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Rapid reconstruction of
temperature and salinity fields
based on machine learning and
the assimilation application

Zhihui Chen †, Pinqiang Wang †, Senliang Bao
and Weimin Zhang*

College of Meteorology and Oceanography, National University of Defense Technology,
Changsha, China
Satellite observations play important roles in ocean operational forecasting

systems, however, the direct assimilation of satellite observations cannot

provide sufficient constraints on the model underwater structure. This study

adopted the indirect assimilation method. First, we created a 3D temperature

and salinity reconstruction model that took into account the advantage of the

nonlinear regression of the generalized regression neural network with the fruit

fly optimization (abbreviated as FOAGRNN). Compared with the reanalysis

product and the WOA13 climatology data, the synthetic T/S (temperature

and salinity) profiles had sufficient accuracy and could better describe the

characteristics of mesoscale eddies. Then, the synthetic T/S profiles were

assimilated into the Regional Ocean Model System (ROMS) using the

Incremental Strong constraint 4D Variational (I4D-Var) data assimilation

algorithm. The quantitative and qualitative analysis results indicated that

compared with the direct assimilation of satellite observations, the root mean

square errors (RMSEs) of temperature and salinity were reduced by 26.0% and

23.1% respectively by assimilating the synthetic T/S profiles. Furthermore, this

method significantly improved the simulation effect of the model underwater

structure, especially in the 300 m to 500 m water layer. Compared with the

National Marine Data Center’s real-time analysis data, the machine learning-

based assimilation system demonstrated a significant advantage in the

simulation of underwater salinity structure, while showing a similar

performance in the simulation of underwater temperature structure.

KEYWORDS

machine learning, satellite observations, three-dimensional T-S fields, 4DVAR
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1 Introduction

By combining observations and numerical models, data

assimilation not only can make up for the temporal

discontinuity and spatial inhomogeneity of observations but

also can improve the accuracy of numerical models. However,

the effect of data assimilation depends on the quality of the

observations and their spatiotemporal distribution. With the

development of satellite technology, satellite data have

experienced incredible growth (Ratheesh et al., 2012). Sea

surface temperature (SST) and sea level anomaly (SLA) have

become the indispensable data in operational systems, and the

assimilation of sea surface salinity (SSS) can also enhance the

forecasting effect on El Niño/Southern Oscillation (ENSO)

(Tranchant et al., 2019). Compared with ship surveys or

buoys, satellite can provide large-scale observations of the

ocean surface with better time continuity. However, satellite

cannot directly observe the subsurface, and the adjustment of the

underwater structure of numerical models still relies on the

observations of T/S profiles by instruments such as Argo buoys.

However, the in-situ observations like Argo buoys are scarce. For

example, only one Argo buoy was active in the South China Sea

on May 18, 2018.

How to use satellite data to constrain the subsurface

temperature and salinity structure is a complex problem in

ocean data assimilation. One method is statistical, which

establishes statistical relationships between surface and

subsurface seawater states, including multiple linear regression

and Empirical Orthogonal Functions (EOFs). Carnes et al.

(1994) determined the EOF magnitude of the vertical

temperature structure as a function of SST and sea surface

height (SSH) by performing multivariate least squares

regression on more than 33,000 historical T/S profiles in the

Northwest Pacific and Northwest Atlantic Oceans. In this way,

they projected the observation information of SST and SSH

underwater. Based on the work of Carnes et al. (1994); Fox et al.

