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Fine-scale ensemble species
distribution modeling of
eelgrass (Zostera marina)
to inform nearshore
conservation planning and
habitat management

John M. O’Brien*, Melisa C. Wong † and Ryan R.E. Stanley †

Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada
Baseline data on the distribution and extent of biogenic habitat-forming species

at a high spatial resolution are essential to inform habitat management strategies,

preserve ecosystem integrity, and achieve effective conservation objectives in

the nearshore. Model-based approaches to map suitable habitat for these

species are a key tool to address this need, filling in gaps where observations

are otherwise unavailable and remote sensing methods are limited by turbid

waters or cannot be applied at scale. We developed a high resolution (35 m)

ensemble species distribution model to predict the distribution of eelgrass

(Zostera marina) along the Atlantic coast of Nova Scotia, Canada where the

observational coverage of eelgrass occurrence is sparse and nearshore waters

are optically complex. Our ensemble model was derived as a performance-

weighted average prediction of 7 different modeling methods fit to 6 physical

predictors (substrate type, depth, wave exposure, slope, and two bathymetric

position indices) and evaluated with a 5-fold spatially-blocked cross-validation

procedure. The ensemble model showed moderate predictive performance

(Area Under the Receiver-Operating Characteristic Curve (AUC) = 0.803 ±

0.061, True Skill Statistic (TSS) = 0.531 ± 0.100; mean ± SD), high sensitivity

(92.0 ± 4.5), and offered some improvement over individual models. Substrate

type, depth, and relative wave exposure were the most influential predictors

associated with eelgrass occurrence, where the highest probabilities were

associated with sandy and sandy-mud sediments, depths ranging 0 m – 4 m,

and low to intermediate wave exposure. Within our study region, we predicted a

total extent of suitable eelgrass habitat of 38,130 ha. We found suitable habitat

was particularly extensive within the long narrow inlets and extensive shallow

flats of the South Shore, Eastern Shore, and Bras d’Or Lakes. We also identified

substantial overlap of eelgrass habitat with previously identified Ecologically and

Biologically Significant Areas that guide regional conservation planningwhile also

highlighting areas of greater prediction uncertainty arising from disagreement

among modeling methods. By offering improved sensitivity and insights into the

fine-scale regional distribution of a habitat-forming species with associated

uncertainties, our ensemble-based modeling approach provides improved
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support to numerous nearshore applications including conservation planning

and restoration, marine spatial and emergency response planning,

environmental impact assessments, and fish habitat protection.
KEYWORDS

seagrass, eelgrass (Zostera marina), species distribution models, ensemble modeling,
predictive mapping, uncertainty estimation, conservation planning, coastal
habitat management
Introduction

Large marine macrophytes such as seagrasses, kelps, and

mangroves provide important biogenic habitat in nearshore

ecosystems (Norderhaug et al., 2012; Rodil et al., 2021) that

generate substantial primary production (Cebrian, 1999) and

high rates of detrital export that subsidize adjacent ecosystems

(Cebrian, 1999; Krumhansl and Scheibling, 2012). However,

alarming global trends of decline have been observed across

major coastal biogenic habitats (Waycott et al., 2009; Krumhansl

et al., 2016; Goldberg et al., 2020; Dunic et al., 2021) and

projected climate-mediated range reductions driven by loss of

suitable coastal habitat and warm-edge contractions outpace

poleward expansion (Record et al., 2013; Chefaoui et al., 2018;

Wilson and Lotze, 2019; Wilson et al., 2019b). These reductions

threaten seagrass and kelp habitats and their continued

provision of ecosystem services (Smale et al., 2013; Namba

et al., 2018). Economic value of services provided by

seagrasses, kelp beds, and mangroves, such as coastal

protection, nutrient cycling, fisheries production, recreational

opportunities, and carbon sequestration, range from $100s −

$100,000s USD ha-1 yr-1 (Barbier et al., 2011; Dewsbury et al.,

2016; Himes-Cornell et al., 2018; Eger et al., 2021).

Consequently, there is strong motivation behind ambitious

calls for habitat protection and restoration (van Katwijk et al.,

2016; Eger et al., 2020; Buelow et al., 2022). These strong

ecological and economic rationales for protection, however,

are juxtaposed with a lack of fine-scale data on the distribution

and extent of these important ecosystems at regional scales,

which hinders the application and success of conservation

planning and targeted habitat rehabilitation programs.

Optical and hydroacoustic remote sensing methods have

been widely adopted for mapping shallow submerged aquatic

vegetation (SAV) in the nearshore at relatively fine spatial

resolutions (cm – 10s m), but limitations and trade-offs among

the range of techniques preclude a universal solution for all

monitoring and management applications (Rowan and

Kalacska, 2021). Differences among optical remote sensing

platforms impose trade-offs between resolution (spatial,

temporal, and spectral), extent (spatial and temporal), and
02
start-up costs (Cavanaugh et al., 2021). For example, while

freely available Landsat imagery has been used to map

regional scale distributions (Torres-Pulliza et al., 2013) and

historic trends of seagrasses (Knudby et al., 2010), the larger

pixel size and lower spectral resolution limits the ability of this

system to discriminate species (Phinn et al., 2008), functional

benthic groups (Knudby et al., 2010; Torres-Pulliza et al., 2013)

or to detect sparse vegetation (Phinn et al., 2008; Torres-Pulliza

et al., 2013). In contrast, hyperspectral and commercial

multispectral sensors can map abundance and species

composition of SAV at a high spatial resolution (m’s),

although they are largely restricted to smaller spatial extents

(bays or estuaries) and optically shallow water (< 2 − 3 m)

(Phinn et al., 2008; Hill et al., 2014; Roelfsema et al., 2014;

Vahtmäe et al., 2020). The rapid attenuation of light with depth

obscures the spectral reflectance from benthic vegetation, which

is exacerbated in turbid waters (Vahtmäe et al., 2020; Cavanaugh

et al., 2021). Furthermore, mismatches between patch and

landscape characteristics with sensor radiometric and spatial

resolution can hinder the detection of sparse or patchy

vegetation by even high-resolution multispectral and

hyperspectral systems (Phinn et al., 2008; Barrell et al., 2015;

Vahtmäe et al., 2020). Acoustic mapping methods using side

scan sonar, single- or multi-beam echosounders can produce

high-resolution maps of SAV distribution and abundance, and

are not limited by turbidity (Komatsu et al., 2002; Gumusay

et al., 2019) or some of the detection-limit issues of optical

methods (Barrell et al., 2015). However, they are generally

limited in the spatial extent of application (ha – 1000s ha).

Therefore, the ability of remote sensing methods to produce

high-resolution maps of submerged macrophytes at large

regional scales may be challenged in turbid, temperate coastal

waters where vegetated habitats exist in patchy mosaics and

across broad depth gradients.

