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Introduction

Coastal waters are inherently dynamic due to river discharge, industrial effluents,

shipping, dredging, waste dumping, and sewage disposal. Population growth in urban

cities, climate change and variability, and changes in land-use practices all contribute to

pressure on coastal water quality (Sekovski et al., 2012; Miller and Hutchins, 2017;

Kumar et al., 2020; Vijay Prakash et al., 2021). Anthropogenic activity is evident around

these estuaries and coastal and open ocean environments. Hence, it is important to assess

the water quality on a regular basis and provide mitigation measures for coastal pollution

(Yuvaraj et al., 2018). Improving water quality and variability in coastal waters is

necessary and should be prioritized. Observational programs, which are more

expensive and time-consuming, aid in understanding the status of water quality and

its trends. Many countries have coastal programs that use predictive systems to inform

the public and stakeholders about coastal health. Hydrodynamic processes are an integral

part of complex surface water systems. The main factor that determines the

concentration of pollutants is hydrodynamic transport, which includes advection,

dispersion, vertical mixing, and convection (James, 2002). The flow and circulation

patterns have a great influence not only on the distribution of temperature, nutrients, and

dissolved oxygen (DO) but also on the aggregation and distribution of sediments and

pollutants. When a load of pollutants is discharged into coastal waters, it is affected by the

fate and transportation processes that change its concentration.

Several studies have been conducted to evaluate the coastal water quality

spatiotemporally along the east coast of Indian coastal waters using site-specific data

and model configuration (Panda et al., 2006; Bharathi et al., 2017; Naik et al., 2020;
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Mohanty et al., 2021). Through numerical modeling and remote

sensing, estimation is user-friendly and low-cost in evaluating

any water quality (Fallconer, 1993; Kageyama and Nishida, 2000;

Brando and Dekker, 2003; El-Din et al., 2013); still, the field data

are essential to validate the model and correct of ground value to

the remote data. In situIn-situ sampling and laboratory analysis

are more accurate than modeling and remote sensing data, while

the remote sensing data provide better spatiotemporal resolution

than the data obtained from in situ samplings (Miller and

McKee, 2004; Wu et al., 2014), and numerical modeling infers

spatiotemporal and water column information. However,

satellite image data cannot consistently obtain the information

due to the limitations of weather conditions, date of the pass, and

its swath (Song et al., 2018); similarly, numerical modeling

required accurate time series boundary information. Water

temperature and salinity play a substantial role in regulating

the processes in the aquatic system (Mogaddam et al., 2019). The

physical and biological processes are under influence by little

changes in salinity and temperature in the water column through

land runoff (van Beusekom et al., 2009; Deininger et al., 2016),

precipitation (Ackerman and Weisberg, 2003), and storm

(Noble et al., 2003), which resulted in the coastal water quality

and biomass such as diversity, local species composition,

and bloom.

Knowing that the coastal environment is highly dynamic

and ecologically complex, therefore, an integrated modeling

system is required to address the coastal water quality issues.

Currently, there is no real-time water quality information system

for beach goers, tourists, and coastal stakeholders. Unless a site-

specific model is set up to generate as per the coastal user’s

requirement, there will be a scientific–societal gap in

information. As a result, spatiotemporal collection of time

series information is easy to evaluate with model-based water

quality prediction. The predictive approach is basically followed

by a three-step procedure that includes a) monitoring of various

environmental conditions, b) simulation and observational

validation of the model, and c) dissemination of the predictive

information in the public domain. Therefore, the present study

aimed to set up the coastal water quality model at the beach level,

which simulates and forecasts the water quality as a public

information system.
Study area

Chennai city, spreading over an area of 176 km2, is located

on the western seaboard of the Bay of Bengal (BoB) and covers

three major tourist beaches, viz., Marina, Elliot, and

Thiruvanmiyur, along the east coast of India (Figure 1A). Two

rivers, viz., Cooum and Adyar, flow crisscrossing the city,

carrying a major share of domestic sewage, a part of this

industrial, port, and harbor effluents into the coast are highly

significant. To develop a model to achieve forecasting of coastal
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water quality, a comprehensive program was designed, which

includes in situmeasurements, the development of a model, and

an information dissemination system.
Data and methods

The in situ monitoring stations were carefully located

keeping in view of discharge points, off-tourist beaches,

transition zones, and the surf zone dynamics. A total of 30

sampling stations were fixed (Figure 1A), among which three are

at the river inlets, which act as point sources discharging urban

runoff, 21 stations in nearshore waters, i.e., 1 km from the coast

wherein the concentration of land inputs are apparent, and nine

stations are at a distance of 2 km from the beaches where

concentrations are significantly reduced (Mishra et al., 2015).

