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Sciences and Oceanography, Shenzhen University, Shenzhen, China
Life cycle assessment (LCA) is a powerful tool to evaluate environmentally

sustainable production or consumption of various goods or services.

Microalgae are single-celled green factories and good resources of biofuels,

bioactive products, food ingredients, and degradable biomaterials. Currently,

microalgae are also valuable for mitigating elevated greenhouse gases like CO2

levels and treatment of wastewater. LCA evaluation was limited and separated,

majorly in microalgal biofuels and heterotrophic cultivation. Comparative LCA

for different final algal products such as algal powder, bio-oil, total fatty acid,

and residue recycling is still limited, especially autotrophic algal cultivation for

products other than bio-oils and biofuels. Thus, we chose several autotrophic

cultivated microalgae and made a comparative LCA among these selected

species and a detailed step-by-step production in Chlorella sp. Results

indicated that we could significantly reduce the production cost and lower

environmental impacts by selecting algal species and final products, optimizing

methods for algal cultivation, biomass separation, and drying process, and land

selection plus electricity renewable energy, together with thermal power plants

nearby for CO2 or flu gas. It shed light on the insight of microalgal consumption

selection under current international requirements and challenges for

carbon sequestration.
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Introduction
Carbon dioxide CO2 is the most commonly man-produced

greenhouse gas. Carbon sequestration is the process of capturing

and storing atmospheric CO2, as a method to reduce the amount

of CO2 in the atmosphere to reduce elevated global climate

change (https://www.usgs.gov/). Now it is a life-or-death race to

improve carbon capture (acs.org). Microalgae could be one of

the potential climate change-mitigating biological agents

available with a green approach for sustainable development

(Patidar and Mishra, 2017) and treatment of wastewater (Khan

et al., 2018).

Microalgae are sources of biofuels, bioactive medicinal

products, food ingredients, and degradable biomaterials. The

main bioactive substances in microalgae include proteins, lipids,

polysaccharides, pigments, and vitamins. Microalgae are also

used as good sustainable resources in value-added products

(Matos, 2019; Dolganyuk et al., 2020; Schade et al., 2020;

Amorim et al., 2021). The most extensive massive algal

cultivation focused on algal biofuels (Campbell et al., 2011;

Collet et al., 2011; Clarens and Colosi, 2013; Adesanya et al.,

2014; Chiaramonti et al., 2015; Hosseinzadeh-Bandbafha et al.,

2020). High protein contents were already detected and

consumed in several economic microalgal species (e.g., 55%–

70% for Spirulina platensis and 42%–55% for Chlorella vulgaris

per dry matter) as summarized by Matos (2019). The global

potential for using microalgal biomass as a source of protein is

recognized in history for microalgae’s safe and essential

nutrients (Matos, 2019; Amorim et al., 2021). Recently,

specific algal products, were significantly marked, dietary

supplementary such as fucoxanthin (Khoo et al., 2021),

microalgae-based polyhydroxyalkanoates, bioplastics

(Beckstrom et al., 2020; Chong et al., 2021a; Chong et al.,

2022) using food waste hydrolysate and wastewater (Chong

et al., 2021b), and various bioenergy production (Chia

et al., 2022).

Life-cycle assessment (LCA) is a powerful tool used to

evaluate the environmentally sustainable production and

consumption of various goods and services. Some LCAs were

already applied in the field of microalgal biofuels (Moody et al.,

2014; Fortier et al., 2014; Bradley et al., 2015; Dutta et al., 2016;

Gnansounou and Kenthorai Raman, 2016; Guo et al., 2016;

Kumar et al., 2017; Foteinis et al., 2018; Shi et al., 2019; Depra

et al., 2020; Hosseinzadeh-Bandbafha et al., 2020; Mediboyina

et al., 2020; Schade and Meier, 2020; Chen and Quinn, 2021;

Somers et al., 2021; Guiton et al., 2022). Inexpensive petroleum

fuels make algal biofuels woefully uncompetitive, and alternative

coproducts from algae provide the potential to more effectively

apply biomass in terms of economic viability (Beckstrom

et al., 2020).