Advances in predictive habitat mapping and species

distribution models (i.e., ecological niche or habitat suitability

models) offer complementary approaches for evaluating the

distribution and extent of SAV and other biogenic habitats

that circumvent some of the limitations of remote sensing,

while providing additional advantages. Species distribution
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models (SDMs) relate discontinuous species occurrence records

to environmental covariates using a variety of regression or

machine learning techniques, enabling continuous predictions

of distributions over large spatial extents (Guisan &

Zimmermann, 2000; Elith et al., 2006). This predictive power

facilitates the mapping of distributions far beyond depth limits

of remote sensing techniques (e.g., the deep-sea; Knudby et al.,

2010) or in other environments where sampling is logistically

difficult and remote sensing is challenged such as the Arctic

(Jenkins et al., 2020; Goldsmit et al., 2021) or turbid coastal

waters (Schubert et al., 2015). SDMs also permit hindcasts to

paleoclimatic conditions (Chefaoui et al., 2017; Assis et al., 2018)

or forecasts to future climate scenarios (Valle et al., 2014; Wilson

and Lotze, 2019; Wilson et al., 2019b; Hu et al., 2021) to predict

past distributions and projected range shifts, respectively. In

addition, SDM methods provide other useful insights into

species-environment relationships including identifying the

environmental variables that most constrain species

occurrence (Breiman, 2001), characterizing the marginal effects

of these variables (Elith et al., 2005), and mapping uncertainty

associated with the model predictions (e.g., Beazley et al., 2021).

Despite the potential for SDM techniques to guide

management practices for SAV in the nearshore (e.g.,

prioritization of areas for conservation within coastal Marine

Spatial Planning - MSP), a lack of consistency in predictions

among modeling methods may detract from confident

management decisions. Even as the range of modeling

methods has proliferated rapidly (Guisan and Zimmermann,

2000; Elith et al., 2006), the overall performance (Elith et al.,

2006; Dormann et al., 2008; Grenouillet et al., 2011; Guo et al.,

2015) and spatial predictions (Pearson et al., 2006; Dormann

et al., 2008; Ochoa-Ochoa et al., 2016) can vary widely among

modeling approaches. While particular species characteristics

(e.g., prevalence, geographic and environmental range, genetic

variation) are known to effect model performance (Segurado and

Araújo, 2004; Grenouillet et al., 2011; Guo et al., 2015; Lowen

et al., 2019), there remains little practical guidance to inform

model selection based on optimized performance for particular

species groups (Segurado and Araújo, 2004; Elith et al., 2006),

regional contexts (Elith et al., 2006), or intended model

applications (Elith and Graham, 2009). In light of this

variation, ensemble models that average the predictions of

numerous methods have been proposed (Araújo and New,

2007). These ensemble-based modeling approaches

incorporate the predication variability among different

modeling methods to produce a combined SDM that in many

cases offers improvement over individual models (Meller et al.,

2014). This approach is particularity advantageous when applied

over a wide range of environmental conditions where prediction

accuracy associated with boundary conditions (e.g.,

environmental extremes) can be limited (Grenouillet et al.,

2011). Despite these advantages and evidence for improved

performance of ensemble-based approaches (Grenouillet et al.,
Frontiers in Marine Science 03
2011; Guo et al., 2015), there has been considerably less uptake

by marine SDM studies compared to terrestrial environments

(Hao et al., 2019). The few examples of ensemble models for

seagrasses (Chefaoui et al., 2016; Chefaoui et al., 2017; Chefaoui

et al., 2018; Chefaoui et al., 2021) and kelps (Goldsmit et al.,

2021) have demonstrated the potential applications of this

approach for SAV and often highlight improved performance

compared to individual models. These studies made use of

widely available climatic predictors for ensemble construction

and projections; consistent with the typical application of

ensemble models (Hao et al., 2019). However, the relatively

coarse spatial resolution of these predictors abstracts from the

scale required for local conservation planning and habitat

management. Furthermore, these studies generally modelled

species with relatively restricted geographic ranges, which are

known to yield higher accuracy and greater consensus among

models compared to widely distributed species and habitat

generalists (Segurado and Araújo, 2004; Grenouillet et al., 2011).

Among seagrass species, eelgrass (Zostera marina) occupies

the largest geographic range and exhibits a broad environmental

niche (Blok et al., 2018), complicating the task of regional habitat

managers to identify priority areas. In eastern Canada, located

centrally within its Northwest Atlantic range, eelgrass is

considered an ecologically significant species (DFO, 2009),

provides nursery habitat to juvenile fish (Laurel et al., 2003;

Warren et al., 2010), and may enhance benthic secondary

production (Wong, 2018). Because of this biogenic habitat

value, eelgrass has been prioritized in regional conservation

planning (DFO, 2018) and habitat protection guidelines (DFO,

2012) and benefits from additional risk mitigation with respect

to fish habitat outlined in Canada’s Fisheries Act. However,

effective protection measures are impeded by large regional

gaps in the observed distribution and extent of eelgrass. For

example, along the Atlantic coast of Nova Scotia, eelgrass

occurrence records are patchy and remote sensing mapping

efforts have been relatively limited in spatial extent

(Vandermeulen, 2014; Wilson et al., 2019a; Wilson et al.,

2020). Detection of eelgrass with satellite imagery in this

region has also proved challenging due to the optical

complexity of coastal waters (Wilson et al., 2019a; Wilson

et al., 2020), mixed occurrences with subtidal seaweeds

(O’Brien & Wong unpubl.), and the broad gradients in depth

and environmental conditions occupied by eelgrass (Wong,

2018; Krumhansl et al., 2020). Under these circumstances,

species distribution modeling using an ensemble approach is

particularly well-suited for mapping the distribution and extent

of eelgrass at a scale and resolution required by regional

conservation planners.

Here, we use ensemble modeling approaches to identify

suitable habitat for a widely distributed species within a subset

of its known range at a high spatial resolution and evaluate the

predicted distribution with respect to existing areas prioritized for

conservation and management. Specifically, we develop and
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evaluate the performance of an ensemble species distribution

model for eelgrass, Zostera marina, along the Atlantic coast of

Nova Scotia Canada. Next, we use the fine-scale spatial predictions

of the ensemble model (35-m nominal resolution) to evaluate

coastal scale patterns in the probability of eelgrass occurrence, the

distribution and extent of suitable habitat, overlap with designated

Ecologically and Biologically Significant Areas (EBSAs) used for

marine conservation planning, and highlight spatial variation in

model uncertainty. Finally, we use other model interpretation

methods (permutation importance, response plots) to distinguish

relevant environmental features of suitable eelgrass habitat. In

particular, we identify the most influential environmental

covariates with eelgrass regional distribution and characterize

the change in probability of occurrence along those key

gradients. Our study highlights the capabilities of an ensemble

approach to species distribution modeling for evaluating the

distribution of submerged aquatic vegetation at a relatively high

spatial resolution. These model predictions can be applied for

conservation planning and monitoring of nearshore habitats,

particularly in areas where remote sensing techniques are limited.
Methods

Study area and model domain

We developed an ensemble species distribution model for

eelgrass (Zostera marina) along the Atlantic coast of Nova Scotia
Frontiers in Marine Science 04
within a spatial domain spanning ~ 3.5° latitude from Cape Sable

Island (43.4905° N, 65.6214° W) to Cape North (47.0295° N,

60.3921° W; Figure 1). This expanse of the inshore Scotian Shelf

is characterized by extensive bedrock outcrops with thin sand and

gravel deposits occurring throughout and infill of mud constrained

mainly to deep basins and inner harbours (Bundy et al., 2014). The

predominantly rocky shoreline is intersected by large bays, long and

narrow inlets, salt marsh and sandy beaches (Bundy et al., 2014).