The in situ monitoring stations were strategically fixed to

include discharge points, off-tourist beaches, transition zones,

and the dynamics of the surf zone. The observations were made

for the period 2013–2016, at above 30 locations and further up to

2019 at seven stations right on the beaches (Figure 1A). In each

sampling, 11 water quality variables were collected such as water

temperature, salinity, pH, DO, biological oxygen demand

(BOD), nitrate, nitrite, total nitrogen, phosphate, total

phosphorus, and chlorophyll-a, following standard protocols

of seawater quality analysis (Strickland and Parsons, 1972).

The discharges of all inlets were calculated using the change in

water level, current speed and direction, and geomorphology of

inlets. Hourly meteorology data from an automated weather

station at Ennore (a coastal observatory) were used for model

validation, while National Centre for Medium-Range Weather

Forecast (NCMRWF) data were used to forecast water quality

for the next 3 days. The model required coastal oceanography

data such as tide and current for different seasons (2013 to 2015).

The primary goals of oceanographic data collection have

traditionally been to understand and describe the state of the

coastal ocean and its variability, whereas the current study is

primarily concerned with model forcing (input) and validation.

The tide gauge (Valeport make) was used to collect sea-level

changes (Tide), while the current meter was used to collect

current data (RCM, Aanderaa make). A water quality buoy

(WQB) mounted with YSI Exo-2 water quality sensors and

MaxiMet meteorological sensors provide a 10-min interval of

uninterrupted time series data. The data are transmitted on GSM

mode and received through FTP. These time series (60-min

interval) data have been used to understand the variability and

validation of the model.
Model description

Water quality models have evolved into an important tool

for identifying water environmental pollution, as well as the fate
frontiersin.org
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and transport of pollutants in the coastal water environments.

With the advancement of model theory and the fast-updating

computer technique, an increasing number of water quality

models with various model algorithms have been developed.

In the present study, a cell-centered finite volume method was

adapted to compute the hydrodynamics with a very high

resolution near the coast. As the river inlets are very fragile

and more dynamic with siltation processes along this coast,

hence continuous inlet monitoring (width) has been carried out

for a couple of years, and an average width of river inlet is

considered for model domain preparation (Figure 1B). An open

equation solver water quality module (Ecolab) has been

developed to model the fate of coastal waters at different

spatiotemporal scales. Formulation of coastal water quality

models requires fine-resolution bathymetry, proper initial

conditions, boundary forcing, point discharge quantities, and

water quality information (Supplementary Figure S1). The real-

time observational data are assimilated into the models for better

forecast results.

Three boundaries, viz., a) open ocean, b) point sources at the

land interface, and c) atmospheric inputs, were configured in the

model. The time series boundary condition for the open ocean is

given from the regional ocean model reanalysis provided by

Indian National Center for Ocean Information Services

(INCOIS). The fluxes at point sources were computed from

the observations, and the atmospheric forcing on forecast mode

is given by the National Centre for Medium Range Weather

Forecast (NCMRWF). A spatial varying bed resistance in terms

of Chezy coefficient computed with respect to the depth profiles
Frontiers in Marine Science 03
and coefficient for viscosity is 0.5 by Smagorinsky formulation

(Supplementary Table 1). Various sensitivity analyses were

carried out to develop an optimized model for the coastal

waters off the Chennai coast.
Model skill and forecast accuracy

Proper model validation is highly necessary, while the output

of the model is used as input for other models or real

applications. The establishment of the model should be

confirmed by agreement between observation and model

output. In the present study, the correlation coefficient and

root mean absolute error (RMAE) are used for the model skill

test and the forecasting accuracy estimation, respectively. The

correlation coefficient (r = Sxy/SxSy, where Sxand Syare the sample

standard deviations and Sxyis the sample covariance) describes

the degree of colinearity, and their range is 1 to −1, which is an

index of the degree of learner relationship between observed and

predicted values. When r = 1 or r = −1, a perfect positive and

perfect negative relationship exists, while r = 0 indicates no

linear relationship. The relative means absolute error (RMAE = ||

P| − |O||/|P|; where P is the simulated value andO is the observed

value) gives the relative error between the observed and

predicted values and is extensively used to evaluate the

numerical model performance. The accuracy of daily water

quality forecasts was estimated through correlation coefficient

by using the 10-min interval time series data from an automated

sensor-based water quality buoy platform.
FIGURE 1

(A) Study area. (B) Model domain.
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Results and discussion