Microalgal LCA was also conducted in some microalgal

species, such as bioplastic feedstock production from
Frontiers in Marine Science 02
Scenedesmus acutus (UTEX B72) (Beckstrom et al., 2020),

heterotrophic fermentation (Lu et al., 2021), astaxanthin

production from Haematococcus pluvialis (Pérez-López et al.,

2014; Onorato and Rösch, 2020), non-energy purposes from

Phaeodactylum tricornutum (Porcelli et al., 2020), Acutodesmus

obliquus (SAG 276-10) bioactive algal extracts (Sandmann et al.,

2021), Spirulina tablets (Ye et al., 2018), Tetraselmis chui algal

biomass, bio-oil (Grierson et al., 2013), Nannochloropsis

oceanica TFA (Gaber et al., 2021), heterotrophic algae omega-

3 (Davis et al., 2021), microalgae-based biofertilizer

(Castro et al., 2020), and Chlorella vulgaris biorefineries

(Bussa et al., 2021). The results indicate that alternative

microalgal final products focused on non-biofuel production

had the potential to operate both economically and sustainably

(Pérez-López et al., 2014; Beckstrom et al., 2020; Castro et al.,

2020; Onorato and Rösch, 2020; Porcelli et al., 2020; Bussa et al.,

2021; Davis et al., 2021; Gaber et al., 2021; Sandmann

et al., 2021).

So far, most microalgal LCAs were focused majorly on

biofuels and heterotrophic cultivation. During literature

analyses, we noticed the inconsistency of LCAs of microalgal

products, caused mainly by the extrapolation of laboratory data,

inconsistencies in system boundaries, and differences in

production pathway architecture, country standards, and

databases. Comparative LCAs for different final microalgal

products such as algal powder, bio-oil, total fatty acid, and

residue recycling are still somehow limited, especially

autotrophic algal cultivation for products other than bio-oils

and biofuels. Thus, we chose several autotrophic cultivated

microalgae, such as Haematococcus pluvialis, Desmodesmus

subspicatus, and Nannochloropsis oceanica, to compare LCAs

of selected species and a detailed step-by-step production in

Chlorella sp.

Based on this study, the direction of future microalgal mass

cultivation and products should focus on reaching lower-energy

consumption with more minor environmental damages and

human toxicity, which will also save resource use and promote

environmental benefits and human living quality.
Methodology

The selection of algal strains and products was mainly based

on their relative complete and clear input and output data. We

collected some published data majorly based on the GaBi LCA

system, including algal powders from Haematococcus (Onorato

and Rösch, 2020) and Desmodesmus subspicatus (Schneider

et al., 2018), total fatty acid production from Nannochloropsis

oceanica (Gaber et al., 2021), and Spirulina tablets (Ye et al.,

2018). For a more accurate evaluation and comparison of three

different life stages, flocculation, disruption, and production of

bio-oil from Chlorella (Lu et al., 2021), values for midpoint

environmental impact categories were calculated with
frontiersin.org
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eFootPrint based on data collected in China. The process and

related information are summarized in Figure 1.

The study was carried out using previously described

processes (Guo et al., 2021; Ding et al., 2022). Briefly, this is a

four-stage life-cycle methodology assessment based on standards

developed by the International Organization for Standardization

(ISO) for life-cycle assessment as ISO 14040 (2006) and ISO

14044 (2006), including research objectives and scope, inventory

analysis, and impact assessment.
Objectives and scope

LCA analyzed the environmental impact of different stages

of bio-oil production from algal cultivation to the end of

production (algal culture for aquaculture feed, soil bio-

stimulator; disrupted cells for a facial cleanser, and bio-oil),

which focuses on material consumption, energy use, and waste

generated during production.

The function unit is defined as producing 1 kg of products.