Human impacts to eelgrass beds in this region are relatively low in

comparison to other areas of Atlantic Canada (Murphy et al., 2019).

We excluded the Bay of Fundy because environmental conditions

diverge considerably in comparison to the Atlantic coast (Greenlaw

et al., 2012) and eelgrass is uncommon owing to extreme tidal

ranges, high sediment loads, and steep coastline topography

(Murphy et al., 2021). We further constrained the model domain

to the 12-m depth contour and within 5 km from shore (Figure 1).

This boundary captures the regional published depth limit of

eelgrass (DFO, 2009) and distinguishes the shallow nearshore

from deeper subtidal areas.
Eelgrass occurrence and
environmental data

To assemble a dataset of eelgrass occurrence records across the

model domain sufficiently large for model calibration and

validation, we gathered direct observations of eelgrass presence

−absence from prior field studies (Wong et al., 2013;
FIGURE 1

Study area extent along the Atlantic coast of Nova Scotia and locations of eelgrass presence−absence observations used in model calibration.
Coloured polygons (left panel) are coastline classes delineating regions of differing physiographic and oceanographic nearshore conditions.
Yellow boxes identify 5 areas sampled by drop camera surveys from 2019 – 2021. Red points (right panels) are the locations of eelgrass
observations (circles = absent, triangles = present).
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Vandermeulen, 2017; Wong, 2018; Wilson et al., 2019a; Krumhansl

et al., 2021), public inventories (Wilson and Lotze, 2019;

Environment and Climate Change Canada, 2020), and

unpublished sources (Wong unpubl.). Sampling methods and

spatial precision varied among sources. We limited records to the

period from 2010 to 2021 inclusive; a period of sustained annual

warm temperature anomalies across the Scotian Shelf (Hebert et al.,

2021). This produced an initial set of 1302 occurrence records. To

address regional gaps in the spatial coverage and resolution of prior

observations, we conducted additional camera-based benthic

habitat surveys from 2019 to 2021. Surveys spanned a latitudinal

gradient along mainland Nova Scotia and covered five focal areas

defined by breaks in physiographic and oceanographic conditions

(Greenlaw et al., 2012; Figure 1). We selected the focal areas to

overlap with regions of conservation interest or with commercial

satellite imagery tasking and to bolster observations where eelgrass

occurrence records were sparse or absent.

During the 2019 to 2021 camera surveys, we characterized

benthic habitat (eelgrass presence−absence, other macrophyte

groups, substrate, depth) at a total of 486 drop-camera targets.

To encompass a range of environmental conditions while

avoiding biased sampling of explanatory variables, we selected

drop-camera locations using a randomized sampling design

stratified across substrate types with the number of sampling

locations within a substrate category allocated in proportion to

its relative extent in the surveyed areas. We also supplemented

these randomized locations with target locations identified from

satellite imagery with potential eelgrass occurrences. Drop

camera targets sampled a range of substrate types across depth

(0.5 m – 12 m) and wave exposure gradients. Eelgrass occurrence

and substrate type were determined from video footage recorded

over short drifts (~30 m) at 2.7k resolution with a GoPro®

HERO7 camera housed in a SPOT X™ Pro Squid underwater

video system. Substrate type determined from video was

confirmed at a subset of locations from grain size analysis of

sediment samples collected with a grab sampler (Wildco® Petite

Ponar). Depth (m) was measured by the survey vessel sounder

(all years) or by a handheld Castaway®-CTD (2021 only).

We selected environmental variables for model predictors

based on relevance from knowledge of eelgrass biology (Koch,

2001; Krause-Jensen et al., 2011; Krumhansl et al., 2021; Murphy

et al., 2021) and for those with coverage over the study area

(Figure S1, Table S2) at a spatial resolution approaching the

precision of the camera survey species observations (~30 m). We

used bathymetric data from a digital elevation model (Greenlaw

unpubl.) for determination of water depth (m) and three depth-

derivatives: bottom slope (degrees) and broad-scale and fine-

scale bathymetric position indices (BPI, unitless). BPI describes

the elevation of a location in relation to cells within a

‘neighborhood’ of adjacent cells (fine-scale BPI: 105 m – 875

m, broad-scale BPI: 875 m – 8750 m). We derived substrate type

from a coastal substrate classification (DFO, 2022) and used an

index of relative exposure to wind-driven waves (REI) developed
Frontiers in Marine Science 05
by O’Brien et al. (2022). Spatial layers for all environmental

variables with the exception of substrate type were originally

provided in raster format (35-m resolution). Polygons from the

original substrate classification delineating the distribution of 9

substrate categories were re-classified into ‘Muddy’ (Mud, Mixed

Sediment), ‘Sand & Mud’, ‘Sandy’ (Sand, Sand & Gravel), and

‘Rocky’ (Gravel, Boulders, Discontinuous Bedrock, Continuous

Bedrock) categories and rasterized to the same origin, extent,

and resolution as the other environmental variables. We found

little evidence of collinearity among environmental variables

(Generalized Variance Inflation Factor< 3, Table S2). See Table

S2 for summaries of mean, minimum, and maximum values of

each predictor. Other characteristics of the physical

environment (e.g., temperature, light, turbidity, current

velocity) have a strong influence on the productivity and

resilience of eelgrass in our region (Krumhansl et al., 2021).

However, due to a lack of oceanographic modeling products over

the study area with appropriately high spatial and temporal

resolutions to adequately represent the short-term physical

processes (e.g., solar heating, tidal exchange, wind events) that

influence eelgrass condition (Krumhansl et al., 2021; Wong and

Dowd, 2021), we could not include these variables as predictors

in the model. The exclusion of salinity in our model is likely not

an issue given that large freshwater inputs and true estuaries are

not characteristic of this region, and salinities typically remain

well within the optimal range for Z. marina.

We aggregated georeferenced eelgrass presence−absence

records to the spatial resolution of environmental raster layers (35

m) by creating a fishnet grid using the raster properties of the

environmental variables as a template and spatially joining the grid

with locations of eelgrass observations. Disagreement among

replicate records in a given grid cell were classified as ‘presence’.

Aggregation reduced the eelgrass occurrence dataset from 1856

records to 551 ‘presence’ and 577 ‘absence’ records, respectively.