Hydrodynamic

The hydrodynamic plays a key role in the variation of water

quality in the nearshore region. The nearshore circulation along

the east coast of India is mainly season-dependent with reversal

wind, varying wave regimes, and river runoff (Shetye and Shenoi,

1988). The advection and dispersion along the coastal water are

mainly subject to tidal action, wind, and river discharge. The

advection and dispersion modules (particle tracking and Ecolab)

coupled with hydrodynamic modeling were carried out for 15

days in each season, i.e., northeast monsoon (NEM: December

2013) and southwest monsoon (SWM: September 2015), and

validated with observed data of sea-level changes (tide) and

depth-averaged current (speed and direction).

The tidal analysis of the measured water level that clears the

tide is micro (<2 m) and semi-diurnal. During December

(NEM), the tidal range is ~1.25 m on a spring tide and 0.5 m

on the neap phase, while it is ~1 m during spring and 0.5 m in

the neap phase in September (SWM). The tide is classified as

micro-tidal (Rao et al., 2009; Kankara et al., 2013). Though the

rivers are small and semi-perennial, there is no significant

variation of tidal amplitude throughout the domain. The

harmonic analysis of measure tides generated 18 tidal

constituents, out of which five important constituents are used

in the prediction and validation (Supplementary Table S2). The

dominant tidal constituents are principal lunar semidiurnal

(M2), principal solar semidiurnal (S2), lunisolar declinational

diurnal (K1), and principal lunar declinational diurnal (O1),

which are used to calculate the tidal form number (F = O1 + K1/

M2 + S2). The form number is <0.25, which describes the tide as

mostly semi-diurnal. Figures 2A1 and B1 depict the validation of

water levels for both seasons. The simulated amplitude and

phase of tide are in agreement with the observations. The

simulated current patterns (Supplementary Figure S2A, B) are

in line with the East India Coastal Current (EICC), which is

dominated by seasonal reversing. EICC is northward during

SWM, while it is southward during NEM (Shetye et al., 1996;

Babu et al., 2003; Gangopadhyay et al., 2013; Kankara et al.,

2013). The validation of the current speed and direction for the

NEM and SWM is shown in Supplementary Figure S2 (A2, B2,

A3, B3), respectively. The observed current speed ranged from 0

to 0.38 and from 0 to 0.55 m/s during September and December,

respectively, whereas the simulated speed ranged from 0 to

0.35 m/s in September and from 0 to 0.65 m/s in December.

The current direction during December is varied from 200 to

280° and 200 to 218° for observation and modeling, respectively.

The hydrodynamic model result indicates that the coastal

current is primarily driven by wind, with no evidence of the

tide’s sinusoidal nature. The combined action of northerly

longshore current and micro tide triggers the inlet siltation
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and blocking along the coasts. The model has the potential to

simulate hydrodynamics precisely.
Discharge

The accurate quantification of discharge at the point source,

viz., Adyar and Cooum river inlets, is critical information

because it directly affects coastal water quality and prediction.

A current meter is placed in the mid of the inlet for 15 days. The

cross-section and depth of the active inlet opening and water

levels were considered to calculate the discharge values. For

continuous-time series discharge information, the same data

have been used in the model to develop probabilistic input of

discharges calculated for a different season, tidal condition, and

variable geomorphology of the inlets. The probabilistic inputs

were calculated as d = a * d * v, where d is the discharge (m3/s),

a is the cross-sectional area (m2), and v is the speed (m/s),

while −ve discharge indicates discharge from sea to river during

the flooding phase of the tide, and +ve discharge indicates

discharge from the river to sea during the ebb phase of the

tide. The coastal orientation (16°) is taken as considered in

the discharge calculation. Supplementary Figure S3 shows the

estimated discharge for Adyar and Cooum rivers. The higher

discharged values from October to February are due to the major

precipitations received during NEM over Chennai, which

increase due to the increase in the land runoffs.
Water quality

The simulated water quality parameters at different

spatiotemporal scales were generated for different seasons

(Supplementary Figure S4) for water temperature, salinity, DO

and Chl-a, and validated with the in situ measurements. The

seasonal dispersion pattern of concentrations for distinct wind

regimes, viz., NEM (northward) and SWM (southward), for the

year 2020 agree with the wind pattern. This implies the coastal

current is the driving factor for the fate and transport of

pollutants along this coast. The higher concentration of all the

parameters is nearly parallel to the coast and is intense near the

river inlets (Supplementary Figure S4). Further, the dispersion

depends on the local circulation pattern, which subsequently

affects the adjacent coast.

