neuropeptides (GLWamide, GRFamide,

PRGamide and HIRamide) are similar to other sequenced anthozoans, and we

have also identified the first set of sesquiterpenoid biosynthetic pathway genes

in coral. Sequencing of small RNAs allows us to identify 35 microRNAs in C.

jardinei and update the number of conserved microRNAs in cnidarians. This

study established a foundation for further investigation into the roles of

sesquiterpenoids and microRNAs in development of coral and understand

their responses to climate change. Due to the easiness to culture C. jardinei

in reef tanks and the established resources in this study, we propose this

species be adopted as a new laboratory model in environmental and ecological

experiments aiming to understand coral biology and responses to

environmental stressors.
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Introduction

The elegance coral Catalaphyllia jardinei was first described

as Pectinia jardinei found in the shallow water on the reefs at the

Warrior Reef (latitude 9° 45’ S), Thursday Island (latitude 10° 35’

S), and Albany Pass (latitude 10° 45’ S) (Saville-Kent, 1893).

Based on the morphological and color identification, the species

was later determined to be a new genus under Euphylliidae

(Yonge and Nicholls, 1931; Catala, 1964). Given that its skeleton

is homomorphic to that of Euphyllia, and in recognition of

Catala’s contribution to tropical marine fauna, Pectinia was

changed to Catalaphyllia (Wells, 1971). Today, the genus

Catalaphyllia is considered monospecific with C. jardinei as its

only member (Fujii et al., 2020).

Coral reef ecosystems are important in providing a favorable

habitat for its associated organisms (Bellwood et al., 2004).

Throughout the world coral reefs are under stresses that

inc lude habi ta t destruct ion (Yeung et a l . , 2021) ,

overexploitation (Jackson et al., 2001; Pandolfi et al., 2003),

pollution (Williams et al., 2002; McCulloch et al., 2003), diseases

(Harvell et al., 2002), predation (Qiu et al., 2014), and climate

change (Wilkinson, 2002; Hughes et al., 2003; Gardener et al.,

2003; Schlager, 1981; Dullo, 2005; Xie et al., 2020). The reef-

building coral C. jardinei has a broad geographical distribution

and can be found both in the Indian Ocean and Pacific Ocean

(Veron and Stafford-Smith, 2000), including Australia,

Indonesia, Japan, Maldives, Malaysia, Papua New Guinea,

Philippines, Seychelles and Vietnam (UNEP, 2005).

Nevertheless , g iven its smal l populat ion size and

overexploitation, it is considered by the IUCN Red List as

having a “Vulnerable” status (IUCN, 2020).

Since the late 1980s, the popularity of keeping live corals at

home has increased rapidly (Delbeek, 2001). Large-scale culture

of C. jardinei is a current business in Indonesia and corals are

exported globally (Akbar and Asadi, 2021). In addition to its

appearance as described in its common name, C. jardinei is a

popular coral species due to its easiness to culture ex situ.

Naturally found in deep flats (greater than 35 meters) with

sandy/silty bottoms, lagoons, and nearshore mudflats (Richard,

2005), C. jardinei can tolerate and survive in fluctuating or less

favorable environmental conditions (Richard, 2005; http://www.

edgeofexistence.org/species/elegance-coral/), making it a

potential new model in the laboratory to study coral biology

and their responses to environmental stressors.

To facilitate the use of C. jardinei to study the molecular

mechanisms underlying coral biology, this study sequenced and
02
provided the first genome and transcriptomic resources of this

coral species.
Materials and methods

Sample collection
and genome sequencing

Adult Catalaphyllia jardinei (Euphylliidae) (Figure 1A) were

purchased from mainland China (original source from

Indonesia) and Hong Kong suppliers (original source from

Australia), and were cultured in an aquarium tank with

circulating artificial seawater (salinity: 30-35 ppt) at around 23

± 1°C and other equipment to simulate pristine waters at The

Chinese University of Hong Kong. Corals were allowed to

acclimatize under the laboratory conditions for 15 days prior

to be used for DNA and RNA extraction.