Values for substrate type and depth in grid cells containing

occurrence records were taken from direct observations if

available or the predicted values from environmental data

layers otherwise.
Model fitting and evaluation

To produce an ensemble prediction of eelgrass occurrence,

we selected seven different presence−absence modeling methods

commonly used for ensemble SDM construction (Hao et al.,

2019) that have demonstrated good predictive performance in

model comparison studies (Segurado and Araújo, 2004; Elith

et al., 2006; Pearson et al., 2006; Dormann et al., 2008; Hao et al.,

2020). These included both regression techniques (generalized

linear models – GLM, flexible discriminant analysis – FDA,

multiple adaptive regression splines – MARS) and machine-

learning methods (artificial neural networks – ANN, boosted

regression trees – BRT, random forest – RF, classification tree
frontiersin.org
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analysis – CTA). We built models in R v 3.6.3 (R Core Team,

2020) using the biomod2 package (Thuiller et al., 2021) and

default model tuning settings. For calibration and validation of

individual models, we employed a 5-fold internal cross-

validation (CV) scheme. Each fold, comprising 20% of

occurrence observations, was withheld from a single CV run

to serve as a validation set for the model fit with the remaining

80% of observations. To minimize the potential for models to

overfit spatial dependence in occurrence and predictor data and

lead to an over-optimistic evaluation of model performance, we

used spatial blocking to divide the data into CV folds using the

blockCV package (Valavi et al., 2019). We divided the study area

into equal-sized blocks (Figure S2) with block size based on the

median range of spatial autocorrelation in the predictor

variables. Blocks were then randomly divided into five roughly

equal data folds with a similar frequency of ‘presence’ and

‘absence’ records.

In our modeling approach, we constructed ensemble models

from the predictions of individual modeling methods using a

‘weighted average’ method. For each CV run, the ensemble

predicted the probability of occurrence as the mean prediction

across methods weighted by their internal cross-validation

performance as evaluated by the area under the receiver-

operating characteristic curve (AUC), excluding models with

an AUC < 0.70. We then generated a final ensemble prediction

by taking the grand mean of ensemble predictions across CV

runs. We evaluated predictive performance of individual and

ensemble models using the AUC, the true skill statistic (TSS),

sensitivity (true positive rate), specificity (true negative rate), and

by means of a graphic representation of the confusion matrix.

Evaluation statistics were averaged across CV runs. We

interpreted evaluation statistics with respect to established

thresholds of performance (Poor: AUC < 0.7, TSS < 0.2;

Moderate: 0.7 < AUC < 0.9, 0.2 < TSS < 0.6; Good: AUC >

0.9, TSS > 0.6) (Landis and Koch, 1977; Swets, 1988).
Model interpretation

To evaluate the coastal scale distribution of eelgrass and

estimate the extent of suitable habitat, we first projected the

ensemble model across the study area. To reclassify predicted

probabilities to binary predictions of presence−absence, we used

the average threshold probability across CV runs that

maximized the value of the TSS score. We estimated the total

area of suitable eelgrass habitat (hectares) from this binary

prediction after masking out areas of model extrapolation with

respect to environmental predictors (see approach to model

uncertainty below). We further characterized spatial variation in

suitable eelgrass habitat across the coastline by comparing

predicted probabilities of occurrence among polygons

denoting nine physiographic coastline classes (Greenlaw et al.,
Frontiers in Marine Science 06
2012) and examining frequency distributions of predicted

presences along latitudinal and longitudinal gradients.

To evaluate overlap of suitable eelgrass habitat with areas

prioritized for protection and other risk management strategies

(Figure 5), we calculated the areal percentage of coastal EBSAs

containing eelgrass habitat as predicted by the ensemble model.

EBSAs are identified and designated based on their ecological

value as requiring a higher degree of risk aversion (Doherty and

Horsman, 2007). While biogenic habitats such as eelgrass were

considered in the designation of EBSAs, boundaries were drawn

based on expert judgment rather than detailed distributional

data. Therefore, to further assess the efficacy of the EBSA

selection process in capturing suitable eelgrass habitat with a

high level of confidence, we compared model predictions within

EBSA boundaries to a random background sample with the

same number of observations drawn from the full model domain

as well as an equal-sized sample from outside EBSA boundaries.

Comparisons were made using 2D density plots illustrating the

frequency of ensemble predictions in density contours defined

by the probability of occurrence and standard deviation.

We used three approaches to highlight areas of greater

uncertainty in eelgrass probability of occurrence from the

ensemble model predictions. First, we explicitly mapped

estimates of uncertainty (standard deviation, SD) for ensemble

predictions that integrated two forms of variance. Cross-

validation uncertainty, Var(CV), was calculated as the variance

of ensemble predicted probabilities across CV runs.

Methodological uncertainty, Var(method), was calculated as the

variance of predicted probabilities across modeling methods

averaged over the five CV runs. Following Nephin et al.

(2020), we then combined these two variances to estimate the

standard deviation of model predictions as:

SD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var CVð Þ +  Var methodð Þ

2

r

To simultaneously evaluate eelgrass habitat suitability and

level of confidence, we scaled the unique combinations of model

uncertainty (SD) and predicted probability of occurrence to an

RGB color space to display both contemporaneously. Secondly,

we identified and masked out locations where environmental

conditions were extrapolated outside the range of the most

influential predictors (i.e., accounting for ≥ 0.95 of the

cumulative relative variable importance). Finally, we examined

spatial variation in classification errors throughout the study

area, by evaluating the relative occurrence of errors of omission

(i.e., false negatives) and errors of commission (i.e., false

positives) across physiographic coastline classes (see Figure 1).

To identify the most influential predictors associated with

eelgrass occurrence in the ensemble model, we calculated

variable permutation importance from each CV run using 10

permutations of the data for each variable (Thuiller et al., 2021).

We then summarized the mean, maximum, and minimum
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variable importance scores for each variable across CV runs. To

characterize the relationships of the most influential predictors

with the probability of eelgrass occurrence, we generated

response plots for individual modeling methods and the

ensemble model using the evaluation strip method (Elith et al.,

2005). Response plots illustrated the marginal effects of a

predictor across its range while holding the other variables at

their median value. We used the same weighted averaging

approach described above to generate predicted values for the

ensemble model from the combined predictions of individual

modeling methods in the construction of the evaluation strip.
Results

Model evaluations

Overall performance was similar among individual modeling

methods, but certain methods and the ensemble consistently

ranked high on the four evaluation statistics considered

(Figure 2, Table S1). Evaluation statistics for most individual

models fell within a range of moderate (i.e, 0.7 < AUC < 0.9, 0.2 <

TSS < 0.6) to good (i.e., TSS > 0.6) predictive performance. GLM

was the exception, which performed poorly with respect to the

AUC (Figure 2). MARS was the best-performing individual

model, although the differences between other strong-

performing models (BRT, RF, ANN) were marginal. The

ensemble model demonstrated the best overall performance

(AUC = 0.803 ± 0.061, TSS = 0.531 ± 0.100; mean ± SD), but

did not provide considerable improvement over other strong-

performing individual models (Figure 2A).
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The threshold probability (0.433) chosen to classify

ensemble predictions into presence−absence discriminated

between observations with minimal false negatives and false

positives, but the ensemble model did better to discern seagrass

presence than absence (Figure 2B, Table S1). This was reflected

by a more pronounced tapering of the kernel density estimate of

predicted probabilities above and below this threshold for

‘presence’ records compared to ‘absence’ records (Figure 2B)

and a higher model sensitivity (i.e., true positive rate) than

specificity (i.e., true negative rate; Table S1). Similar to the

ensemble model, all individual modeling methods showed a

better ability to predict eelgrass ‘presence’ than ‘absence’

(sensitivity > specificity Table S1). While FDA ranked low on

overall performance according to the AUC and TSS, this model

also had the highest model sensitivity of all models considered,

indicating an improved ability to predict eelgrass ‘presence’.

