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Metallic nanoparticles (NPs) are increasingly being used and inevitably entering

the marine environment. Therefore, the adverse effects of NPs on individual

marine species have attracted increasing attentions. However, to date, the

ecological risks of NPs on the marine ecosystem remain poorly understood. In

this study, species sensitivity distributions (SSDs) were constructed for Ag, ZnO,

CuO, and TiO2 NPs to understand their ecotoxicity to the marine ecosystem

and the contribution of size effect and ion effect to the nanotoxicity.

Furthermore, a case study on the assessment of marine ecological risk and

marine environment carrying capacity of metallic NPs was performed in

Jiaozhou Bay, China. The results showed the toxicity of metallic NPs to

marine species following the order of Ag > ZnO > CuO > TiO2. Both size

effect and ion effect contributed to the toxicity of NPs. Environmental

concentrations of Ag, ZnO, CuO, and TiO2 NPs are much lower than the

predicted no-effect concentrations, indicating that these metallic NPs have not

yet posed risks to the marine ecosystem based on currently limited measured

environmental concentrations of metallic NPs in seawater. And the marine

environment carrying capacity of Ag, ZnO, CuO, and TiO2 NPs in Jiaozhou Bay

seawater were determined to be 5.03, 8.72, 93.06, and 629.79 t, respectively.

The results help us understand the ecological risk of NPs in marine

environments and provide a scientific basis for the sustainable development

of nanotechnology.
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Introduction

With the rapid development of nanotechnology, the number

of products containing engineered nanoparticles (NPs) has been

rapidly increased in the past decades (Zhao et al., 2020). Among

these nano-products, metallic NPs such as Ag, CuO, ZnO, and

TiO2 NPs are the very commonly used NPs for these products.

These NPs will inevitably release from products into various

environments during the production, consumption, and

disposal of the nano-products (Zheng and Nowack, 2021).

Because the ocean is the ultimate sink for NPs (Klaine et al.,

2008), concerns are increasing about the possible risks posed by

NPs to marine environments and especially to marine

organisms. An increasing number of studies have reported

that the metallic NPs caused significant toxicity to marine

organisms, including marine bacteria (Rotini et al., 2017;

Schiavo et al., 2018), algae (Xia et al., 2015; Fazelian et al.,

2019; Thiagarajan et al., 2019), copepods (Rotini et al., 2018;

Farkas et al., 2020), crustaceans (Rotini et al., 2018; Prato et al.,

2021), echinoderms (Rotini et al., 2018; Prato et al., 2021), and

mollusks (Libralato et al., 2013; Zha et al., 2019; Zha et al., 2022),

with a 50% lethal/effect concentration (LC50/EC50) varied widely

from 0.001–116.981 mg/L.

The species sensitivity distributions (SSDs) have been

developed to evaluate the potential environmental risks of NPs

based on the toxic endpoints of acute x% lethal/effective/

inhibiting concentration (LCx/ECx/ICx) or chronic no

observed effect concentration (NOEC) from laboratory toxicity

tests (Gottschalk and Nowack, 2013). SSDs rank the species

based on their sensitivity to a certain toxicant and fit a statistical

distribution function to the proportion of species affected as a

function of exposure concentration of this substance (Garner

et al., 2015). This model allows extrapolating from limited

single-species toxicity testing to effects at the ecosystem level

regarding the chemicals. SSDs can estimate the hazard

concentration of 5% (HC5), which indicated that 95% of the

species are not expected to be affected. The predicted no-effect

concentration (PNEC), which is supposed to be the

concentration sufficient to protect the ecosystems and is

commonly used as the threshold in environmental risk

assessment, can be derived from the HC5 value of each SSD by

adding a safety factor that ranges between 1 and 5. Risk

assessment of NPs is further performed by comparing the

environmental concentrations of pollutants with the calculated

PNEC (ECHA, 2008a).

Several SSDs have been built for multiple nanomaterials

under different environmental compartments (Adam et al.,

2015; Garner et al., 2015). For instance, SSDs were established

for the TiO2, Ag, ZnO, CNT, and fullerenes nanomaterials in
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freshwater, soils, and sediments (Coll et al., 2016). SSDs were

also generated for metallic NPs (Ag, CeO2, CuO, TiO2, and ZnO

NPs) considering the characteristics of nanomaterials,

experimental conditions, and different types of endpoints in

aquatic environments (Chen et al., 2018). In addition, Zhao et al.