Sample for genome sequencing originated from tentacles from

a single individual (Figure 1A). Genomic DNA (gDNA) was

extracted using the QIAamp DNA minikit (Qiagen, Hilden,

Germany) following the manufacturer’s instructions. Extracted

gDNA was subjected to quality control using a Nanodrop

spectrophotometer (Thermo Scientific) and gel electrophoresis.

Qualified samples were sent to Novogene and Dovetail Genomics

for library preparation and sequencing. The resulting library was

sequenced on an Illumina HiSeq X platform to produce 2 × 150

paired-end sequences. The length-weighted mean molecule length

was 17.9 Kb, and details of the sequencing data were highlighted

in Supplementary Information S1.
Dovetail Omni-C library preparation
and sequencing

For each Dovetail Omni-C library, chromatin was fixed with

formaldehyde and extracted. Fixed chromatin was digested with

DNase I, and chromatin ends were repaired and ligated to a

biotinylated bridge adapter followed by proximity ligation of

adapter containing ends. After proximity ligation, crosslinks

were reversed and the DNA was purified. Purified DNA was

treated to remove biotin that was not internal to ligated

fragments. Sequencing libraries were generated using NEBNext

Ultra enzymes and Illumina-compatible adapters. Biotin-

containing fragments were isolated using streptavidin beads

before PCR enrichment of each library. The library was
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sequenced on an Illumina HiSeqX platform to produce 196.9

millions of 150 bp reads, and the raw data were listed in

Supplementary Information S1.
Transcriptome sequencing

Total RNA, including messenger RNA and small RNA, from

tentacles from single individual was isolated using mirVana™

miRNA Isolation Kit (Ambion) according to the manufacturer’s

instructions, and subjected to quality control using a Nanodrop

spectrophotometer (Thermo Scientific), gel electrophoresis, and

Agilent 2100 Bioanalyzer (Agilent RNA 6000 Nano Kit).

Qualified samples underwent library construction and 150 bp

paired-end (PE) sequencing at Novogene; polyA-selected RNA-

Sequencing libraries were prepared using TruSeq RNA Sample Prep

Kit v2. Insert sizes and library concentrations of final libraries were

determined using an Agilent 2100 bioanalyzer instrument (Agilent

DNA 1000 Reagents) and real-time quantitative PCR (TaqMan

Probe) respectively. Small RNA was submitted to BGI Hong Kong

for HiSeq Small RNA library construction and 50 bp single-end

(SE) sequencing. Details of the sequencing data can be found in

Supplementary Information S1.
Genome assembly

K-mers of the HiseqXten 150PE (Chromium WGS) were

counted using jellyfish version 2.2.5 (Marçais and Kingsford,
Frontiers in Marine Science 03
2011) with k-mers = 21, and estimation of genome size, repeat

content, and heterozygosity were analyzed based on a k-mer-

based statistical approach in the GenomeScope2 webtool

(Ranallo-Benavidez et al., 2020, Supplementary Information

S3). Kraken2 (Wood et al., 2019) (k2_standard_20210517

(kraken2 standard database) from https://benlangmead.github.

io/aws-indexes/k2, which contains archaea, bacteria, viral,

plasmid, human1, UniVec_Core) was used to mark and

remove the contamination from the gDNA and transcriptome

reads, 3.75% and 0.29% of contaminated reads were removed

respectively. Processed Chromium WGS reads were used to

construct a de novo assembly using Supernova (v 2.1.1) with

default parameters (raw coverage = 78.86x), which generates

phased, whole-genome de novo assemblies from a Chromium-

prepared library (Weisenfeld et al., 2017) (https://support.