Spatial variation of the Water Temperature (WT) is higher

in coastal water compared to the deeper during SWM, while it

reverses during NEM, because of the influence of variation in

atmospheric temperature, land runoff, and land–sea interaction.

The observed water temperature at the Marina nearshore region

varied from 25.4°C to 30.9°C during December and April,

respectively. The higher order of WT variation (~3.3°C) was

recorded during the NEM compared to other seasons
frontiersin.org
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(Figure 2A). The maximum average WT (29.3°C to 29.8°C) was

observed from the end of May to early September, while it is

minimum (27°C to 28.6°C) from November to February. During

the survey, the standard deviation ofWT is 0.4°C to 1.1°C during

March and December, respectively. The maximum diurnal

variation in air temperature, rainfall, and a cloudy sky is the

triggering factor in reducing the surface WT during the NEM

period. The northeast monsoonal rain over Chennai brought

huge fresh cold water to the nearshore region. The validation of

WT was assessed by comparing observed (2013 to 2019) and

model results (2020) on a monthly basis (Figure 2A) and found a

very good agreement in trend. The WT trend is better fitting,

while the average WT variation between the observed and model

results is ±0.5°C. The quality of model fit was evaluated by

calculating the correlation coefficient (r) by using the monthly

average of the analyzed month. The correlation coefficient (r) is

0.75, and the model performance is very good (Figure 2B).

Similarly, the correlation coefficient (r) between observed time

series water quality buoy and simulated data of water

temperature is 0.8 (Figure 2C).

The salinity off Marina beach ranges between 25 and 35.4.

The highest salinity was recorded in July, while the lowest was

recorded in December. The salinity structure of this coastal

water increased from January to July and then decreased till
Frontiers in Marine Science 05
December. Early research indicated that the EICC transports

freshwater southward along India’s east coast beginning in

September and that this freshwater plume reaches the extreme

southern part of India in November (Sengupta et al., 2006; Akhil

et al., 2014). The freshwater from the riverine system to the

coastal water along India’s east coast is freshening up to 100 km

from the coast, causing the salinity to decrease (Vinayachandran

and Kurian, 2007). From June to September, monsoonal rain-

derived freshwater is predominant in the extreme northern part

of BoB, and the southern current pattern (November, December,

and January) begins transporting freshwater southward along

the shore (Shetye et al., 1996; Jensen, 2001; Rao, 2003). The

southward freshwater plume through EICC and rainfall during

the NEM are the most noticeable features of salinity variation

along Chennai coastal water. As the vertical stratification began

in early January along the east coast of the Indian nearshore

waters, the average salinity increased from January to July

(Shetye and Shenoi, 1988). The observed salinity trends are

easily captured by regional modeling through a proper

validation of coastal current. Figure 2D depicts that the model

salinity trend (2020) is matching with the observed salinity trend

(2013–2019). The correlation coefficient (r) of salinity (monthly

average) is 0.9 (Figure 2E), and for time series, it is 0.85

(Figure 2F), and the performance of validation is excellent.
A B

D E F

G IH

J K L

C

FIGURE 2

Validation of water temperature: (A) long term, (B) monthly, and (C) time series. Salinity: (D) long term, (E) monthly, and (F) time series.
Dissolved oxygen: (G) long term, (H) monthly, and (I) time series. Chl-a: (J) long term, (K) monthly, and (L) time series.
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DO concentrations ranged from 4.1 to 10.5 mg/L during the

annual cycle. There were no seasonal variations in water

temperature or salinity. During the investigation, the average

DO value ranged from 5.5 to 7.5 mg/L. High winds blow during

the southwest monsoon, but DO is lower than in other seasons.