(2020) reported the SSDs of TiO2, Ag, CuO and graphene

nanomaterials in aquatic environments. However, these

researches mainly focused on the environmental risks of NPs

to a vast majority of freshwater organisms. Very few data

associated with marine species were included in the SSDs for

nanomaterials. Due to the differences between freshwater and

saltwater species’ sensitivities to pollutants, it would be not quite

appropriate for using freshwater toxicity data to extrapolate

saltwater effects (Wheeler et al., 2002). Thus, there is still no

consensus on the ecological risk of nanomaterials in marine

environments, and SSDs derived from saltwater ecotoxicity data

is needed to fill this gap.

The marine environment carrying capacity (MECC) was

defined as the maximum pollutant load that the marine

environment can accept without destructing water quality

(GESAMP, 1986). The assessment of MECC has been applied

in marine environmental protection and contamination control,

and is useful for maintaining the sustainable development of the

economy-marine environment (Wang et al., 2018). There has

been intensive research on MECC, which mainly focused on

conventional pollutants such as ammonium, phosphate, total

suspended solids, and biological oxygen (Liao et al., 2013; Bui

and Tran, 2022). Nonetheless, it still requires the development of

evaluation methods on emerging contaminants such as NPs.

Once the amount of NPs exceeds the MECC, ecological risks will

occur on account of the imbalances between marine

environment safety and nano-industry development.

Therefore, it is essential to study the carrying capacity of

marine environments for metallic NPs.

This study aims to collect currently published marine

ecotoxicity data of metallic NPs (i.e. Ag, CuO, ZnO, and TiO2

NPs) and construct SSDs for NPs to better understand their

marine ecological risks. Considering that not only responses to

individual NPs are reflected in these SSDs, SSDs for the

corresponding bulk or ionic form of metallics were also built

and thus the impact of size effect and ion effect on the toxicity

was estimated. A case study of the marine ecological risk

assessment for these metallic NPs was performed in Jiaozhou

Bay, China by employing a risk characterization ratio (RCR).

Subsequently, the seawater carrying capacity (SECC) of metallic

NPs was also calculated in Jiaozhou Bay. This work will improve

our understanding of the ecological risk of metallic NPs to

marine environments. To our knowledge, this is the first

report on the risk assessment of NPs in marine ecosystems.
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Materials and methods

Data collection

Toxicity data of the Ag, CuO, ZnO, and TiO2 NPs, as well as

their bulk form and ion, on marine organisms, were collected

from published literature. The scientific websites, Web of

Science, were searched using the keywords “nanoparticles OR

bulk OR ion AND marine AND toxicity”. All data published

before June 2022 were taken into account. Publications were

retained according to the following criteria: only effects on

survival, growth and reproduction were considered, and the

endpoints including NOEC, the highest observed no-effect

concentration (HONEC), lowest observed effect concentration

(LOEC), LCx, ICx, and ECx were collected (Coll et al., 2016; Chen

et al., 2018). For SSD building, these toxicity data were

transformed by two different assessment factors (AFs): 1) to

convert the observed effect to NOEC with the AFno-effect (factor

10 was used for LC50/EC50, factor 2 for LOEC and factor 1 for

NOEC and HONEC values); 2) to extrapolate from acute data to

chronic data with the AFtime (factor 10 was assigned to short-

term studies and factor 1 to long-term studies) (Coll et al., 2016).

In order to evaluate the risk of metallic NPs in the marine

environment, the environmental concentrations of various NPs

in seawater were also collected from published data. Published

studies were selected via a search of Web of Science on June

2022, using the keywords “nanoparticles AND concentration

AND marine OR seawater”. Only studies containing measured

environmental concentrations of NPs in seawater were retained.
SSD modeling

For each kind of NPs and their bulk or ionic counterparts,

the converted data were ranked from lowest to highest according

to the equation of USEPA (1998):

Proportion =
Rank − 0:5

Number of Species

SSDs were generated using an optimal log-normal

distribution, which was fitted by the ‘fitdistr’ function and

‘quantile’ function in the R statistical software (version 4.2.0)

(R Core Team, 2022). For each SSD curve, the log10-transformed

NOEC value of different species was plotted against the

cumulative probability which reflects the proportion of species

affected at a certain concentration. HC5, i.e. the concentrations

corresponding to the 5th percentile of the distribution of each

SSD were extracted and then used as PNEC value according to

the recommendat ion by the European Chemica l s

Agency (ECHA, 2008b). The 95% confidence interval of the

fitted regressions was also estimated with a parametric

bootstrap procedure.
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Risk assessment