10xgenomics.com/de-novo-assembly/software/pipelines/latest/

using/running). The supernova output pseudohap assembly

were used to generate the dedupe assembly by dedupe.sh

(ver s ion 19Feb , 2020) o f BBMap (Bushne l l B . -

sourceforge.net/projects/bbmap/), and then scaffolded using

Dovetail Omni-C library reads by HiRise, a software pipeline

designed specifically for using proximity ligation data to scaffold

genome assemblies (Putnam et al., 2016). Dovetail Omni-C

library sequences were aligned to the draft input assembly

using bwa (https://github.com/lh3/bwa). The separations of

Dovetail Omni-C read pairs mapped within draft scaffolds

were analyzed by HiRise to produce a likelihood model for

genomic distance between read pairs, and the model was used to

identify and break putative misjoins, to score prospective joins,
A B

C

FIGURE 1

(A) Picture of elegance coral Catalaphyllia jardinei; (B) Genome assembly statistics of C jardinei; (C) BUSCO scores.
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and make joins above a threshold. To further check for potential

symbiotic contamination, 11 symbiodinium genomes were

downloaded from NCBI (Supplementary Information S2) and

BLASTN (Altschul et al., 1990) were carried out on the

assembled genomes (e-value 1e-3). Scaffolds with alignment

lengths >= 500 bp were further searched on nt database with

BLASTN, and no symbiotic contamination was found in the

final assembly genome.
Gene model prediction

Gene models were predicted as described in the jellyfish

genomes (Nong et al., 2020). Briefly, the gene models were

trained and predicted using funannotate (v1.8.9, https://github.

com/nextgenusfs/funannotate) (Palmer and Stajich, 2020) with

the following parameters: “–protein_evidence uniprot_sprot.fasta

–genemark_mode ET –busco_seed_species fly –optimize_augustus

–busco_db arthropoda –organism other –max_intronlen 350000”.

In the “funannotate predict” step, GeneMark-ES v4.32 (Lomsadze

et al., 2005) was used for ab initio gene prediction and Augustus

(Keller et al., 2011) was trained using BUSCO. The gene models

from the prediction sources “Augustus”, high-quality Augustus

predictions (HiQ) with exon evidence, “pasa” (Haas et al., 2008)_,

“snap” (Korf, 2004), “GlimmerHMM” (Majoros et al., 2004), and

“GeneMark” were passed to Evidence Modeler (EVM Weights:

{‘GeneMark’: 1, ‘HiQ’: 2, ‘pasa’: 6, ‘proteins’: 1, ‘Augustus’: 1,

‘GlimmerHMM’: 1, ‘snap’: 1, ‘transcripts’: 1}) to generate the final

annotation files. Finally, followed by PASA to update the EVM

consensus predictions, and add UTR annotations and models for

alternatively spliced isoforms. Protein-coding genes were searched

with BLASTP against the nr and SwissProt databases by diamond

(v0.9.24) (Buchfink et al., 2015) with parameters “–more-sensitive –

evalue 1e-3”, and mapped by HISAT2 (version 2.1.0) (Kim et al.,

2019) with transcriptome reads. Gene models with no similarity to

any known proteins and nomRNA support were removed from the

final version. The gene models were screened by CGAT (Sims et al.,

2014) and only the longest genes were retained.
Synteny analysis

Orthologues and orthogroups in C. jardinei and other 33

cnidarians proteomes were identified and inferred using

OrthoFinder v2.5.2 (Emms and Kelly, 2019) with “-M msa”

activated and default values to other parameters. To symbolise

the gene families, the longest protein of each gene was taken as

the representative in orthologues analysis. The species tree was

constructed with fasttree using STAG algorithm and Hydra

vulgaris was identified as the best outgroup species to

construct the rooted tree using STRIDE method by

OrthoFinder (Emms and Kelly, 2017; Emms and Kelly, 2018).