Classification errors were relatively evenly distributed

throughout the study area, but errors of omission (i.e., false

negatives) were more common within the Mahone Bedrock

Shores & Islands and Sheet Harbour Islands coastline classes

(Figure S3). Errors of commission (i.e., false positives) were

more common within the South Shore Beaches and Eastern

Beaches & Drumlins coastline classes (Figure S3).
Coastal-scale distribution of eelgrass and
extent of suitable habitat

Model-predicted probabilities of occurrence at locations

with validation data showed a bimodal distribution with

maxima centered around 0.1 and 0.8 comprising absence and
A B

FIGURE 2

Eelgrass species distribution model performance evaluations: (A) Two evaluation statistics (AUC, TSS) for 7 modeling methods (ANN, BRT, CTA,
FDA, GLM, MARS, RF) and the ensemble model. Points are the mean values (± SD) across 5 cross-validation runs. Dashed lines identify
thresholds of model performance on each statistic. Below the first horizontal or vertical dashed lines is poor performance, between the first and
second lines indicates moderate performance, and above the second horizontal or vertical lines is good performance. (B) Graphical
representation of the confusion matrix for the ensemble model. Model predicted (probability) vs. observed (Absent, Present) occurrence of
eelgrass. The dashed line is the threshold probability classifying predictions into presence−absence based on the average value across cross-
validation runs that maximized the value of the TSS. Colours identify correctly classified (TP, true positive; TN, true negative) vs. misclassified (FP,
false positive; FN, false negative) points.
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presence records, respectively (Figure 3A). In general, there was

a wider range in model uncertainty associated with absence

records compared to presence records (Figure 3A). Areas of high

probability of eelgrass occurrence as predicted by the ensemble

model occurred throughout the spatial domain of the model, but

these areas were not evenly distributed along the southeast

−northwest oriented Nova Scotia coastline (Figures 3B, 4E). In

particular, the highest predicted probabilities were concentrated

within the South Shore Beaches area on the southwest tip of the

Atlantic coast, the Eastern Shore Beaches and Drumlins area just

to the northeast Halifax, East Cape Breton Island Cliffs, and the

Bras d’Or Lakes (Figures 3B, 4E). These predictions also tended

to be associated with a lower degree of uncertainty as reflected by

spatial variation in the standard deviation of ensemble

predictions (Figure 3B). Uncertainty in model predictions was

influenced mainly by methodological uncertainty (i.e. variation

among modeling methods) rather than cross-validation

uncertainty (Figure S4). This would suggest variation caused

by disagreement among modeling methods rather than

geographic non-stationary between the spatially-partitioned

subsets of the occurrence data. Some of these areas also had

relatively sparse (East Cape Breton, Chedabucto Bay) or no

recent eelgrass occurrence records by which to evaluate the

model (Bras d’Or Lakes; Figure 1). In the interpretation of the

results, consideration should be given to this extrapolation in

geographic space (i.e., to areas with relatively few occurrence

records) even if predictors were within the range observed in

other areas.

Spatial variation in the probability of occurrence also was

reflected in the distribution in the predicted extent of suitable

eelgrass habitat along the coast (Figure 4). Total extent of

eelgrass habitat ranged from 150 ha in the Framboise Cliffs

and Beaches area of Cape Breton Island to over 11,000 ha in the

South Shores Beaches area of the southwest mainland of Nova

Scotia (Figures 4C, E). Extensive eelgrass habitat also was

predicted within the Bras d’Or Lakes, East Cape Breton Cliffs,

and Eastern Shore Beaches and Drumlins segments of the

coastline (Figures 4B, D, E). Areas of the coast with extensive

eelgrass habitat tended to be characterized by numerous long

and narrow inlets and embayments or large tidal flats

(Figures 4A−D). On a coastal scale, the ensemble model

predicted a total extent of suitable eelgrass habitat of 38,130

ha, which corresponds to a prevalence of 16.8% over the model

spatial domain. We observed substantial overlap of the predicted

suitable habitat with coastal EBSAs (Figure 5, Figure S5). Certain

EBSAs in particular had a larger proportion of their areal extent

(~ 5% − 25%) containing suitable eelgrass habitat. These

included Port Joli and Area, Medway Harbour, Cole Harbour

– Lawrencetown, Musquodoboit Harbour and Area, Morien

Bay, Big Glace Bay, Lingan Bay, Aspy Bay, and Bras d’Or

Lakes (Figure 5). Furthermore, compared to a background

sample and locations outside EBSA boundaries, model

predictions within EBSA boundaries had a higher frequency of
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predictions that were both high probability and low uncertainty

(Figure S5).
Influential environmental predictors

The predicted probability of eelgrass occurrence in the

ensemble model was heavily affected by a small number of

predictors (Figure 6). Categorical substrate type was the most

influential environmental predictor (55.6%), followed by

depth (17.7%), and wave exposure (REI; 9.9%) (Figure 6).

The bathymetric derivatives (BPI-broad, Slope, and BPI-fine)

had minimal importance (collectively 8.8%) in the ensemble

model (Figure 6). Substrate type and depth also were

consistently important for each individual model and REI

was among the top three predictors in 5 of 7 model types

(Figure S6). In contrast, slope and BPI consistently ranked

low by variable importance among individual models

(Figure S6).

The shape of the response plots varied between the most

influential predictors, highlighting different aspects of the

ecological niche of eelgrass (Figure 7). For the ensemble model

and the top four individual modeling methods (MARS, BRT,

ANN, RF), probability of occurrence for eelgrass was highest for

sandy substrates or a mix of sand and mud, intermediate for

muddy substrates, and relatively lower for predominantly rocky

substrates (Figure 7). Probability of occurrence showed a

threshold-like response to REI, indicating an upper limit (~

0.10) on exposure to wind-driven waves (Figure 7). In

comparison, the response to depth was more hump-shaped,

indicating a higher probability of eelgrass occurrence within the

range of 0 – 4 m, and lower probabilities both at deeper depths

and shallow depths exposed during low tide (Figure 7).

Responses were relatively consistent among the ensemble

model and the top four modeling methods (Figure 7).