To assess the ecological risks that metal-based NPs might

pose to the marine environment, the RCR was calculated as

follows (ECHA, 2008a):

RCR =
EC

PNEC

where RCR represents as the risk characterization ratio of

NPs; EC represents as the environmental concentration of NPs

in seawater (mg/L); and PNEC represents as predicted no-effect

concentration of NPs for marine species (mg/L). If the RCR ≤ 0.1,

a low risk is expected for marine species at particular

environmental concentrations of NPs; if the 0.1< RCR< 1.0, a

moderate risk is expected; if the RCR ≥ 1.0, a high risk is

expected (Umbrıá-Salinas et al., 2021).
Environment carrying capacity

The SECC for metallic NPs was evaluated based on marine

environment static capacity, which is the theoretically maximum

load of metallic NPs that the sea can withstand before an

unacceptable ecological risk occurs. The SECC was calculated

by a simplified model as follows:

SECC = S� D� (PNEC − EC)� 10−3

where SECC represents as environment carrying capacity of

seawater (t); S represents as sea area (km2); D represents as mean

water depth (m); PNEC represents as the predicted no-effect

concentrations for NPs (mg/L); and EC represents as the

environmental concentration of NPs in seawater (mg/L).
Results and discussion

Data availability for generating SSDs

After data evaluation, the final dataset for marine risk

assessment included 107 records retrieved from 40

publications. The toxicity endpoints that are available for

developing SSDs after transformation include LC50, EC50, IC50,

NOEC, and HONEC. It seems that the data availability is very

limited due to the lack of thorough toxicity tests concerning NPs

to marine species (Chen et al., 2018). SSDs were built for Ag NPs

(10 data points), Ag+ (8 data points), ZnO NPs (14 data points),

bulk ZnO (9 data points), Zn2+ (12 data points), CuO NPs (10

data points), bulk CuO (3 data points), Cu2+ (8 data points),

TiO2 NPs (24 data points), and bulk TiO2 (9 data points). The

source data are provided in Supplemental Information (Table

S1–S10).
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In fact, Ag, CuO, ZnO, and TiO2 NPs have the highest yield

compared with other metallic NPs (Bondarenko et al., 2013) and

therefore have received the most research attention (Wang et al.,

2016; Schiavo et al., 2018; Han et al., 2019; Shi et al., 2020; Dong

et al., 2021). Considering that these metallic NPs are inevitably

entering the marine environment and potentially pose impacts on

marine species, the marine risk assessment of the NPs should be

performed and clarified if these mass-produced metallic NPs are

safe. One of the well-established methods to control the risks

brought by nanoproducts is the development of SSDs (Gottschalk

and Nowack, 2013). This model needs extensive toxicity

evaluations to be tested on a wider range of nanomaterials, and

also more species from diverse taxa and trophic levels in order to

minimize the uncertainty in the predicted results (Chen et al.,

2018). Additionally, the SSD methodology required a minimum

number of data to construct an SSD to maintain the model

reliability. USEPA recommended that no less than eight species

should be used for modeling (USEPA, 1998). Moreover,

Cedergreen et al. (2004) proposed that the range of the species

number should be from six to eight, while Garner et al. (2015)

suggested that a minimum of four species should be covered in an
Frontiers in Marine Science 04
SSD. Excluding bulk CuO, at least six marine species were

included in each SSDs in this study.
SSDs of metallic nanoparticles

The SSDs for Ag, CuO, ZnO, and TiO2 NPs in seawater are

shown in Figure 1. The individual species NOECs calculated

from the endpoints reported in toxicity studies were exhibited as

points. Ag NPs showed toxicity towards different taxonomic

groups, including cnidarian, arthropod, and algae; and ZnO NPs

showed toxicity towards to amphipod, algae, bacteria, and

mollusk. CuO NPs displayed toxicity to different species of

mollusk, arthropod, rotifer, bacteria, and algae. While TiO2

NPs were toxic to arthropod, mollusk, algae, and rotifer.