Tree supporting value were the proportion of species tree
Frontiers in Marine Science 04
derived from gene tree supporting each bipartition. The

species tree was then converted into divergence tree using r8s

(Sanderson, 2003). The tree structure and annotations were

visualised using R package ‘ggtree’ (Wickham, 2016; Yu et al.,

2017) in R v4.1.2 (R Core Team, 2022). Orthologues anchored

by mutual best Diamond blastp hits (e-value cut-off 0.001)

between C. jardinei and other 33 cnidarians as mentioned

above were used in macrosynteny analyses. Oxford synteny

plot were generated following previously described methods

(So et al., 2022; Yichun, 2022). Detailed analytical scripts and

materials were distributed at https://github.com/xieyichun50/

coral_genome_Catalaphyllia_jardinei.
microRNA annotation

Adaptor sequences were trimmed from small RNA

sequencing reads and Phred quality score less than 20 were

removed. Processed reads of length within 18 bp and 27 bp were

then mapped to the genomes using mapper.pl module of the

mirDeep2 package (Friedländer et al., 2012). To identify known

miRNA, the predicted coral microRNA hairpins were compared

against metazoan microRNA precursor sequences from

miRBase (Kozomara and Griffiths-Jones, 2014) using BLASTN

(e-value <1e-2). For miRNAs with no significant sequence

similarity to any of the miRNAs in miRBase were then

checked manually. Novel microRNAs were defined when they

fulfilled the criteria of microRNAs (Fromm et al., 2020). The

expression levels of different arms of a miRNA were calculated

based on the number of sequencing reads mapped to the

respective arm region in the predicted miRNA hairpin by

bowtie. In addition to the above, the precursor sequences of

microRNAs from other corals in previous studies (Liew et al.,

2014; Praher et al., 2021) were also used to carry out BLASTN

searches for identification of any missed microRNA annotations.
Annotation of sesquiterpenoid pathway
and neuropeptide genes

17 gene sequences involved in the sesquiterpenoid

biosynthetic pathway retrieved from Nematostella vectensis and

4 gene sequences of neuropeptide (GLWamide, GRFamide,

PRGamide and HIRamide) sequences from Hydra vulgaris

were used for searching against the gene models and genome

using BLASTP and TBLASTN, respectively. Putatively identified

orthologues with a threshold of E-value equals to 10E-3 were

tested by reciprocal searches in the NCBI nr database using

BLASTP. For neuropeptide preprohormones, amino acid

sequences were translated manually and aligned with MEGA

7.0 (Kumar et al., 2016), while the signaling sequences were

analysed with SignalP 3.0 (Dyrløv Bendtsen et al., 2004). The

cleavage sites were predicted by software ProP 1.0 (Duckert et al.,
frontiersin.org
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2004) and checked manually accordingly to the criteria

suggested by Veenstra (2000). The potential mature

neuropeptides were aligned using MEGA 7.0 (Kumar

et al., 2016).
Results and discussion

High quality genome

Here, we presented a high-quality chromosome-level

genome assembly of C. jardinei (2n = 28) (Heyward, 1985;

Kenyon, 1997; Flot et al., 2006), the assembled genome size was

651 Mb, which is compatible with the kmer 21 estimate of a

genome size of 685.5 Mb (Figure 1, Supplementary Information

S3). 69.64% of the genomic sequences were contained on 14

pseudomolecules (Supplementary Information S1.3). The

BUSCO score for complete genes is 88.05% (BUSCO version

5.1.3, metazoa_odb10), with complete and single-copy BUSCOs

(S) being 84.28%, complete and duplicated BUSCOs (D) being

3.77%, fragmented BUSCOs (F) being 6.60% and Missing

BUSCOs (M) being 5.35% (Figure 1C). Its scaffold N50 size

(28.9Mb) represents the highest physical contiguity among the

published coral genomes (Table 1). Using the transcriptomes, we

predicted a total of 44,407 gene models including 37,003 protein

coding genes and 7,404 tRNA genes, in the C. jardinei genome,

which is within the range of 21,369 to 39,160 for other published

coral genomes (Table 1).
Synteny analysis

To clarify the syntenic relationship and gene linkage blocks

between C. jardinei and other cnidarians, we generated the

Oxford synteny plots of species pairs using the orthologues

anchored by mutual best BLAST hit (e-value 1e-3) (Figure 2,

Supplementary Information S4). Global gene orthogroup

inference identified 26,260 orthogroups. The phylogenetic tree

was constructed using 1,029 single-copy orthogroups presented

in 31 out of 34 species, where single-copy indicated only one

gene was assigned to specific orthogroup for each species. The

chromosomal organisations are conserved in most soft corals,

and each pseudo-chromosome in C. jardinei was associated with

a different chromosome in another soft coral Acropora millipora.