However, the RF model predicted a slightly lowered

probability of occurrence at the low end (i.e., more protected)

of the wave exposure gradient as well (Figure 7) and RF and BRT

showed some indications of overfitting compared to ANN,

MARS, and the ensemble.
Discussion

With our ensemble model, we identified almost 40,000 ha of

suitable eelgrass habitat at a high spatial resolution on a coastal

scale, filling substantial observational gaps in the known

occurrence of eelgrass while highlighting areas of coastline

with extensive habitat overlapping with areas prioritized for

protection. Our ensemble model for eelgrass demonstrated high

sensitivity and moderate predictive performance with respect to

threshold-dependent (TSS) and threshold-independent (AUC)

evaluation metrics, offering moderate improvement on AUC
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FIGURE 3

Contemporaneous display of predicted mean probability of occurrence and associated uncertainty (SD) from the ensemble eelgrass model
across 5 cross-validation runs. (A) Combined color scale providing interpretation of pixel hue in map insets. Green hues indicate high
probability, low uncertainty. Blue hues indicate low probability, low uncertainty. Coloured points identify unique combinations of uncertainty
(SD) and probability of occurrence predicted by the ensemble model across the study area extent. Open black symbols indicate predicted
values at the locations of eelgrass occurrence records (circle = absence, triangle = presence). Standard deviation of ensemble predictions
combines cross-validation uncertainty (i.e., variation across CV runs) and methodological uncertainty (i.e., variation across modeling methods).
Marginal density plots show the distribution of predicted probabilities and standard deviation at occurrence record locations (light green =
absence, dark green = presence). (B) Model predictions across the study area (35-m nominal resolution) shown with higher detail within
particular areas of the coastline (numbered insets) bounded by the extent of nine physiographic coastline classes (see Figure 1 for names and
locations of coastline classes corresponding with numbered insets). Areas of extrapolation (i.e., predictors outside range of calibration data) are
masked out on maps (black pixels).
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and sensitivity compared to the best-performing individual SDM

methods. Our results are consistent with previous seagrass

modeling studies that found improvement of ensemble models

on various performance metrics and often higher sensitivity

compared to individual models (Downie et al., 2013; Chefaoui
Frontiers in Marine Science 10
et al., 2016; Chefaoui et al., 2017; Chefaoui et al., 2018). When

modeling distributions for species prioritized for conservation,

increased sensitivity and even modest improvements in overall

performance are particularly beneficial given that greater value is

placed on correct predictions of species presence and predictions
FIGURE 4

Coastal-scale extent of suitable eelgrass habitat and spatial variation among coastline classes. (A) Binary predictions of the ensemble eelgrass
model. Pixel shade indicates the result of reclassifying mean ensemble predicted probability of occurrence based on the average threshold
across cross-validation runs that maximized the value of the true skill statistic (TSS). Light green = absent, Dark green = present. Marginal
density plots are the kernel density estimates for eelgrass presence predictions across longitudinal (x-axis) and latitudinal gradients (y-axis). Black
polygons denote the extents of zoomed in insets shown for the Bras d’Or Lakes (B), South Shore Beaches (C) and Eastern Shore Beaches and
Drumlins (D). Areas of model extrapolation are masked out on maps (black pixels). (E) Violin plots with kernel density estimates for probability of
occurrence predicted by the ensemble model among physiographic and oceanographic coastline classes (see Figure 1). Deeper shades of green
indicate a greater extent (ha) of suitable eelgrass habitat within a coastline class.
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FIGURE 6

Relative influence of 6 environmental predictors on the probability of eelgrass occurrence predicted by the ensemble model. Bars are the mean
permutation importance and errors bars the maximum and minimum importance values across 5-cross validation runs. Predictors include
categorical substrate type (muddy, sand & mud, sandy, rocky), depth (m), relative exposure to wind-driven waves (REI; unitless), seabed slope
(degrees) and 2 bathymetric position indices (BPI; unitless).
FIGURE 5

Overlap of predicted suitable eelgrass habitat from ensemble model with coastal Ecologically and Biologically Significant Areas (EBSAs) on the
Atlantic coast of Nova Scotia. Colour shading of EBSA polygons denotes degree of overlap with deeper green shades indicating a higher
percentage of the EBSA area covered by eelgrass habitat.
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may guide the location of protected area boundaries.

Furthermore, model comparisons of SDMs for seagrasses and

other vascular plants have shown ensemble models often

outperform untuned individual models under external cross-

validation with independent data and yield similar or superior

performance to even well-tuned models (Folmer et al., 2016; Hao

et al., 2020). Consequently, by reducing the contingency of

model performance and transferability on the choice of

model and tuning parameters, we contend that the ensemble

approach is preferable for guiding conservation and local

management decisions.
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In our model, the averaging of predictions by the ensemble

appeared to smooth out some of the known overfitting

tendencies of the machine-learning algorithms (Figure 6),

which may improve model transferability. While increasingly

complex models often improve fit by better capturing non-linear

behaviour, there is the potential risk of overfitting the data

leading to poor model transfer in new areas and novel

conditions (Gregr et al., 2019; Hao et al., 2020). We observed

that machine-learning (BRT, RF, ANN) and regression methods

(MARS) capable of fitting more complex non-linear responses

yielded the most accurate predictions among individual models,
FIGURE 7

Response plots for the 3 most influential predictors of eelgrass occurrence in the top-performing individual species distribution modeling
methods (MARS, BRT, ANN, RF) and the ensemble model. Predictors include categorical substrate type (muddy – M, sand & mud – SM, sandy –
S, rocky – R), depth (m), and a relative exposure index to wind-driven waves (REI, unitless). Bars and lines show the mean probability of
occurrence predicted by each model method over 5 cross-validation runs across the range of each predictor with other variables held at their
median value. Error bars and shaded regions indicate the maximum and minimum value across the 5 CV runs. Rug plots show the marginal
distributions of predictors in the calibration data for records of eelgrass presence (top) and absence (bottom).
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consistent with previous comparisons of model performance

made between SDMs developed for Z. marina in the Wadden

Sea (Valle et al., 2013), other marine macrophytes (Chefaoui

et al., 2016; Chefaoui et al., 2017; Chefaoui et al., 2018; Goldsmit

et al., 2021), and for freshwater (Grenouillet et al., 2011;

Guo et al., 2015), and terrestrial species (Elith et al., 2006).

However, contrary to our expectation, with the exception of the

GLM, overall performance did not vary widely among modeling

methods. This may reflect the dominant influence of a small

number of predictors, namely substrate type, on the species-

environment response and therefore classification success

for eelgrass occurrence. Although evaluation against an

independent dataset would be required to fully assess the

suitability of our ensemble model for extrapolation tasks (e.g.,

Folmer et al., 2016), convergence among model predictions

should increase confidence in management decisions when

extrapolating outside model training areas.

Our ensemble SDM for eelgrass fit within a subset of its

biogeographic range demonstrated comparable predictive

performance to previous single-technique SDMs developed in

other regions within the biogeographic range of Zostera marina

at a similar nominal resolution (Bekkby et al., 2008; Downie

et al., 2013; Schubert et al., 2015; Bobsien et al., 2021). However,

ensemble and single-model SDMs fit over the entire species

biogeographic range of marine macrophytes or across a broader

latitudinal gradient have typically shown higher predictive

performance (AUC > 0.9, TSS > 0.7) for seagrasses (Valle

et al., 2014; Chefaoui et al., 2016; Chefaoui et al., 2017;

Chefaoui et al., 2018; Wilson and Lotze, 2019; Chefaoui et al.,

2021; Hu et al., 2021), kelps (Assis et al., 2018; Wilson et al.,

2019b; Goldsmit et al., 2021), and mangroves (Record

et al., 2013). These range-wide models mainly employ climatic

predictors at a coarser resolution (e.g., ~ 5 arc min), which may

explain their improved fit given that marine species occupy

geographic ranges close to their thermal limits (Sunday et al.,

2012), potentially yielding stronger correlations with species

occurrence across their temperature range at a coarse scale.