(2002) developed the Modular Ocean Data Assimilation System

(MODAS) and applied it to the US Navy Coupled Ocean Data

Assimilation (NCODA) system. To reduce significant errors

near the thermocline layer, the US Navy established an

Improved Synthetic Ocean Profiles (ISOP) system. The system

divided the ocean into mixed layers, thermocline, and quiescent

layers. The vertical mapping model of the T/S profiles was

established respectively by using multiple regression, one-

dimensional variational data assimilation, and linear regression

at three levels (Helber et al., 2013). Following the practice of the

US Navy, China’s National Marine Data Center successfully

established MODAS and ISOP systems and used them to

produce real-time analysis data. This approach proposed by

Carnes et al. (1994) is not suitable for areas where observations

are scarce. To address this problem, Ezer and Mellor (1994)

utilized model output to establish the statistical relationship
Frontiers in Marine Science 02
between the sea surface height anomaly and the subsurface

temperature and salinity anomaly. Then they assimilated the

data from satellite tracks to improve the temperature structure of

the 500 m water layer. The simulation effect of this method is

dependent on the performance of the model. In the ensemble

method, the ensemble samples can also be employed to consider

the relationship between the surface and the subsurface layers,

and then the observation information can be passed down (Chen

et al., 2018; Zhou et al., 2021).

Different from the statistical method, the dynamic method

uses dynamic constraints to transfer the sea surface information

downward. Common dynamic methods include the nudging

approach (Holland and Malanotte-Rizzoli, 1989; Chen et al.,

2020) and the dynamic conservation technique (Haines, 1991;

Cooper and Haines, 1996; Weaver et al., 2005). In the Nudging

approach, a nudging term is added to the right side of the

dynamic equation, and the assimilated sea surface observation

information is transferred to the deep layer only through the

model dynamic framework. However, this approach may induce

disturbances during the adjustment phase of the model, resulting

in poor simulation of the subsurface structure (Cooper and

Haines, 1996). In the dynamic conservation technique, the

adjustment is performed based on the conservation properties

or balance relationships of the ocean, such as potential vorticity

conservation, geostrophic equilibrium, static equilibrium, etc.

(Weaver et al., 2005; Liu et al., 2019; Liu et al., 2021). With the

further development of the assimilation methods, the variational

assimilation method was proposed. This method decomposes

the assimilation increment into a balance term and a non-

balance term. In the balance term, the balanced relationship is

utilized to establish a multivariate balance operator to indirectly

adjust the observed variables (Moore et al., 2011a; Moore et al.,

2011b; Cummings and Smedstad, 2013). Dynamic conservation

often adopts a simple dynamic framework, which is mainly

suitable for adjusting the large-scale or small-scale components

that satisfy the conservation relationship but is often not

applicable to near shore.

In recent years, machine learning methods have been

increasingly employed in meteorological and oceanographic

applications, including bias correction of satellite observations

(Vernieres et al., 2014; Le et al., 2020; Iqbal et al., 2022) and

subsurface temperature and salinity reconstruction (Su et al.,

2015; Chapman and Charantonis, 2017; Su et al., 2018; Bao et al.,

2019). Compared with the multiple linear regression method

used in MODAS, the machine learning method is more efficient

in reconstruction and has a strong nonlinear regression

capability and a high degree of fault tolerance and robustness.

Bao et al. (2019) utilized the generalized regression neural

network with fruit fly optimization (abbreviated as

FOAGRNN) to reconstruct the salinity profiles based on sea

surface data, and the reconstruction effect was better than that in

multiple linear regression at the strong thermocline layer. To
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address the shortcomings of the direct assimilation for

insufficient constraints on the model underwater structure, a

machine learning-based assimilation system was established in

this study. We first reconstructed the satellite observations into

underwater 3D T/S pseudo-profiles using the FOAGRNN

algorithm. Then we assimilated the synthetic profiles into the

ROMS using the I4D-Var data assimilation algorithm. To

validate the accuracy and effectiveness of this system, the

system results were compared with the experiment results of

the direct assimilation and the real-time analysis data of the

National Marine Data Center.

The article is organized in the following sections: Section 2

describes the data sources, machine learning algorithms,

assimilation methods, and model setup. Section 3 evaluates

the accuracy of the FOAGRNN reconstruction model. Section

4 conducts three groups of assimilation experiments to

examine the simulation effect of the machine learning-based

assimilation system on the model underwater structure.