Further comparisons of C. jardinei against the more distant

species, such as the sea anemone (Nematostella vectensis) and the

true jellyfish (Rhopilema esculentum), displayed the one-to-one

relationship on most synteny blocks, and a few one-to-many

blocks (Supplementary Figures 1–3). Evidence on breakage,

fusion or large-scale duplication was rarely found in these

investigated cnidarians, suggesting that the genomes of these

cnidarians have not undergone massive evolutionary changes.
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Homeobox genes

Homeobox genes are important developmental genes in

animals and have been used as markers to understand

genomic changes in animal evolution (e.g. Nong et al., 2020,

Nong et al., 2021, Nong et al., 2022; Li et al., 2020; So et al., 2022;

Qu et al., 2020; Shum et al., 2022). A total of 93 ANTP-class

homeobox genes have been identified in the C. jardinei genome,

including clusters of Hox-like and NK-like genes, and a ParaHox

gene cluster (Figure 3; Supplementary Information S5). The data

here further strengthens the idea that if distinct Hox and NK

genes clusters are associated with ectodermal and mesodermal

patterning, it could be a bilaterian-lineage specific event

(Simakov et al., 2013; Nong et al., 2020), and the three gene

ParaHox gene cluster could only be retained in the medusozoans

than anthozoans among the extant cnidarians.
Heat shock protein family genes

Corals experiences abiotic stresses such as temperature,

salinity, and oxygen concentration, and heat shock proteins

(HSP) can assist and reconstruct the structure of damaged

proteins under stresses (Collier and Benesch, 2020; Matambo

et al., 2004; Whitley et al., 1999; Supplementary Figure 4). In

general, HSP can be divided into six subfamilies, including HSPE

(GroEL, cpn10), small heat shock proteins, HSP40, HSP70,

HSP90, and HSP110, and HSP70 has been shown as chaperone

proteins participated in response to heat stress in reef-building

scleractinian corals (Franzellitti et al., 2018), (Haslbeck et al.,

2016). In C. jardinei, we identified members of six HSP

subfamilies, and their numbers were similar to those identified

in the stony coral Acropora millepora chromosomal-level genome

(Supplementary Figure 5, Supplementary Information S6). The

identified heat shock protein gene families will be useful for future

investigation of their roles in C. jardinei under different

environmental conditions.
Neuropeptide genes

Neuropeptides play essential roles as endocrine factors and

neurotransmitters, and are involved in the cellular differentiation

and development of cnidarians (Takahashi, 2020). Here,

Scleractinia conserved neuropeptides GLWamide, GRFamide,

PRGamide, HIRamide, RWamide, RPamide and pQITRFamide

were identified in C. jardinei (Figures 4A, B, Supplementary

Information S7). A total of 6 mature peptides were identified

from the preprohormone sequences of GLWamide in C. jardinei,

and sequence alignment showed a conserved C-terminal GXW

motif contained in these sequences (Figures 4C). Two of the

GLWamides had “-GIW” replacement and such mutations were
frontiersin.org
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TABLE 1 Statistics of published coral genomes.