Comparative studies also have shown that SDMs with high

spatial resolution (< 1 km), while gaining in granularity, may

sacrifice a degree of predictive accuracy (Lowen et al., 2016;

Farashi and Alizadeh-Noughani, 2018), accounting for some of

the discrepancy in performance between fine-scale within-range

models relative to more coarsely resolved range-wide models. In

addition, range-wide SDMs for seagrasses have typically been fit

for species with smaller geographic ranges and narrower

environmental tolerances (e.g., Posidonia oceanica, Zostera

noltei, Thalassia hemprichii, Cymodocea nodosa), which tend

to be more accurately modelled using SDM techniques

(Segurado and Araújo, 2004; Grenouillet et al., 2011)

compared to widely distributed species and habitat generalists

such as Z. marina. Even still, regionally tailored models may be

more appropriate for widely distributed species if local

adaptation occurs among subpopulations or spatial
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inconsistencies in species-environment relationships exist

(Osborne and Suárez-Seoane, 2002; Stockwell and Peterson,

2002; Lowen et al., 2019).

The choice of model scale (within-range vs. range-wide)

should be informed to a large degree by the modeling objectives

and intended applications as they are best suited for different

purposes based on a trade-off between spatial resolution and

extent. Whereas, models covering the entire biogeographic

range calibrated with coarser grain climatic predictors may

reveal tolerance limits and permit projections of past (Chefaoui

et al., 2017; Assis et al., 2018) or future species distributions

(Wilson and Lotze, 2019; Chefaoui et al., 2021), models fit within a

species’ range can uncover more subtle niche preferences and local

adaptation (Nephin et al., 2020), corresponding to more fine-scale

and complex forcing that reflect habitat suitability closer to the

scale of habitat patch sizes. These more nuanced relationships

deteriorate at larger spatial scales (Record et al., 2013) and the

relative influence of environmental predictors may change

(Nyström Sandman et al., 2013), yet such fine-grain, regional

distribution patterns are critical to local conservation planning

and habitat management. For example, a presence-only SDM

developed by Wilson and Lotze (2019) over the latitudinal range

of eelgrass in the Northwest Atlantic predicted a contraction of the

southern range and expansion of suitable habitat in Arctic and

subarctic regions by end-century. Contrary to our results, the

range-wide model, influenced heavily by sea surface temperature,

predicted little differentiation in habitat suitability along the

Atlantic coast of Nova Scotia. Both predictions provide useful

information to conservation planners, but at fundamentally

different spatial scales. Range-wide models highlight large-scale

distributional changes associated with changing climatic

conditions, particularly at range edges, but the lower resolution

may lead to a scale mismatch that hinders local decision-making

related to targeted conservation that is better informed by high

resolution within-range models.

Trade-offs between resolution and extent also constrain

remote sensing methods for mapping seagrass beds in turbid

coastal waters. While seagrass habitats have been mapped on a

regional scale using multispectral satellite imagery (e.g., Landsat,

Sentinel-2), these applications have generally been limited to

optically clear, often tropical waters (e.g., Torres-Pulliza et al.,

2013; Traganos et al., 2018). In the optically complex coastal

waters along the Atlantic coast of Nova Scotia, image-based

classification of multispectral imagery has been used with mixed

success to map eelgrass and SAV. In areas with high water

clarity, Wilson et al. (2019a) accurately classified eelgrass,

seaweeds, and bare substrate to 8 m. However, in areas with

more optically active components in the water column, eelgrass

could not be distinguished from other SAV with similar spectral

profiles and reliable classification was reduced to depths as

shallow as 2 m or was precluded entirely (Wilson et al., 2019a;

Wilson et al., 2020). Classification success was also reduced for

sparse or patchy vegetation and on muddy substrates relative to
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continuous beds on sandy substrates (Wilson et al., 2020). Our

results highlight that suitable eelgrass habitat can occur on

muddy substrates and below 2 m depth suggesting that

satellite-based sensors could overlook significant areas of

suitable eelgrass habitat in regions with optically complex

nearshore waters. In particular, eelgrass beds in deeper waters

are often found in cooler areas of higher wave exposure, which

are generally more productive and resilient compared to beds in

warm, shallow areas subject to temperature and light stress

(Krumhansl et al., 2021), exhibit different life-history strategies

(Vercaemer et al., 2021), and enhance benthic secondary

production (Wong, 2018). While hyperspectral sensors and

acoustic mapping methods have improved capability to detect

eelgrass in deeper, more turbid waters, or patchy beds, these

techniques are generally limited in spatial extent of application

(e.g., Barrell et al., 2015; Dierssen et al., 2019). We contend that

remote sensing and SDMmethods offer complementarity if used

in tandem given the common requirement for ground-truth data

and the ability of each to resolve different aspects of distribution.

Just as ensemble SDMs are designed to address methodological

uncertainty, so too could predictions of remote sensing and

SDM techniques be combined. Where significant data gaps exist,

the predictive power of SDMs can be leveraged to identify and

prioritize areas for more in-depth characterization, mapping,

and monitoring using remote sensing tools.

Using the coastal-scale predictions of our ensemble model,

we identified several areas of the coastline with extensive area of

suitable eelgrass habitat, which can inform regional conservation

priority-setting. Interestingly, many of the areas identified by the

SDM are also designated as coastal EBSAs based on scientific

expert opinion with consideration for the presence of eelgrass

(Doherty and Horsman, 2007; Hastings et al., 2014), yet only a

few of these identified areas have been extensively mapped for

eelgrass distribution (Bras d’Or: Vandermeulen, 2016, Port Joli:

Vandermeulen, 2017; Wilson et al., 2019a; Petpeswick Inlet &

Musquodoboit Harbour: NS Department of Natural Resources

unpubl.). These coastal EBSAs provide the basis for nearshore

conservation network planning in the region (King et al., 2021),

underscoring the value of scalable approaches such as SDMs for

validating expert opinion.

Policy and management strategies informed by SDMs

should explicitly consider prediction uncertainty as well, yet

estimates of model uncertainty are rarely provided in marine-

based SDM studies (Robinson et al., 2017). In our study, we

explicitly mapped probability of eelgrass occurrence alongside

associated uncertainty, which can facilitate conservation

planning and other spatial habitat management strategies (e.g.