Finally, a summary and a discussion of our research findings

are given in Section 5.
2 Details of the machine learning-
based assimilation system

Compared with the conventional method of the direct

assimilation of satellite data, we created a machine learning-

based assimilation system (Figure 1), which was divided into
Frontiers in Marine Science 03
three main steps: in the first step, historical satellite altimeter

data and historical T/S profiles were collected, and then the

reconstruction model was obtained by training with the

FOAGRNN algorithm proposed by Bao et al. (2019); in the second

step, the assimilation time period was selected, and the real-time

satellite observations were employed as the input field of the

reconstruction model to construct the T/S profiles for each day;

finally, the synthetic T/S profiles were assimilated into the model

using the I4D-Varmethod.Thedata source, reconstructionmethods,

and assimilation system configuration are described below.
2.1 Data

The ocean observations used in this study included SLA,

SST, SSS, and in situ observations. The satellite SLA data were

delayed time and gridded maps of sea level anomaly (MSLA)

from Copernicus Marine Environment Monitoring Service

(CMEMS) with a horizontal resolution of 0.25°; the satellite

SST data were acquired from the gridded product released by

United Kingdom Meteorological Office (UKMO) with a

horizontal resolution of 1/20° and were interpolated to SLA

gridded points to maintain a consistent horizontal resolution

(Good et al., 2020); the satellite SSS data were obtained from the

Soil Moisture Active Passion (SMAP) with the same spatial and

temporal resolutions as the SST and SLA data (He et al., 2021).

All of the above satellite products had a temporal resolution of

one day. In situ observations included the EN4.2.1 T/S profile
FIGURE 1

The flow chart of the machine learning-based assimilation system.
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datasets from the Hadley Center (Good et al., 2013), and survey

data from the Northwest Pacific. The EN4.2.1 T/S profile

datasets were divided into 24 layers at different depths, namely

2, 5.01, 15.07, 25.28, 35.7, 46.61, 57.98, 70.02, 82.92, 96.92,

112.32, 129.49, 148.96, 171.40, 197.79, 229.48, 268.46, 317.65,

381.39, 465.91, 579.31, 729.35, 918.37, and 1139.15 m. To ensure

the accuracy of the reconstruction model, the historical satellite

altimeter data and EN4.2.1 historical T/S profiles from 2004 to

2018 were used as the training data of the reconstruction model,

and the corresponding data in 2019 were utilized as the test data.

Each set of assimilation experiments corresponds to a

reconstructed model. The numbers of the in-situ EN4.2.1 T/S

profiles for training data and the test data were shown in Table 1,

respectively. Satellite data (SLA, SST, SSS) from the assimilation

period were employed as input fields for the reconstruction

model to construct real-time 3D T/S pseudo-profiles. We also

utilized WOA13 climatology data, SODA3.4.2 reanalysis

product, GREP (Global Reanalysis multi-model Ensemble

Product) and real-time analysis data of the National Marine

Data Center (hereinafter referred to as MODAS) to evaluate the

reconstruction model accuracy and assimilation effects (Carton

et al., 2018; Storto et al., 2019). Survey data from the Northwest

Pacific were used as independent observations for the qualitative

analysis of the assimilation effect.
2.2 Method

2.2.1 FOAGRNN
The Generalized Regression Neural Network (GRNN) is

characterized by strong nonlinear mapping abilities, a flexible

network structure, a high fault tolerance, and robustness. The

theoretical basis of the GRNN is the nonlinear regression

analysis. To maximize the effectiveness of GRNN, the key is

the selection of smoothing parameters (Li et al., 2013). The fruit

fly optimization algorithm is a new probabilistic method

intended to find a global optimum based on the fruit fly’s

foraging behaviors. By setting the cost function for iterative

optimization, the error between the output value and the actual

value is gradually reduced, so as to determine the optimal

parameters. Many researchers have used the FOA to optimize

the parameters of artificial neural network models (Lin, 2013).