Species Assembled
genome size (bp)

N50 Number of
Proteins

Sum of
Amino
Acids

Sum of
Exons (bp)

Sum of
Introns (bp)

Sum of gene
region (bp)

References

Acropora
acuminata

397,781,777 1,004,888 22,306 11,844,585 66,338,114 234,162,220 234,529,491 Shinzato et al.,
2021

Acropora awi 430,482,902 1,088,407 22,653 11,755,030 65,880,915 249,482,354 241,506,016 Shinzato et al.,
2021

Acropora
cytherea

430,309,169 1,083,946 23,363 12,256,657 67,552,835 247,246,641 245,571,636 Shinzato et al.,
2021

Acropora
digitifera

415,842,489 1,856,312 22,326 10,509,359 62,321,781 215,573,311 233,203,300 Shinzato et al.,
2021

Acropora
echinata

409,669,900 1,812,701 21,943 11,333,551 65,943,777 246,278,370 236,046,259 Shinzato et al.,
2021

Acropora florida 442,860,187 751,376 23,857 12,087,368 64,685,340 240,937,980 244,285,300 Shinzato et al.,
2021

Acropora
gemmifera

405,217,165 1,134,581 22,247 11,698,576 65,230,873 237,013,391 233,312,317 Shinzato et al.,
2021

Acropora
hyacinthus

452,727,592 1,562,592 23,147 12,513,951 69,389,302 254,370,978 250,891,995 Shinzato et al.,
2021

Acropora
intermedia

416,883,045 577,312 23,343 11,998,377 64,476,112 232,793,965 237,988,598 Shinzato et al.,
2021

Acropora
microphthalma

387,940,075 1,050,196 22,618 11,614,443 65,390,591 234,712,549 235,057,382 Shinzato et al.,
2021

Acropora
millepora

475,381,253 19,840,543 28,188 12,836,117 49,237,008 158,255,732 207,492,740 Fuller et al.,
2020

Acropora
muricata

420,750,014 574,627 23,646 12,079,124 237,931,003 242,349,835 Shinzato et al.,
2021

Acropora nasuta 419,444,168 1,045,289 23,319 12,115,884 67,461,458 248,696,816 245,388,094 Shinzato et al.,
2021

Acropora selago 393,159,869 657,172 23,115 11,696,416 65,591,025 233,912,084 234,017,974 Shinzato et al.,
2021

Acropora tenuis 406,871,833 1,160,220 23,118 11,917,129 68,612,749 192,068,808 237,497,938 Shinzato et al.,
2021

Acropora yongei 443,890,770 3,019,482 23,500 12,103,783 67,790,062 248,352,452 249,216,954 Shinzato et al.,
2021

Astreopora
myriophthalma

381,883,822 1,590,751 28,711 13,287,976 42,124,462 116,058,587 155,181,959 Shinzato et al.,
2021

Catalaphyllia
jardinei

651,363,123 28,947,999 37,003 13,815,766 59,489,494 221,415,763 282,642,405 This study

Dendronephthya
gigantea

286,150,628 1,445,523 28,741 17,717,918 74,944,700 345,593,618 147,908,393 Jeon et al., 2019

Fungia sp. 606,319,501 323,149 38,209 15,470,321 56,333,027 194,127,360 250,460,387 Ying et al., 2018

Galaxea
fascicularis

334,165,880 87,933 22,418 9,704,883 42,730,289 132,589,881 175,320,170 Ying et al., 2018

Goniastrea
aspera

764,857,003 518,949 35,901 15,491,306 51,803,637 238,014,146 289,817,783 Ying et al., 2018

Montipora
cactus

652,728,006 898,511 21,982 13,478,399 50,412,387 311,983,610 337,284,991 Shinzato et al.,
2021

Montipora
capitata

614,509,607 185,537 36,691 13,448,127 40,454,043 222,885,069 148,531,395 Helmkampf
et al., 2019

Montipora
efflorescens

643,312,941 1,132,316 21,369 13,130,866 49,077,197 308,033,328 331,889,023 Shinzato et al.,
2021

Orbicella
faveolata

485,548,939 1,162,446 32,587 16,554,995 95,196,829 556,036,559 266,375,485 Prada et al.,
2016