The actual process and system boundary of products are shown

in Figure 1. The system boundary considers all the energy and

material input and environmental output related to products

from cradle to gate. The system boundary does not include the

CO2 fixing process.
LCI analysis

The authors investigated three production data based on

previously reported inputs (Lu et al., 2021). According to

previous literature, the Chlorella cultivation facilities are

modeled from pilot-scale facilities (Lu et al., 2021). The

microalgal cells collected from the open pond, coagulation

(flocculation, algal slurry as the product), and centrifuging

processes were modeled for dewatering. Then, the algae

underwent pressure homogenization pretreatment to break cell

walls (disruption, cell extracts as the product) and facilitate lipid
Frontiers in Marine Science 03
extraction (bio-oil) (Clarens et al., 2011). The lipid was extracted

with a solvent (hexane) process called “wet lipid extraction” with

no intensive drying process needed. The input and output

parameters are included in the Supplementary information

(SI) (Table S1, Lu et al., 2021).
Impact assessment

eFootPrint is an online platform for analyzing LCA data by

IKE Environmental Technology Co., Ltd., and contains CLCD

and Ecoinvent (Jiao et al., 2019; Mi and Kunliang, 2019). CLCD

includes more than 600 LCI datasets for raw materials,

chemicals, energy, transportation, and waste treatment (IKE,

2012a; IKE, 2012b). The selected categories are global warming

potential GWP (kg CO2 eq), primary energy demand PED (MJ),

resource depletion-water WU (kg), acidification potential AP

(kg SO2 eq), abiotic depletion ADP (kg antimony eq.),

eutrophication potential EP (kg (PO4)3-eq), respiratory

inorganics RI (kg PM2.5 eq), ozone layer depletion ODP (kg

CFC-11 eq), photochemical oxidant formation POFP (kg

NMVOC eq), ionizing radiation IRP (kg U235 eq),

eutrophication (ET) ET (CTUe), human toxicity HT-cancer

(CTUh), HT-non cancer (CTUh), SO2 (kg), CO2 (kg), NOx

(kg), NH3-N (kg), chemical oxygen demand COD (kg), industry

water use IWU (kg), global warming potential agriculture GWP-

A (kg CO2 eq), nitrogen footprint agriculture NF-A (kg N eq),

potential water use agriculture (L H2O eq), and high NOx POCP

- photochemical oxidation (summer smog) (kg ethylene-Eq).
Results and discussion

Comparison of three Chlorella products

Originally, we collected as much LCA data as we could for

further analyses based on the eFootPrint platform. However, we

noticed a significant difference in some inventory impacts and
FIGURE 1

Product system for autotrophic microalgal biomass, bio-oil, total fatty acids, and other products.
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obtained different LCA results. Due to the unavailability of GaBi

currently, we chose a simple sample for autotrophic cultivation

of Chlorella (Lu et al. (2021) based on Chinese standards on the

eFootPrint platform.

The LCA results for flocculation, disruption, and bio-oil from

Chlorella production are presented in Figure 2. In general, the

environmental impacts of the first two products were less than

those of bio-oil production, with the most significant impact of

primary energy demand PED and human toxicity HT non-cancer

and cancer (Figure 2). The flocculation step had the same impacts

as the disruption in all other indexes except for lower primary

energy demand PED and human toxicity HT non-cancer and

cancer. For flocculation and disruption stages, the algal cultivation

caused more than 80% of the total impacts in all categories (as

23.778 kWh electricity, 0 heat MJ per 1 kg), making this stage a

critical stage of environmental impacts. For bio-oil production,

heat (6.830 MJ per 1 kg, with 0.51 kWh electricity) was the

secondary contributor to the total impacts. Thus, algal processing

stages like disruption and oil extraction contributed much fewer

impacts than the cultivation stage in this case.

For all selected impact categories except for water use WU

and NH3-N (Figure 3), their LCA results showed the same trend,
Frontiers in Marine Science 04
i.e., electricity caused 64%~93% of the impacts of all three

productions. In contrast, freshwater and polyacrylamide

(PAM) contributed to the impacts of WU (93.1%) and NH3-N

(79.4%), respectively (Figures 3A, B). For bio-oil production,

heat and NaOH contributed more to HT non-cancer and cancer

than urea and diammonium phosphate (DAP) in the

flocculation and disruption stages.