MSP) while acknowledging model limitations. For example,

areas of high probability and low uncertainty should be

prioritized for protection and risk management, while areas of

high probability and high uncertainty will benefit from further
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directed investigation and more detailed mapping with

appropriate remote sensing methods. The high probability of

eelgrass and low uncertainty predicted by our ensemble model

within certain EBSA boundaries confirms expert opinion of their

ecological significance based on the presence of biogenic habitat

within the EBSA, while also providing a much more detailed

assessment of within-EBSA distribution. This approach provides

further justification for additional risk-management strategies in

those areas. Consideration of spatial variation in model

classification errors can also guide habitat management

activities. For example, we identified broader sections of the

coastline in which model errors of commission (i.e., false

positives) were more common, which have been suggested by

Bittner et al. (2020) as candidate regions for restoration efforts.

The identification of influential environmental predictors and

their marginal effects by distribution models such as ours also

provides relevant information about suitable habitat features

that could further guide such restoration activities. However,

false positive areas will require in-depth evaluation of other

aspects of the supporting environment that may affect habitat

suitability (e.g., light, temperature, water quality).

We identified substrate type, water depth, and relative wave

exposure as the most important variables in the ensemble SDM

determining habitat suitability for eelgrass with substrate being

particularly influential. The essential requirement of seagrass for

soft substrate is self-evident, but our model showed the

probability of eelgrass occurrence was also lower on fine-grain

muddy substrates compared to more sandy sediments. Fine

grain sediments are often enriched in organic matter content

(Fonseca and Bell, 1998; Wicks et al., 2009; Krause-Jensen et al.,

2011) with concomitant increases in hydrogen sulfide (Pérez

et al., 2007; Krause-Jensen et al., 2011), a well-known phytotoxin

to eelgrass and other SAV (Goodman et al., 1995; Koch, 2001;

Pérez et al., 2007) that becomes problematic under hypoxic

conditions linked to environmental stress or poor water quality

(Koch et al., 2022). Fine sediments high in organic content are

more common in quiescent areas of lower current velocities and

wave exposure (Fonseca and Bell, 1998; Koch, 2001; Krumhansl

et al., 2021), but SAV is also subject to diffusive boundary layer

constraints in areas of lower water motion (Koch, 2001). While

we found evidence of reduced probability of eelgrass occurrence

at more protected locations (RF model), we observed a more

pronounced threshold-like decrease in habitat suitability at the

upper end of the wave exposure gradient, consistent with wave-

induced disturbance leading to reduced cover and bed continuity

of seagrass habitats (Fonseca and Bell, 1998). Physical forces

such as wave exposure also determine the minimum depth limit

of SAV, while maximum depth limits are constrained by light

availability (Koch, 2001; De Boer, 2007; Krause-Jensen et al.,

2011). Our ensemble model predicted a relatively unimodal

probability distribution across depth (highest between 0 m – 4
frontiersin.org

https://doi.org/10.3389/fmars.2022.988858
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


O’Brien et al. 10.3389/fmars.2022.988858
m) consistent with these constraints and previously published

depth limits for Z. marina in Danish waters (mean of 3.5 m;

Krause-Jensen et al., 2011).

The importance of depth and wave exposure likely also reflect

strong correlations with other physical gradients more

proximately related to eelgrass distribution, abundance,

productivity, and resilience. Wave exposure and to a lesser

extent depth have been correlated with several emergent

properties of eelgrass ecosystems from physiological to

landscape scales, but these biological responses likely are driven

mainly by direct effects of temperature and light rather than

explicitly by water motion and depth (Krumhansl et al., 2021).

Deeper eelgrass beds in wave exposed areas experience lower light

attenuation, cooler mean temperature conditions, and reduced

temperature variability and extremes relative to shallow protected

beds (Krumhansl et al., 2020; Wong and Dowd, 2021), because of

increased flushing and water exchange. Eelgrass shows negative

short- and long-term responses to both chronic and episodic light

reduction (Lefcheck et al., 2017; Wong et al., 2020; Wong et al.,

2021), which can exacerbate effects of temperature stress

(Lefcheck et al., 2017; Wong et al., 2020). Temperature stress

has been linked to reduced seasonal growth and productivity of

eelgrass (Lee et al., 2005; Wong et al., 2013), recent estuary-scale

declines in abundance (Lefcheck et al., 2017), and forecasted

distribution changes (Wilson and Lotze, 2019). Despite the

importance of light and temperature conditions to the status of

eelgrass ecosystems, and the preference to include predictors in

SDMs with more direct linkages to ecological functioning, proxies

such as depth and REI can actually have more predictive power

compared to more proximate predictors in fine-grain within-

range SDMs for nearshore species (Bekkby et al., 2008; Gregr et al.,

2019; Nephin et al., 2020), perhaps related to the difficulty of

modeling the complex and highly variable physical processes

themselves in the nearshore at a high resolution. Environmental

variability over shorter times scales (i.e., sub-seasonal processes)

are key determinants of eelgrass productivity and resilience

(Krumhansl et al., 2021; Wong and Dowd, 2021), but

temperature layers derived from down-scaling of commonly

available regional and global oceanographic models most often

do not appropriately resolve such short-term physical processes

that are important at local scales. Therefore, the development of

regional circulation models that better capture these short-term,

small spatial scale dynamics (e.g., Feng et al., 2022) will be

necessary to extend our SDM to make regional climate

projections at the high spatial resolution required to build

climate resilience into conservation networks.
Conclusion

Achieving ambitious conservation and restoration targets

for seagrasses and other habitat-forming macrophytes will
Frontiers in Marine Science 15
require the rapid identification of suitable habitat at a spatial

scale and resolution relevant for regional decision-makers and

restoration projects. Aggressive protection is necessary, but is

likely not sufficient to ensure global recovery of seagrass

ecosystems (Buelow et al., 2022). Recovery of seagrass

ecosystems will require a portfolio of target conservation and

restoration work. The success of restoration projects is

contingent on large-scale transplantation (van Katwijk et al.,

2016), exacerbating the need to delineate large areas of suitable

habitat. The long-term viability of protected areas and restored

habitats will also hinge on the identification and management

of local stressors in these areas of high suitability. We

demonstrated how ensemble species distribution models can

provide regional-scale predictions of the distribution and

extent of suitable habitat for SAV at a relatively fine spatial

resolution and with high sensitivity, characterize the relevant

environmental features of habitat suitability, and support

unce r t a in t y e s t ima t i on . Th i s approach prov ide s

complementary tools to inform conservation planning,

restoration, and other habitat management strategies in

coastal environments that challenge the limits of remote

sensing applications. Furthermore, the insights provided by

ensemble SDMs can also facilitate marine spatial planning

processes, emergency response planning, evaluation of

carbon sequestration and storage by SAV, and habitat-

specific assessments of anthropogenic and cumulative

impacts. With the emergence of blue carbon offset crediting

(Kuwae et al., 2022) and more ambitious post-2020

biodiversity agreement under the Convention on Biological

Diversity (CBD Secretariat, 2021), the more balanced approach

provided by ensemble modeling techniques that integrate

information from numerous models in their spatial

predictions, characterize species-environment relationships,

and allow concurrent assessment and display of probability

of occurrence and uncertainty will become increasingly

pertinent to support the accelerated protection and

restoration of shallow nearshore ecosystems and the pivotal

functions and services they provide.
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