Diverse taxonomic groups showed large variation in the

sensitivities to NP toxicity and there is no clear pattern of

species distribution among different NPs. These SSD curves

indicated that Ag and ZnO NPs were toxic to most species at

the level of mg/L, while TiO2 NPs showed toxicity to the majority

of species at mg/L level.
B

C D

A

FIGURE 1

Marine species sensitivity distribution of (A) Ag, (B) ZnO, (C) CuO, and (D) TiO2 nanoparticles.
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The PNEC distributions for marine species were derived

from the 5th percentiles of the SSD curves. The derived PNEC of

Ag NPs is 1.85 mg/L, with the 95% confidence interval ranging

from 0.27 to 22.19 mg/L. And the PNEC of ZnO, CuO, and TiO2

NPs is 3.22 mg/L (95% confidence interval: 0.55−18.23 mg/L),
34.13 mg/L (7.47−219.46 mg/L), and 230.71 mg/L (83.89−817.21

mg/L), respectively. The PNEC of NPs follows the order of Ag<

ZnO< CuO< TiO2, suggesting the highest toxicity for Ag NPs,

and the lowest toxicity for TiO2 NPs in marine environments.

For a freshwater dataset, Coll et al. (2016) inferred the PNECs

from the most sensitive to least sensitive in the following order:

Ag (0.017 mg/L)< ZnO (1.0 mg/L)< TiO2 (15.7 mg/L). Zhao et al.

(2020) also reported the PNECs mainly derived from freshwater

organisms in the order of Ag (0.0485 mg/L)< CuO (9.06 mg/L)<
TiO2 (192 mg/L). The results of this study were consistent with

previous research in the toxicity order of NPs. However, the

reduced toxicity of NPs was observed in seawater environment

compared with the freshwater environment.

From the toxicity comparison of nanomaterials for single

species, it was concluded that Ag NPs are generally considered to

have high biological toxicity, while TiO2 NPs are generally

considered to be less toxic or non-toxic (Rekulapally et al.,

2019; Geppert et al., 2021). Nanoparticles can be classified as

highly insoluble materials such as TiO2 NPs, and slightly soluble

materials such as Ag, ZnO, and CuO NPs (Brunner et al., 2006).

The toxicity of insoluble NPs is mainly due to the size effect,

which leads to physical damage, NP internalization, and

oxidative stress to the organisms (Xia et al., 2015); whereas the

toxicity of soluble NPs could be explained not only by the size-

dependent effect but also by the release of noxious metal ions

(Jassim et al., 2022; Wu et al., 2022). Overall, the characteristics

of NPs in the aqueous system (e.g. chemical composition,

solubility, or aggregation) are considered to be important

factors that affect NP toxicity (Vicario-Parés et al., 2014; Duffy

et al., 2018). Moreover, the unique conditions of the marine

environment (e.g. pH, ionic strength, presence of organic

matter) can alter the environmental behavior of NPs and thus

reduce their biotoxicity (Baalousha, 2017). This might explain
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why above NPs appear less toxic in seawater than in freshwater.

To elucidate the origins underlying the toxicity of NPs, the

impact of size effect and ion effect on NP toxicity were estimated

in the following study.
SSDs of bulk materials

To gain insight into the size effect of NPs, SSDs of bulk ZnO

and CuO were generated (Figure 2) and the effect of size on NP

toxicity was analyzed. The SSD curve indicated that bulk ZnO

was toxic to most species at the concentration range of 101–104

mg/L. The derived PNEC of bulk ZnO was 42.95 mg/L (9.86–

233.94 mg/L), which was a dozen times higher than that of ZnO

NPs, suggesting that bulk ZnO had relatively lower toxicity than

the NPs. Similarly, the derived PNEC of bulk TiO2 was 340.32

mg/L (109.10–1224.98 mg/L), suggesting a decline in TiO2

toxicity with increasing particle size. For bulk CuO, the fitting

result showed that the PNEC of bulk CuO was more than 1500

mg/L. However, it limited the understanding of the toxicity of

bulk CuO due to insufficient available data on bulk CuO. Too

little data may lead to a reduction in the goodness of fit and an

increase in the uncertainty (ECB, 2003).

Nanoscale particles can exhibit special characteristics and

high reactivity because of the larger proportion of atoms or

molecules and the numbers of reactive groups distributed on

their surface (Nel et al., 2006). Therefore, the environmental and

health risks of NPs have attracted widespread concerns and

some studies have revealed the adverse effects of NPs on marine

organisms (Qian et al., 2020; Du et al., 2021; Zhu et al., 2022). It

is generally considered that the toxicity of NPs is size-dependent,

which means that smaller NPs are more toxic than larger ones.