Based on LCA results, the three production stages, that is,

flocculation, disruption, and bio-oil production, increased 0.59–

0.67 kg of CO2 per 1-kg product (Figures 3A–C; Table S1). If the

autotrophic cultivation of 1 kg Chlorella can absorb 1.8–2.0 kg

CO2, in all three stages in this study, we will have a 1.2–1.6-kg

CO2 sequestration.
Comparison of three microalgal products

The potential environmental impact of LCA results in 1-kg

algal powders of Haematococcus and Desmodesmus subspicatus

and 1 kg of total fatty acid (TFA) from Nannochloropsis oceanica

production, which were adapted from the literature and are

presented in Figures 4A–C.
A

B

FIGURE 2

Contribution to relevant environmental impact categories for three steps as flocculation, disruption, bio-oil, the production of 1 kg bio-oil the
production of 1 kg bio-oil production with Chlorella for the eFootPrintas. Contributions with low (A) and relative high impact values (B),
respectively.
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A

B

C

FIGURE 3

Potential environmental impact for the production steps as 1 kg of flocculation (A), disruption (B), bio-oil, (C) the production of 1 kg bio-oil with
Chlorella for the eFootPrint. The total impacts were set as 100% in the figures. Global warming potential GWP (kg CO2 eq), primary energy
demand PED (MJ), resource depletion-water WU (kg), acidification potential AP (kg SO2 eq), abiotic depletion ADP (kg antimony eq.),
eutrophication potential EP (kg (PO4)3-eq), respiratory inorganics RI (kg PM2.5 eq), ozone layer depletion ODP (kg CFC-11 eq), photochemical
oxidant formation POFP (kg NMVOC eq), ionizing radiation IRP (kg U235 eq), eutrophication (ET) ET (CTUe), human toxicity HT-cancer (CTUh),
HT-non cancer (CTUh), SO2 (kg), CO2 (kg), NOx (kg), NH3-N (kg), chemical oxygen demand COD (kg), industry water use IWU (kg), global
warming potential agriculture GWP-A (kg CO2 eq), nitrogen footprint agriculture NF-A (kg N eq), potential water use-agriculture (L H2O eq),
high NOx POCP - photochemical oxidation (summer smog) (kg ethylene-Eq).
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Energy consumption contributed to all scenarios during algal

cultivation, separation, and drying to the global warming potential

and other catalogs such as ozone depletion, acidification, ionizing

radiation, human toxicity, eutrophication, and fossil depletion. For

all microalgal products, we selected in this study energy, including
Frontiers in Marine Science 06
electricity, lighting, LED, piping, and other energy for the process,

which was classified as the significant impact. Lighting and LED,

together with sunlight for outdoor cultivation, are necessary for

algal photosynthetic growth. In Haematococcus production, energy

impacts (lighting, LED, energy for the process, and piping)
A

B

C

FIGURE 4

Potential environmental impact for the production of (A) 1 kg of H pluvialis using Green Wall Panel as photobioreactors. Climate change (CC),
terrestrial acidification (TA), ionizing radiation (IR), human toxicity (HT), water depletion (WD), terrestrial ecotoxicity (TET), ozone depletion (OD),
freshwater eutrophication (FE), freshwater ecotoxicity (FET), metal depletion (MD), fossil depletion (FD), agricultural land occupation (ALO);
(B) 1 kg of Desmodesmus subspicatus using NPK culture medium. climate change (CC), ozone depletion (OD), human toxicity (HT),
photochemical oxidant formation (POF), particulate matter formation (PMF), ionizing radiation (IR), terrestrial acidification (TA), freshwater
eutrophication (FE), marine eutrophication (ME), terrestrial ecotoxicity (TET), freshwater ecotoxicity (FET), marine ecotoxicity (MET), agricultural
land occupation (ALO), urban land occupation (ULO), natural land transformation (NLT), water depletion (WD), metal depletion (MD), fossil
depletion (FD); (C) 1 kg of TFA from Nannochloropsis oceanica using NPK culture medium. Climate change (CC), particulate matter (PM),
freshwater eutrophication (FE), mineral, fossil, and renewable resource depletion (MFRRD), land use, water resource depletion (WSD).
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accounted for 97.35% of GWP production at the cultivation stage.