The high DO concentration was recorded in January, which

could be due to the higher photosynthetic rate and air–sea

interaction (Carignan et al., 2000; Naik et al., 2020). From

January onwards, the DO decreases steadily until June, when

it slowly increases again until January. During the NEM period,

the deviation of the DO value is high (January and February). A

minimum variation in DO was observed (0.6 mg/L) during the

validation plot between observed DO (2013 to 2019) and model

DO (2020) (Figure 2G). Figure 2H shows a positive correlation

between model and monthly average DO (r = 0.5), while the

model DO versus time series observation (r = 0.7) was recorded

(Figure 2I). The model results for DO show within the range.

The variation of DO between model and observation is

subjected to photosynthesis, local wind patterns, and

urban discharge.

The Chl-a concentration in Chennai coastal water varied

from 0.5 to 23.8 mg/m3. The maximum concentration was

observed during April, while the minimum was in November.

The Chl-a concentration is found to be higher during April,

which might be due to the pre-monsoon convection process that

brings nutrient-rich bottom water to the surface and or

regenerated resources, which is responsible for this

enhancement of the biological production (Jha et al., 2013;

Naik et al., 2020). It follows an increasing trend from January

to May and then started decreasing till November with an abrupt

increase in September. A similar trend also reported for the Chl-

a concentration along Puducherry coastal water is reported by

Bharathi et al. (2017). The seasonal rainfall and cloudy days

during November and December bring nutrient-rich freshwater

to the coastal waters and reduced sunlight at the sea surface,

which makes it more turbid and less productive and causes less

Chl-a concentrations. Light conditions also play an important

role in influencing the seasonal development of Chl-a (Yang and

Ye, 2022). From January onwards, the existence of high water

nutrients in coastal water will favor increasing the Chl-a

concentration, and a similar study was also reported for

Brahmani estuarine region by Palleyi et al. (2010). The

observed average Chl-a value ranged from 3.5 to 13.4 mg/m3,

while the model value ranged from 3.5 to 14.0 mg/m3

(Figure 2J). The validation for Chl-a between observed and

model follows the same trend with an excellent correlation

coefficient (r = 0.93) and a maximum deviation of ±0.75 mg/

m3 (Figure 2K), while the correlation (r) between model and

observed data in the time series is 0.63 (Figure 2L).The exercise

confirms, with long-term validation, that the seasonal trends are

well captured by the model and in short-term comparison agree

with in situ observations.
Frontiers in Marine Science 06
Prediction performance

Predictive models of coastal water quality supplement

traditional monitoring by providing timely and adequate

information for public health protection and coastal ecosystem

management. It is critical to choose an appropriate model type

and metrics to reduce errors and ensure that the predicted

outcome is reliable. The development of an optimized model

is the result of intensive sampling to collect a sufficient amount

of data, analysis and processing, sensitivity analyses, and model

calibration. However, as prediction duration increases, the

uncertainty in the forcing parameters increases, resulting in a

wide variation in the forecast range (Counillon et al., 2021; Džal

et al., 2021). The model in this study simulates up to 8 days in

advance, but the RMSE skill scores are acceptable for up to 3

days after which the ranges widen (Supplementary Figures S5A–

D). The forecast skills are varied when considering individual

parameters. RMSE skill scores for water temperature, salinity,

DO, and Chl-a follow similar trends. The bias error is

significantly increasing from the fifth day onwards; therefore,

the forecast is considered for up to 3 days.
Conclusion

Coastal water quality modeling is of great environmental

interest and scientific value and is an efficient tool for developing

water quality information for beachgoers, stakeholders, and

coastal managers. A coupled hydrodynamic-water quality

model was setup to simulate and forecast coastal water quality

parameters. The in situ measured data and sensor-based time

series data were used to calibrate and validate the model. The

skil l test confirms that the model performance for

hydrodynamics and water quality are in the acceptable ranges

up to 3 days of forecast. Sensor-based data assimilation, high

frequency of point source quantities, estimation of non-point

source components, and data assimilation in the model will

improve forecast accuracy. This paper attempted to predict the

coastal water quality, which is highly dynamic and complex and

paves the way for future improvements. The data generated

assist beachgoers and coastal stakeholders during any

abnormalities in water quality. This is an imperative study to

achieve the targets under United Nations’ Sustainable

Development Goal (SDG)-14 and will assist coastal managers

in the sustainable management of coastal regions.
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