For example, our previous study found that the toxicity of TiO2

particles to marine microalgaNitzschia closterium was negatively

correlated with particle size, which was proved by the algal

growth inhibition effects (96 h-EC50: 88.78 mg/L (21 nm)<

118.80 mg/L (60 nm)< 179.05 mg/L (400 nm)) (Xia et al.,

2015). Similarly, Ates et al. (2013) found that ZnO NPs (10–
B CA

FIGURE 2

Marine species sensitivity distribution of bulk (A)ZnO, (B) CuO, and (C) TiO2.
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30 nm) caused higher toxicity to brine shrimp (Artemia salina)

larvae than bulk ZnO (200 nm). One of the main reasons is that

the cellular uptake of NPs would be affected by particle size, as

nanoscale particles are more liable to internalize into cells

through penetration, diffusion, or endocytosis (Liu and Tang,

2020). Previous studies confirmed that the internalization of NPs

was closely related to oxidative stress, physical injury, and other

cytotoxicity (Zhao et al., 2016). Besides, the “Trojan horse” effect

maybe also contribute to the toxicity of metallic NPs with the

ability to release ions, which means NPs could enter the cell and

then start releasing toxic ions (Wang and Wang, 2014; Moreno-

Garrido et al., 2015). Although the aggregation of NPs was

observed in seawater, which was driven by the high ionic

strength, there are still some particles that remain at the

nanoscale and exhibit the nano-size effect (Xia et al., 2018;

Zhu et al., 2022).
SSDs of metal ions

In this study, SSDs of metal ion were also built in order to

understand the ion effect of metallic NPs (Figure 3). The derived

PNEC of Ag+, Zn2+ and Cu2+ was 0.62 mg/L (0.17−5.53 mg/L),
2.65 mg/L (0.70−17.24 mg/L) and 0.55 mg/L (0.11−3.43 mg/L),
respectively, which was relatively lower than the corresponding

NPs, reflecting the major contribution of metal ions to the

toxicity of NPs.

Indeed, there is still an open debate on the causation of NP

toxicity, and it remains unclear whether the toxicity of NPs could

be completely explained by the ion release or not (Moreno-

Garrido et al., 2015). For example, Miao et al. (2009) attributed

the toxicity of Ag NPs to marine diatom Thalassiosira weissflogii

to the leached Ag+. However, Šiller et al. (2013) observed that the

toxicity of Ag NPs to sea urchin Paracentrotus lividus were more

toxic than that of equivalent Ag+ dose, implying that the

contribution of nanoparticle effect to the observed toxicity

cannot be ignored. Sun et al. (2017) further calculated the

relative contributions of particles and ions to the overall
Frontiers in Marine Science 06
toxicity of CuO NPs were 62.07% and 37.93%, respectively,

indicating that size-effect is the major toxic source of CuO NPs

to the marine scallop (Chlamys farreri) hemocytes. These

independent studies only covered single species, and the

sensitivity inherent to different species varies greatly (Rotini

et al., 2018; Thiagarajan et al., 2019). In this study, the model

results demonstrated that the toxicity of NPs is relatively lower

than that of corresponding metal ions, which may be caused by

the incomplete dissolution of NPs in seawater. It is necessary to

note that NPs are inclined to aggregate in the marine

environment, and ions dissolved from NPs show an inverse

relationship with the size of the aggregates (He et al., 2013).

Thus, from the angles of the response from the ecosystem, the

statistical results of this study supported the opinion that the

toxic effects of nanomaterials derived from the combined effect

of nano-size effect and ion effect.
Ecological risks of metallic nanoparticles

To further perform the risk assessment, the environmental

concentrations of metallic NPs were collected from published

literature that were conducted by field measurement. However,

limited information is available on the environmental

concentrations of metallic NPs in marine environments. Due

to the limitation of detection technology, only one study

reported the actual concentrations of NPs in seawater all over

the world (Xu et al., 2020). And the particle concentrations of

Ag, Zn, Cu and Ti bearing NPs in surface seawater of Jiaozhou

Bay, China were 0.54×107, 0.46×107, 0.79×107, and 0.65×107

particles/mL, respectively, with their mean sizes in seawater were

30.5, 126.2, 117.4, and 105.2 nm, respectively (Xu et al., 2020).