Moreover, lighting and LED showed 77.78% energy consumption

(Figure 4A). Even in 1-kg TFA production from Nannochloropsis,

infrastructure was counted for GWP production with electricity still

showing 31.94% contribution (Figure 4C). Furthermore, energy or

electricity consumption in algal cultivation and production

accounted for the greatest contributions to ozone depletion,

acidification, ionizing radiation, human toxicity, eutrophication,

and fossil depletion.

For the global warming potential catalog, 1 kg of

Haematococcus produced 95.34 kg GWP and 1106~4015 kg

CO2-equiv for 1-kg astaxanthin production based on different

country standards. In comparison, 0.8 kg CO2-equiv was

produced for the total fatty acid of Nannochloropsis, and -1.24 kg

CO2-equiv was obtained for 1 kg of Desmodesmus (Figure 4B).

Water and nutrients are necessary for algal growth and

biomass production. Since autotrophic cultivation depends on

light penetration for algal photosynthesis, the cell density of

algae growing in raceway ponds or photobioreactors could only

maintain on average levels of 0.5–3.0 kg DW/l. Thus, a massive

volume of water will be required for algal growth and biomass

production, and dewatering or drying will be necessary for some

scenarios. In most cases, water is recycled, and thus in LCA

results, water itself showed little impact on human health and

the lowest for resource damages.

Land and water resources are often the critical limiting

factors for the large-scale cultivation of microalgae. When the

raceway open pond is adopted to cultivate microalgae, large-

scale cultivation could obtain high economic benefits compared

to other closed photobioreactors. Therefore, it is necessary to

occupy a particular land area (Zhao and Huang, 2021). In one of

our samples, production of 1 kg TFA from Nannochloropsis, the

infrastructure, electricity, and other operational materials

accounted for 80.68% of an average 31.15 land use (kg C

deficit) (Gaber et al., 2021). For a raceway pond, a total of

8,000-l volume of culture required a 32-m2 cultivation area to

produce 9–12 kg algae in 10 days with agriculture land

occupation of 1.4 m2a per 1 kg of algal powder (Schneider

et al., 2018).
Different microalgal species and
culture medium

Compared with water, more environmental impacts were

observed for nutrients for algal production. In the production of

Desmodesmus, nutrients (fertilizers with N, P, K) have significant

impacts on acidification (32.27%), PM formation (25.5%),

eutrophication (14.34%), food depletion (15.9%), human

toxicity (12.35%), POF (12.4%), and ecotoxicity (7.2%). Since

1-kg production of NaNO3 requires 26.6 MJ of energy, any

reduction in the nutrient use or alternative chemicals would
Frontiers in Marine Science 07
directly affect the energy demand and subsequently the

environmental performance of the process (Schneider

et al., 2018).

It is well known that nutrients such as urea, glucose, and

NH4NO3 in the culture medium can contribute to

environmental impacts such as acidification, eutrophication,

and ecotoxicity (Ye et al., 2018; Guo, 2019; Nawkarkar et al.,

2019; Lu et al., 2021). Also, nutrient input is the main factor

leading to the change in total environmental impact when the

power input per bio-oil production unit decreases under

heterotrophic cultivation using Chlorella (Lu et al., 2021). Such

significant differences between culture medium, growth, and

lipid productivity indeed contribute to different environmental

impacts and human health damages and benefits. An LCA was

conducted on Chlorella species producing biodiesel and

remediating wastewater (WW) compared with BG11 and TAP

as culture medium, respectively, showing the highest lipid and

biomass productivity and almost twice fatty acid methyl ester

(FAME) inWW compared to BG11 and TAPmedia (Nawkarkar

et al., 2019).

In a previous Spirulina LCA, the urea used in algal

cultivation contributed to 69% of the total impact because the

acidification of urea production was much higher than in other

industries. The sodium bicarbonate caused 13.5% of the

acidification potential, and electricity use caused the other 10%

(Ye et al., 2018).