Taking GRNN as the research framework and using the FOA

algorithm to determine the optimal smoothing parameters, Bao

et al. (2019) proposed the FOAGRNN, which was employed to
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create the reconstruction model in our study. Taking the

reconstructed model of ExpBs as example, the specific flow

chart is shown in Figure 2 and the steps are as follows:

Step 1: Sample data preprocessing. The sample data included

satellite altimeter data and in-situ EN4.2.1 T/S profiles. The

spatial range of the selected sample data was [19°N-27°N, 122°E-

130°E], and the time span was from 2004 to 2019. The sample

data from 2004 to 2018 was used as the training set of the

reconstruction model, and the sample data in 2019 was utilized

as the test set. The data input to the FOAGRNN model included

sea surface data (EN4_SST, EN4_SSS, EN4_SLA) and location

data (EN4_Lon, EN4_Lat). The uppermost temperature and

salinity values of the in-situ EN4.2.1 T/S profiles were

employed as the input value of EN4_SST and EN4_SSS, and

EN4_SLA was obtained by interpolating satellite altimeter data

to the location (EN4_Lon, EN4_Lat). Before training the

reconstruction model, the input data was first normalized in

the range of 0-1, and the output data were subsurface

temperature or salinity values.

Step 2: Training of the FOAGRNN model. The initial

smoothing parameter value of the FOAGRNN model was set

in the range of [0.001, 1], and was dynamically adjusted by the

FOA algorithm during the model training process. The

smoothing parameter value was adjusted to the optimal value

through the minimization of the cost function.

Step 3: Evaluation of the reconstruction model. The

EN4_SST, EN4_SSS, EN4_SLA, and location data (EN4_Lon,

EN4_Lat) of the 2019 sample data were used as the input field of

the reconstruction model to construct three-dimensional

pseudo-profiles. Then the EN4.2.1 T/S profiles in 2019 were

utilized as the validation data to evaluate the accuracy of the

reconstruction model.

Step 4: Real-time reconstruction based on satellite data.

Based on the reconstruction model obtained from step 2, the

satellite data (SLA, SST, SSS) and their location information

(Lon, Lat) from October 2020 to November 2020 were employed

as input data to reconstruct the T/S profiles in real-time. The

vertical stratification was the same as the EN4.2.1 T/S profiles.

2.2.2 I4D-Var
Diagnostic variables in the ROMS model include potential

temperature (T), salinity (S), horizontal velocity (u, v), and sea

surface displacement (z). The state vector which is discretized

onto the model grid at time ti can be written as x(ti) = (T,S,z,u,v),
which is integrated forward by the discretized nonlinear model
TABLE 1 The number of profiles being used for training and validation and the measurement error in the assimilation experiments.

Case name Area Training Testing T_MRMSE/°C S_MRMSE/psu

ExpAs [10°N-30°N, 124°E-160°E] 62723 4573 0.76 0.10

ExpBs [19°N-27°N, 122°E-130°E] 6607 443 0.65 0.07

ExpCs [23°N-28°N, 135°E-140°E] 4508 372 0.68 0.07
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under the constraints of boundary conditions b(ti) and forcing

conditions f(ti), and the integration process is expressed as:

x tið Þ = M ti, ti−1ð Þ x ti−1ð Þ, f tið Þ, b tið Þð Þ (4)

The four-dimensional variational method used in this study

is the I4D-Var of the original equation. I4D-Var aims to find the

optimal estimate in the model space (Zhang et al., 2010; Moore

et al., 2011b; Chen et al., 2014). The objective function of I4D-

Var can be written as:

J dx(t0), d f(t1),⋯, d f(tk), db(t1),⋯, db(tk), dh(t1),⋯, dh(tk)ð Þ

= 1
2 dx

T(t0)B
−1
x dx(t0) + 1

2o
N

k=1
o
N

j=1
d fT (tk)B

−1
f (tk, tj)d f(tj)

�

+ dbT (tk)B
−1
b (tk, tj)db(tj) + dhT (tk)Q

−1(tk, tj)dh(tj)g

+
1
2o

N

i=1
o
N

j=0
Hidx(ti) − dið ÞTR−1

i,j Hidx(tj) − dj
� �� �

(5)

where dx(tk) represents the model increment, which is

expressed as dx(tk)=x(tk)-xb (tk); di denotes the observation

increment, which can be written as di = y0i −Hi(x
b(ti));