We then assumed the measured NPs were all Ag, CuO, ZnO and

TiO2 NPs and speculated the mass concentrations of these NPs

were 8.41×10-3, 2.71×10-2, 4.22×10-2, and 1.68×10-2 mg/L,
respectively, based on their particle concentrations, mean size

and density (Table S11).
B CA

FIGURE 3

Marine species sensitivity distribution of (A) Ag+, (B) Zn2+, and (C) Cu2+.
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RCRs, the classic risk assessment index, were calculated by

comparing environmental concentrations with PNECs (Coll

et al., 2016; Adam et al., 2021). For all the four NPs in

seawater, RCR values were lower than 0.1 (Figure 4A),

indicating the low risk of metallic NPs in the current marine

environments. This result was similar to those RCRs reported in

surface waters (Musee, 2011; Kjølholt et al., 2015; Coll et al.,

2016), except for one research evaluated the RCRs of Ag NPs in

the Europe surface waters were slightly higher than 1

(Gottschalk et al., 2009). In addition, some special exposure

scenarios, such as sewage treatment plant effluents discharged

directly into the sea, should be paid more attention to because

they would carry higher concentrations of NPs and thus lead to

elevated environmental risks (Gottschalk et al., 2009; Kjølholt

et al., 2015). Furthermore, with the exponential increase in the

production of nano-products (Robichaud et al., 2009), more and

more NPs will inevitably release into the marine environment

over the life-cycle of nano-products (Zheng and Nowack, 2021).

Thus, the concentrations of NPs in the marine environments are

expected to be further increased and more environmental

concentrations of NPs in the marine environment are strongly

needed to be determined.
Environment carrying capacity of
metallic nanoparticles

The SECC of metallic NPs was calculated in Jiaozhou Bay,

where the actual concentrations of NPs in seawater were measured

(Xu et al., 2020). The sea area of Jiaozhou Bay is about 390 km2

with a mean water depth of 7 m (Liu et al., 2005). Thus, the

obtained SECC values of Ag, ZnO, CuO, and TiO2 NPs in Jiaozhou

Bay were 5.03, 8.72, 93.06, and 629.79 t, respectively (Figure 4B).

Among the four NPs, Ag NPs have the lowest SECC value, mainly

because they posed the greatest threat to the marine ecosystem.
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This reminded us that more attention should be paid to the

regulation of Ag NPs emissions into Jiaozhou Bay.

The concept of “carrying capacity” is complex and disputed

in the course of development (Zhou et al., 2019). Several

concepts and tools have been proposed for modelling the

impacts of environmental pollution on natural systems (Liao

et al., 2013; Bui and Tran, 2022; Yang et al., 2022). One approach

is proposed based on the data of pollutants in water bodies, the

water quality standards, combined the volume of water bodies,

and the retention time of water (Bui and Tran, 2022). In this

study, a mathematical model was established for calculating the

SECC of metallic NPs in the Jiaozhou Bay. Due to the lack of

evaluation standard of marine environmental quality for

metallic NPs, the derived PNEC of metallic NPs was adopted

to calculate the SECC. Although the model is simplified and

needs to be further improved, the simulated values suggests that

the carrying capacity of marine environments for metallic NPs is

not infinite. Understanding the SECC on metallic NPs have

important implications for curbing the environmental pollution

and the corresponding ecological risks of metallic NPs.
Conclusion

SSDs were constructed for Ag, ZnO, CuO, and TiO2 NPs, as

well as their bulk and ionic counterparts, to better understand

the marine ecological risks of NPs. The PNECs of Ag, ZnO,

CuO, and TiO2 NPs were 1.85, 3.22, 34.13, and 230.71 mg/L,
respectively, and the toxicity order of these metallic NPs to

marine species was estimated as Ag > ZnO > CuO > TiO2.

Furthermore, the nano-size effect and ion effect on these

distributions were also estimated on the basis of the marine

toxicity datasets. The toxicity of ZnO, CuO, and TiO2 NPs was

more toxic than their bulk form. Meanwhile, the toxicity of Ag,

ZnO, and CuO NPs was less than the corresponding metal ion.
FIGURE 4

(A) Marine ecological risk and (B) seawater environment carrying capacity (t) of Ag, ZnO, CuO, and TiO2 nanoparticles in Jiaozhou Bay, China.
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Therefore, the toxicity of NPs to marine species was derived

from the combined effect of size effect and ion effect. Based on

the available information, Ag, ZnO, CuO, and TiO2 NPs have

not yet posed risks to the marine environment in Jiaozhou Bay at

present. The Jiaozhou Bay can carry additional quantities of Ag,

ZnO, CuO and TiO2 NPs are 5.03, 8.72, 93.06, and 629.79 t,

respectively, before an unacceptable ecological risk occurs. In the

future, studies are strongly required to investigate the marine

environmental concentrations of metallic NPs to accurately

perform the environmental risk assessment.
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