For the 1-t Chlorella production for biofuels (Guo, 2019), the

most output catalog is CO2, 6.68 × 103 kg, with other greenhouse

gases such as CH4, SO2, NOx, CO, and NMVOC at the 19–1.14-

kg levels. Among all stages, algal cultivation contributed the

highest CO2 (55.23%), and algal harvesting counted the second

(30.84%). LCA results showed that GWP at algal cultivation was

-5.45 × 103 kg CO2-equiv, since green algal cells absorbed CO2

for photosynthesis and growth, and the amount of CO2

absorption was more significant than emission during

electricity and other energy used for productions (+3.26 ×

103 kg CO2-equiv). In the end, the production of algal biofuels

is a process of CO2 sequestration (Guo, 2019).

COD, as the most significant output into the water, was

majorly demised at the stage of algal harvesting, 51.61% of the

total 3.41 kg. Thus, based on the environmental impacts, the

stages with the most contribution were algal harvesting and

cultivation, while environmental pollution caused by bio-oil

extraction and esterification was the lowest (Guo, 2019). The

AP catalog contribution list consisted of harvesting (54%),

cultivation (23%), and bio-oil (19%) extraction. EP contributed

to algal cultivation and harvesting (Guo, 2019).

InDesmodesmus subspicatus biomass production in a raceway

pond (8,000 l), electricity input during algal cultivation was 360.8

kWh, with 8.96 and 5.95 for flocculation, 25.5 for centrifugation,

and 26.4–52.8 for oven drying (Schneider et al., 2018). During the

process of algal biofuels, the electricity contributed the most of
frontiersin.org
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GWP, AP, EP, and POCP (photochemical oxidation); ADP fossil

and urea contributed to ADP, fossil, and GWP; and electricity for

algal drying caused AP (Guo, 2019).

In summary, autotrophic algal cultivation for biofuels

reduced CO2 and caused a negative increase in greenhouse

gases; however, a huge amount of electricity and fertilizers was

used and caused the depletion of fossil oils, acidation,

eutrophication, and POCP (Guo, 2019). We could calculate

the CO2 fixed from total algal biomass obtained by

autotrophic cultivation, considering that 1 kg of algal biomass

corresponds to approximately 1.83 kg of fixed CO2 (Pires, 2017).

In our system, we used atmospheric CO2, and therefore, the

fixation was 22 kg CO2 (−14.87 kg CO2 eq total) for production

in NPK solution. The effect in the climate change category made

the use of a culture medium named as NPK solution more

interesting because there is 23% less kg CO2 eq in the

atmosphere in this case (Schneider et al., 2018).

Wastewater (WW) has organic and inorganic supplements

required for algal growth. The coupling of microalgae with WW

is an effective way of waste remediation and cost-effective

microalgal biofuel production (Bhatt et al., 2014). Nawkarkar

et al. (2019) proposed that WW is better for microalgal products

using Chlorella species. In another previous study, the long-term

impacts were lower when the Desmodesmus cultures were grown

in WW than other culture media in a raceway pond (Schneider

et al., 2018).

Many microalgal species, such as Scenedesmus sp.,

Dunaliella tertiolecta, Pleurochrysis carterae, Botryococcus

braunii, Chlorella sorokiniana, and C. vulgaris, have shown

potential for remediation of WW and have been extensively

studied (Podder and Majumder, 2016; Asadi et al., 2019;

Nawkarkar et al., 2019; Chen et al., 2020; Ye et al., 2020;

Aggarwal et al., 2021; Mohseni et al., 2021). They showed

different growth patterns and various qualities of FAME for

biofuels under different WW and culture conditions (Nawkarkar

et al., 2019).
Process and products

When single-celled algal cells are agglomerated, the

separation or dewatering is more efficient. Flocculation has

been used successfully for this purpose. After separation, the

supernatant was returned to the process, and the biomass was

dried (Schneider et al., 2018). Compared with separation of the

biomass by electroflotation (Al or Fe), NaOH flocculation has

higher values mainly for climate change and human toxicity, due

to the NaOH used (Schneider et al., 2018). The biomass can also

be separated directly by culture medium centrifugation, with

much more time and energy consumption: 25.5 kWh for

centrifuge vs. 5.95~8.96 kWh for Fe or Al flocculations in

Desmodesmus subspicatus 8,000-l raceway cultivation
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(Schneider et al., 2018), and 1.0 kg MJ-1 for centrifuge vs.

