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Editorial on the Research Topic

Novel technologies for assessing the environmental and ecological
impacts of marine renewable energy systems
The continued expansion and worldwide adoption of renewable energy systems,

including marine renewable energy (MRE) technologies, is essential for addressing

climate change (IPCC, 2019; IRENA, 2020; IPCC, 2022). Globally, the amount of

potentially harvestable tidal stream and wave energy from nearshore areas is sufficient

to meet current worldwide energy demand (Mørk et al., 2010; IRENA, 2020). However,

the share of MRE in global electricity generation falls far short of this potential due to the

current small scale of deployments; typically, single devices or small-scale arrays. MRE

expansion to larger, commercial scales may contribute to addressing the climate crisis,

but is hampered by a variety of factors, including uncertainty about their environmental

effects (Neill et al., 2012; Kempener & Neumann, 2014a; Kempener & Neumann, 2014b;

Copping et al., 2016).

Environmental monitoring around MRE devices has typically relied on standard

oceanographic and remote-sensing instruments not intended for use in the complex

hydrodyna0mic conditions typical of tidal channels and the nearshore regions where MRE

development is planned (Hasselman et al., 2020). Exposure of environmental monitoring

instruments to dynamic marine conditions has revealed challenges that have stimulated

pioneering research and innovations in the technologies and approaches for understanding

the effects of MRE devices on marine ecosystems. This Research Topic has compiled

contributions from authors leading cutting-edge research advancing our understanding of

the environmental and ecological effects of MRE development, thereby facilitating the

expansion of the sector and accelerating progress in addressing the climate crisis.
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Advances inmachine learning are enhancing our understanding

of the environmental effects of MRE devices. Multibeam imaging

sonars and optical cameras are frequently used to monitor for

interactions of marine animals with MRE devices, but post-

processing is laborious, and the accurate identification of species

remains challenging. Using convolutional neural networks and

Kalman filters, Kandimalla et al. (2022) developed an automated

real-time deep-learning framework for the accurate detection,

tracking, species identification, and enumeration of fish recorded

using a DIDSON imaging sonar and optical cameras. This achieved

relatively high performance, though results were highly dependent

on the quality of training data. Although the method was developed

using data collected froma river and hydroelectric facility, it could be

applied to monitoring MRE devices with site-specific retraining.

Machine learning is also enhancing the application of

echosounders for monitoring fish in tidal channels. Turbulent

hydrodynamics can entrain air in the water column that must be

excluded before analyses, but the boundary of entrained air is

porous, and its penetration depth can vary, complicating its

identification and removal. Using echosounder data from tidal

channels in Nova Scotia, Lowe et al. (2022) applied a deep

learning approach to develop ‘Echofilter’ – a new model that

accurately (>95%) identifies the boundary of entrained air, and

reduces the post-processing time for raw echosounder data by

50%. Echofilter improves the standardization and repeatability

of this process by removing the subjectivity inherent to manual

post-processing.

It is also important to understand the implications of removing

data contaminated by entrained air on estimates of fish abundance

and distribution at MRE sites. Using echosounder data from Nova

Scotia,Viehmanet al. (2022) found little influenceof entrained air on

estimates offish abundance and vertical distribution from the lower

70% of the water column and during current speeds < 3 m/s.

However, the upper water column and faster current speeds were

under-sampled, limiting accurate quantification of fish abundance

and distribution at those times. These results highlight the value of

complementary technologies that monitor animal movements for

understanding potential environmental effects of MRE devices.

One of these technologies is acoustic telemetry. Bangley et al.

(2022) demonstrate an approach to develop a predictive species

distribution model for migratory fish species using fish

implanted with acoustic tags that can be detected at various

monitored locations. The authors matched physical

oceanographic variables with tag detections of the species at

receiver stations and used boosted regression tree analyses to

generate a predictive species distribution model for striped bass

in the Bay of Fundy. This framework can be applied to other fish

telemetry datasets, and turbine specific parameters can be

integrated to generate encounter rate models for quantifying

the risk of MRE devices.

The integration of complementary monitoring technologies

into subsea monitoring packages to facilitate continuous

operation over extended periods and provide monitoring data
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in real-time is a noteworthy advance in facilitating the expansion

of the MRE sector. Gillespie et al. (2022) describe the

development of a cabled subsea monitoring platform equipped

with high-frequency multibeam sonars and a tetrahedral array of

high-frequency hydrophones for monitoring the fine-scale

movements of marine mammals around operational tidal

stream turbines. The results proved the system to be highly

reliable, and the platform will be deployed close to an

operational turbine in 2022.

Work from tidal channels has improved our understanding

of how hydrodynamics can influence species distributions (e.g.,

turbulent features may increase the availability of prey to

predators). Knowledge of these associations is important for

understanding potential environmental effects of MRE

development. Slingsby et al. (2022) used drone imagery to

quantify associations of diving seabirds (auks) with turbulence

features. They found that auks primarily oriented themselves

across the flow, and that density distribution was influenced by

current velocity and tide phase, frequently coinciding with kolk-

boils at the sea surface. This work highlights the value of drones

for environmental monitoring and collection of seabird data that

is difficult using conventional survey methods.

Cost-effective and practical monitoring approaches are

needed to advance the MRE sector. Fraser and Waggitt (2022)

describe an approach for providing site-specific data on diving

seabird behavior and prey assemblages using shore-based

observation and baited fish traps. The information gathered

using this approach provides metrics that inform environmental

impact assessments and collision risk models for seabirds and

site-specific data on prey assemblages in a cost-effective manner

that will facilitate the responsible development of the

MRE sector.

The studies compiled herein highlight recent advances for

understanding the environmental and ecological effects of MRE

development. Additional innovations will be needed to help

facilitate the deployment of MRE devices at scales that can help

address climate change, and this should include social science

research on social, cultural and economic impacts.
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