Histands for the tangent linear operator of Hi, and Hisignifies

the observation operator; y0i symbolizes the observation at the

moment ti; Bx, Bb, Bf, Q, and R indicate the initial field, the
Frontiers in Marine Science 05
boundary field, the forcing field, and the model and observation

error covariance matrices, respectively. To simplify the objective

function, the transformation is expressed as follows:

za = zb + dza (6)

dz = dxT t0ð Þ, d fT t1ð Þ,⋯, d fT tkð Þ, dbT t1ð Þ,⋯, dbT tkð Þ, dhT t1ð Þ,⋯, dhT tkð Þ� �T
(7)

where z is the control variable, za is the value obtained from

the analysis field, zb is the value obtained from the background

field, dz is expressed as the increment of the control variable, and

the difference conversion incrementHidx(ti) can be written asHi

M(ti,t0)=Gidz. By introducing vectors d = (⋯, dTi ,⋯ ), matrices

G = (⋯,GT
i ,⋯ ), diagonal matrices R (with diagonal elements

Ri), and diagonal matrices D (with Bx, Bb, Bf, Q as diagonal

elements) into the cost function, the Eq. (5) can be simplified to

the following equation:

J dzð Þ = 1
2
dzTD−1dz +

1
2

Gdz − dð ÞTR−1 Gdz − dð Þ (8)

The solution of the equation ∂J/∂z =0 is the required solution

of dza:

∂ J= ∂ z = D−1dz + GTR−1 Gdz − dð Þ (9)

dza = D−1 + GTR−1G
� �−1

GTR−1d (10)
FIGURE 2

The flow chart of the reconstruction of 3D T/S profiles.
frontiersin.org

https://doi.org/10.3389/fmars.2022.985048
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2022.985048
2.3 Experiment configuration

The simulated region was located in the Northwest Pacific

[-10°S-45°N, 99°E-165°E] with a horizontal resolution of 1/6° ×

1/6° and was divided into 48 layers in the vertical direction. The

bathymetry field was generated using ETOPO2 data with a

minimum depth of 10 m and a maximum depth of 5500 m.

The model was integrated from January 5, 2014 to December 31,

2020 (without any data assimilation). The open boundary

conditions were obtained from the SODA3.4.2 five-day

averaged reanalysis product, and atmospheric forcing fields

were obtained from ECMWF ERA-interim datasets (including

wind stress, heat flux, and freshwater flux). We followed three

purposes for this real simulation: (1) to provide a mean surface

height for SLA assimilation; (2) to derive statistics regarding the

climatic background error standard deviation; and (3) to provide

a dynamically balanced initial condition for the subsequent

assimilation experiments (Wang et al., 2021).

To evaluate the simulation effect of the machine learning-

based assimilation system on the model underwater structure,

we designed a set of assimilation experiments for quantitative

analysis. The assimilation period was from October 1, 2020 to

October 29, 2020. The experiment contained two cases

(Table 2) in which the assimilated observations of ExpA1

were the satellite SST and SLA; the assimilated observations

of ExpA2 were the synthetic T/S profiles in the satellite

observational grid. The observation error was assumed to be

spatially and temporally uncorrelated, which resulted in the

fact that the observation error covariance matrix was specified

as a combination of measurement error and representative

error, which were additive. The measurement error was

considered independent of the data source, and the standard

deviations of the observations from the scatter assimilation

experiments were as follows: 2 cm for Satellite_SLA, 0.48°C for

Satellite_SST, respectively. Satellite_pseudo_TS standard

deviations were given respectively based on the depth means

of the RMSEs of the 2019 test datasets of 0.76°C and 0.10 psu

(Dai et al., 2021). The representativeness error is the standard

deviation of the observations that contribute to each

super-observation.