0.01–0.1 kg MJ-1 for FeCl3 flocculation of Scenedesmus

dimorphus in a raceway pond (Mediboyina et al., 2020).

Similarly, moderate electricity requirements were needed for

the centrifuge harvest of Haematococcus in different

photobioreactors (Onorato and Rösch, 2020). Centrifugation

has no environmental impacts related to the use of chemical

components of NaOH; however, the cost of energy consumption

is higher for centrifugation (Schneider et al., 2018; Mediboyina

et al., 2020; Onorato and Rösch, 2020). Thus, electro-flotation

could be a better choice for algal separation than chemicals such

as aluminum sulfate or NaOH flocculation. Furthermore, it was

reported that flocculation followed by centrifugation has smaller

impacts than centrifugation alone for all of the environmental

impact categories, since much lower water contents are left for

centrifuge after flocculation (Collotta et al., 2017). Flocculation

combined with centrifuge could probably be an energy-saving

process for single-celled algal dewatering.

Due to energy consumption, biomass drying still contributes

to many environmental impacts. The biomass was obtained with

~40% and ~80% water after centrifugation and filtration,

respectively. Different water percentages of biomass result in

different drying times and energy consumption in the volume of

water. In Haematococcus, downstream processes such as

filtration, centrifugation, and spray drying with 1.5%–10%,

10%–20%, and 90%–95% of solid concentrations, respectively,

cost 640, 219, and 92,000 kWh/year in flat panel airlift (FPA)

bioreactors (Onorato and Rösch, 2020). Drying is

environmentally friendly, but it still consumes a huge amount

of electricity. For different final algal products, the drying

process can be omitted. For example, lipid extraction from

algal slurry resulted in a 43.83% improvement in the life cycle

of algal biodiesel compared to the extraction of lipids from dried

algae (Jian et al., 2015).

The life cycle assessment of Spirulina tablets revealed that

edible algal production has two to five times high environmental

impacts than algal biofuels due to the high contents of nutrients

used in the algal cultivation stage and electricity use for various

downstream processes. To decrease the economic cost and

environmental impacts of algal food products, several

strategies such as strain selections, photo-bioreactor design

improvements, use of alternative renewable energy, and

recycling of CO2 could be considered and adapted (Ye

et al., 2018).

Due to the energy and material costs during algal cultivation

and product production, current algae-based commercial

products are still relatively higher than other products in the

market. The ability for algae-based products to compete

effectively at scale in new and existing markets, such as food,

bio-oil, and bio-materials, will inevitably be based on price but

also comparable reductions in environmental impact (Grierson

et al., 2013). For example, using algal omega-3 DHA in feed can

reduce pressure on fish requirements and marine resources
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(Davis et al., 2021). Optimizing protein production using C.

pyrenoidosa on wastewater could significantly reduce

environmental impact by ~4.5 times as one of the most

sustainable alternative protein sources against pork and beef

(Smetana et al., 2017). In all, algae-based bioproducts will be

more environmentally friendly.
Land selection and CO2 resources

Although algae are not competing with traditional terrestrial

crops for valuable agricultural land, algal autotrophic massive

cultivation on a large scale, i.e., 1,000 m3 or more, still has

limitations of land as a resource (Quinn and Davis, 2015). The

annual average lipid productivity modeled in Pate et al. (2011)

and Quinn et al. (2011) was 19.6, 4.64, and 18 m3 ha-1 year-1,

respectively. Differences in land availability and geographic

restriction assumptions led to differences in land availability

results, 19, 43, and 75 million hectares reported (Pate et al., 2011;

Quinn et al., 2011; and Quinn and Davis, 2015), respectively. If

we consider algal biomass and other bioproducts for massive

cultivation, we could refer to the model based on the

photosynthetic efficiency and fixed lipid content (Quinn

et al., 2011).