Pachyseris
speciosa

984,430,632 766,649 39,160 17,175,307 72,350,345 264,758,179 337,108,524 Bongaerts et al.,
2021

(Continued)
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also identified in hard coral Euphyllia ancora (Shikina et al., 2020)

(Figure 4C, Supplementary Information S8). For GRFamide

preprohormones, 16 mature peptides were predicted. Among

the identified PRGamide genes in C. jardinei, a single

preprohormone gene was found to yield 46 different mature

peptides (Figure 4B, Supplementary Information S8). For

HIRamides, it was found that there was no glutamine residue

identified from the predicted HIRamides in C. jardinei, where this

phenomenon is also observable in other cnidarian HIRamides

(Koch and Grimmelikhuijzen, 2019; Supplementary Information

S8). For RWamide and RPamide, only 1 and 2 mature peptide(s)

are yielding from the precursor respectively. Meanwhile, the

precursor of pQITRFamide could be identified from the

genome, but there was no expression shown in the sequenced

transcriptomes, thus the number and form of mature peptides

could not be identified (Figures 4B, C). The identified
Frontiers in Marine Science 07
neuropeptides will be useful for future investigation of their

developmental roles in C. jardinei.
Sesquiterpenoid biosynthetic
pathway genes

Sesquiterpenoid hormones, such as juvenile hormone,

regulate the development, metamorphosis, and reproduction

in insects, and have long been thought to be confined to the

arthropods (e.g. Qu et al., 2018; Tsang et al., 2020). A recent

study has unexpectedly identified the sesquiterpenoid hormonal

system in jellyfishes, suggesting that the sesquiterpenoid

hormone system is established at the bilaterian-cnidarian

ancestor (Nong et al., 2020). To test whether coral species

contain a sesquiterpenoid hormone system, we searched the
TABLE 1 Continued

Species Assembled
genome size (bp)

N50 Number of
Proteins

Sum of
Amino
Acids

Sum of
Exons (bp)

Sum of
Introns (bp)

Sum of gene
region (bp)

References

Pocillopora
damicornis

234,350,878 326,133 25,183 13,735,379 63,957,019 274,910,693 151,175,419 Cunning et al.,
2018

Pocillopora
verrucosa

380,505,698 333,696 27,439 17,115,890 66,501,999 140,069,492 208,011,644 Buitrago-López
et al., 2020

Porites lutea 552,020,673 660,708 31,126 14,351,123 56,249,572 199,362,641 255,612,213 Robbins et al.,
2019

Stylophora
pistillata

400,120,318 457,453 33,252 18,275,238 86,199,075 513,138,303 223,994,894 Voolstra et al.,
2017
Underline, the statistics of C. jardinei genome
FIGURE 2

Oxford synteny plot of orthologous genes between Catalaphyllia jardinei and other 33 cnidarians. The divergence tree was constructed based on
the concatenated alignment of single-copy orthogroups. Supporting values were inferred from STAG algorithm, and all were equal to 1 except that
N26 = 0.583 and N28 = 0.713. Subplots were listed from left to right according to the top to bottom order of the phylogenetic tree subclades.
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FIGURE 3

ANTP-class homeobox genes arrangement in high-quality cnidarian genomes. Double slash denotes genomic distance >100 kb and <1Mb;
triple slash denotes genomic distance over 1 Mb.
A B