In order to better visualize the effect of synthetic profiles

assimilation on the improvement of the model underwater
Frontiers in Marine Science 06
structure, we selected two area with mesoscale eddies for

qualitative analysis. For regions with strong stratification, the

selected area should not be too large, which could easily lead to

inaccurate regression relationships between sea surface variables

and underwater variables. Therefore, compared to the previous

set of assimilation experiments, we reduced the selected area

(Table 2). ExpB1 directly assimilated the satellite SST and SLA,

and the adjustment of the underwater structure was carried out

by model dynamical framework, while ExpB2 assimilated the

synthetic T/S profiles based on SST and SLA. The period of this

groups of experiments was from October 1, 2020 to November

19, 2020 with an assimilation window of 7 days. To more

extensively verify the improvement effect of the machine

learning-based assimilation system on the model underwater

structure, another grid assimilation experiment was conducted.

The period and the assimilation window are shown in Table 2.

The assimilation data of ExpC1 and ExpC2 are the same as

ExpB1 and ExpB2, respectively, but in different regions. To

compare the assimilation effect, survey data for the Northwest

Pacific were chosen as independent validation data for ExpBs

and ExpCs. The measurement error of satellite observations for

ExpB1 and ExpC1 is consistent with that of ExpA1 and the

measurement error of synthetic profiles for ExpB2 and ExpC2 is

shown in Table 1.
3 Evaluation of the accuracy of the
synthetic profiles

Before assimilating the synthetic T/S profiles into the model,

we evaluated the performance of the reconstruction model,

including error analysis and characteristic analysis by

comparing the synthetic profiles with the reanalysis product

and the WOA13 climatology data.
3.1 Error analysis

To test the effectiveness of the synthetic model, the root

mean square errors (RMSEs) of the 2019 synthetic T/S profiles,

SODA3.4.2 reanalysis products, and WOA13 climatology data

were calculated separately relative to the EN4.2.1 T/S profiles.
TABLE 2 Assimilation experiment setup.

Case name assimilation period window assimilation data

ExpA1ExpA2 2020-10-01—2020-10-29 7day Satellite_SST+Satellite_SLA
Satellite_pseudo_TS

ExpB1ExpB2 2020-10-01—2020-11-19 7day Satellite_SST+Satellite_SLA
Satellite_pseudo_TS

ExpC1ExpC2 2019-11-01—2019-11-29 7day Satellite_SST+Satellite_SLA
Satellite_pseudo_TS
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The following equation was utilized to calculate the skill score of

the synthetic profiles and SODA3.4.2 reanalysis product relative

to the WOA13 climatology data (Zhu et al., 2022).

Skill = 1 −
RMSE m, oð Þ
RMSE c, oð Þ

� �
(12)

where RMSE(m,o) represents the root mean square error

between the target data and the EN4.2.1 in-situ data, and RMSE(c,

o) stands for the root mean square error between the reference data

and the EN4.2.1 in-situ data.We used theWOA13 climatology data

as the reference data.When the RMSE of the target data was smaller

than the RMSE of the reference data, the Skill was positive, and the

closer it was to one, the greater the degree of improvement was.

The RMSE and the Skill of the synthetic T/S profiles are

shown in Figure 3. In terms of temperature, the error

distributions of the synthetic profiles and SODA3.4.2

reanalysis products are close and the depth averages of RMSE

are basically equal (0.65 for SODA3.4.2 and 0.66 for the

synthetic fields), indicating that the accuracy of the synthetic

fields and the SODA3.4.2 product is comparable (Figure 3A).

From the perspective of Skill, the synthetic temperature profiles

show the advantage of accuracy in 150m-400m, while the

accuracy of SODA3.4.2 reanalysis product is higher in the rest

of the depths. The depth averages of Skill for the synthetic

temperature profiles and the SODA3.4.2 reanalysis product are

0.34 and 0.36, respectively, which are almost equivalent

(Figure 3C). From the perspective of salinity, the RMSE of the

synthetic salinity profiles from 100 m to 300 m was similar to
Frontiers in Marine Science 07
that of the WOA13 data but larger than that of the SODA3.4.2

product (Figure 3B). This is understandable since the 5 day-

averaged SODA3.4.2 reanalysis product assimilates the satellite

observations as well as the in-situ T/S profiles and the data used

for comparison here belong to the in-situ T/S observations. In

addition to the need to further enhance the accuracy near the

thermocline layer, the accuracy of the synthetic salinity profiles

was improved compared with the WOA13 data (Figure 3D).