In this study, air containing CO2 or food-grade CO2 was

used for CO2 resources (Lu et al., 2021). Carbon dioxide

represents an essential nutrient, but many studies

underestimate the CO2 transport and delivery cost. Challenges

associated with the economical delivery and utilization of CO2

have typically been ignored in previous LCA studies (Quinn and

Davis, 2015). The co-location of algal bioreactors with industrial

waste CO2 could significantly reduce costs and environmental

impacts. Pate et al. (2011) reported that for a lipid yield estimate

of 19 m3 ha-1 year-1, results show that approximately 20 billion

gallons of fuel can be produced annually without night storage,

based on point-source CO2 availability constraints. Considering

both land use and CO2 availability, we proposed that the massive

algal production field could be located not in the advanced area

like Southern China but instead in the North-Western region

(Liang et al., 2013; Guo 2019).
Autotrophic vs. heterotrophic styles

Some microalgae could grow under autotrophic and

heterotrophic conditions (Smetana et al., 2017; Lu et al., 2021;

Dai et al., 2022). A new functional food, Euglena gracilis, shows

significantly different cellular components under autotrophic and

heterotrophic cultivation, such as high contents of proteins

(~55% DCW) in green Euglena powder (autotrophic) and 75%

+ b-1,3-glucan contents in yellow powder (heterotrophic) (Dai

et al., 2022). In this case, different product requirements from
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E. gracilis, proteins, or glucan determine the cultivation style.

Heterotrophic cultivation also has its own advantages, especially

for total fatty acid and lipid production. For some heterotrophic

microalgae, such as Auxenochlorella protothecoides, the lipid

content could reach up to 60% and total lipid productivity far

higher than that of autotrophic algae (Xiong et al., 2008).

Furthermore, algal dark fermentation generates higher neutral

lipids and triglycerides and lower phospholipids and proteins

than autotrophic algae (Wu et al., 2015). Otherwise, the

environmental compacts under different cultivation styles

should be carefully evaluated. A previous study indicated high

impacts related to heat and energy use (autotrophic) and glucose

for microalgal feed (heterotrophic) (Smetana et al., 2017). On the

other hand, oil produced from heterotrophic Chlorella sp. only

had lower impacts in acidification, eutrophication, carcinogens,

and ecotoxicity when compared to the autotrophic Chlorella sp.

(Lu et al., 2021). Due to its high biomass density, the harvest stage

with a drying step for heterotrophic algae certainly has fewer

impacts than autotrophic algae (Aggarwal et al., 2021; Lu et al.,

2021). Together with a much lower water content of fermentative

algae than autotrophic algae, a better economic and energy

performance than autotrophic algae for bio-oil production can

be concluded, although carbon source (e.g., glucose) is needed for

heterotrophic algal growth and lipid biosynthesis (Lu

et al., 2021).
Conclusions

This study focused on the comparative LCA of autotrophic

cultivated microalgae coupled with CO2 capture and various

downstream processes for algal slurry, algal powder, total fatty

acid, lipids, bio-oil, and tablet production. This is also the

limitation of this study with separated data collected from

different countries and regions. With more consistent system

boundaries, the same production pathway architecture,

standards, and bigger databases, LCA of microalgae could be

more helpful and useful for a greener earth planet.

Based on these comparisons and analyses, we proposed

several recommendations for massive autotrophic cultivation

improvement: i) strain development, optimum algal cultivation,

biomass separation, and drying techniques with low

environmental impacts; ii) use mainly of WW for algal

cultivation; iii) careful final product selection which could

lower the microalgal industry environmental impacts, making

them more environmentally friendly, in which bioplastics could

be one option if LCA verifies; iv) land selection plus electricity

renewable energy such as photovoltaic systems, together with

thermal power plants nearby for CO2 or flue gas.

Afterward, the autotrophic algal cultivation system would

considerably achieve an energy-efficient, sustainable, and

negative CO2 production green production process.
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