D

C

FIGURE 4

(A) The presence of anthozoan neuropeptides identified in C jardinei; (B) The numbers of mature peptides identified in each Scleratinian
neuropeptides. Black star indicates unknown number due to its absence in the transcriptome. (C) The sequence logos of the Scleratinian
conserved mature neuropeptides identified in C jardinei. (D) Schematic diagram showing the sesquiterpenoid hormone biosynthetic pathway in
cnidarians. “+” sign denotes the presence of particular gene in respective class. The green background refers to genes in the mevalonate
pathway, while the blue and yellow backgrounds refer to genes in the different downstream pathways. ACAT, Acetyl-CoA acetyltransferase,
HMGCS, 3-hydroxy-3-methylglutaryl-CoA synthase, HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase, MVK, Mevalonate kinase, PMK,
Phosphomevalonate kinase, MDC, Mevalonate (Diphospho) decarboxylase, IDI, Isopentenyl-diphosphate delta isomerase, FDPS, Farnesyl
diphosphate synthase, FNTA, Farnesyltransferase, CAAX box, alpha, FNTB, Farnesyltransferase, CAAX box, beta, ZMPSTE24, STE24
endopeptidase, RCE, prenyl protein protease, ICMT, isoprenylcysteine carboxyl methyltransferase, PCYOX1L, Prenylcysteine oxidase 1, ALDH,
Aldehyde dehydrogenase.
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sesquiterpenoid biosynthetic pathway genes in C. jardinei

genome (Figure 4D) and identified the mevalonate pathway,

aldehyde dehydrogenase (ALDH), farnesyl transferase (FNT),

Ste 24 endopeptidase (ZMPSTE24), prenyl protein peptidase

(RCE1), isoprenylcysteine carboxymethyl transferase (ICMT)

and prenylcysteine oxidase (PCYOXIL) in a similar manner as

the jellyfishes (Figure 4D, Supplementary Information S9). This

result suggests that coral also has the sesquiterpenoid hormone

system, and the functional roles of these hormones remain to be

seriously tested in different cnidarians.
microRNA gain and loss in corals

Unlike the situation in bilaterians which contain lots of

conserved microRNAs across different lineages, the cnidarians

and bilaterians are well known to share only one conserved

microRNAmiR-100 (Griffiths-Jones et al., 2011). Information of

small RNA sequences among different cnidarians reveals limited

number of conserved microRNAs among different cnidarian

lineages (Nong et al., 2020; Praher et al., 2021). Here, we

sequenced the small RNA from C. jardinei, and annotated a
Frontiers in Marine Science 09
total of 35 microRNAs in this species (Figure 5, Supplementary

Information S10). In comparison with other published cnidarian

microRNAs, in congruent to previous studies (e.g. Nong et al.,

2020), there were more lineage-specific microRNAs than

conserved microRNAs among different cnidarian lineages. We

also identified conserved microRNAs at different key nodes in

the cnidarian phylogeny, including miR-2022 and miR-2030

that are conserved across all cnidarians, six other microRNAs

(miR-2023, miR-2025, miR-2036, miR-2037, miR-2050, miR-

9425) that are conserved across all anthozoans, and 4 and 1 other

microRNAs that are conserved in the Actiniaria and Scleractinia,

respectively (Figure 5). Our findings established the foundation

for further investigation of the different roles of these conserved

microRNAs in cnidarians.
Conclusion

In the present study, we provided a high-quality genome

assembly and transcriptome resources of the elegance coral

Catalaphyllia jardinei (Euphylliidae). Abiotic stress regulator,

hormonal gene families, and microRNAs were annotated, which
A

B

FIGURE 5

(A) Evolutionary gains of microRNAs in the Cnidaria. Numbers shown at nodes of the phylogenetic tree represent the gains of shared
microRNAs, while numbers at the end of the branches describe the total numbers of identified microRNAs in each species. (B) Cnidarian
microRNAs that are shared between at least four species. “+” and “-” signs denote the presence and absence of microRNAs in respective
species. Nve, Nematostella vectensis; Eca, Edwardsiella carnea; Epa, Exaiptasia pallida, Sca, Scolanthus callimorphus; Mse, Metridium senile; Avi,
Anemonia viridis; Spi, Stylophora pistillata; Ami, Acropora millepora; Adi, Acropora digitifera; Hma, Hydra magnipapillata; Cja, Catalaphyllia
jardinei.
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will serve as a foundation for further investigation into their

roles in development and responses to climate change. Due to

the easiness to culture C. jardinei in reef tanks and the

established resources in this study, we propose this species to

be adopted as a new laboratory model.
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