Figure 4 exhibits the horizontal distribution of RMSEs for

the synthetic data and SODA3.4.2 reanalysis product relative to

the EN4.2.1 in-situ profiles in 2019. Overall, the RMSE of

synthetic temperature profiles was smaller than 1°C with a

mean value of about 0.67°C, and the RMSE of the synthetic

salinity profiles was smaller than 0.15 psu with a mean value of

about 0.07 psu. There were 437 EN4.2.1 T/S profiles in 2019 and

the RMSE of about 37% for the synthetic temperature profiles

was smaller than that for the SODA3.4.2 temperature product,

and the RMSE of about 30% for the synthetic salinity profiles

was smaller than that for the SODA3.4.2 salinity product.
3.2 Characteristic analysis

We quantitatively analyzed the accuracy of the reconstructed

model in Section 3.1. In this section, combined with the three-

dimensional structural features of mesoscale eddies, we

qualitatively analyze the reconstruction ability of the

FOAGRNN method for the mesoscale eddy. Figure 5 depicts
A B

DC

FIGURE 3

Temperature (left) and salinity (right) profiles root mean square errors (RMSEs) and skill scores as a function of depth. (A) temperature profiles
RMSE, (B) salinity profiles RMSE, (C) skill score of temperature profiles relative to WOA13, (D) skill score of salinity profiles relative to WOA13. The
black line represents SODA3.4.2 reanalysis data; the red line represents the synthetic profiles; the blue line represents WOA13 climatology data,
and the numbers represent the depth mean of RMSE and skill score.
frontiersin.org

https://doi.org/10.3389/fmars.2022.985048
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2022.985048
A B

DC

FIGURE 4

The distribution of RMSEs over space. Each row represents a different variable field. Each column represents a different data source: (A, C) the
synthetic fields and (B, D) the SODA3.4.2 reanalysis data.
A B

D E F

G IH

C

FIGURE 5

The distribution of the anomaly fields of sea surface level, temperature and salinity from satellite, synthetic fields and GREP reanalysis data on
May 13, 2019. (A, D, G) the SLA, SSTA, and SSSA of the satellite observations, (B, E, H) the SLA, SSTA, and SSSA of the synthetic fields, (C, F, I) the
SLA, SSTA, and SSSA of the GREP reanalysis product.
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the distribution characteristics of SLA, sea surface temperature

anomaly (SSTA), and sea surface salinity anomaly (SSSA). SSTA

and SSSA are the anomalies of satellite data, synthetic fields, and

GREP reanalysis product relative to WOA13 climatology data.

The SLA for the synthetic data and GREP product is the

anomaly of the vertically integrated dynamic height field

relative to that calculated by WOA13 data. The synthetic

profiles began at 10 m, thus, the SST and SSS of the synthetic

data were approximately represented by the temperature and

salinity values at this depth. It can be observed in Figure 5 that

the characteristics (location and shape) of the mesoscale eddies

calculated based on the synthetic temperature and salinity fields

are closer to the observations than the results of the GREP

product. One possible reason is that the reconstructed model

incorporates much information from various surface

observations. The changes with depth in the dynamic height

anomaly field, temperature anomaly field, and salinity anomaly

field are illustrated in Figure 6, respectively. The mesoscale

eddies which were calculated by each element field of the

synthetic data are quite consistent with the real sea surface

eddies in both position and shape at these depth layers,

indicating that the FOAGRNN algorithm has acceptable

mesoscale eddy reconstruction capability.
4 Assimilation results of the
synthetic T/S profiles

Through error analysis and characteristic analysis, section 3

suggested that the synthetic T/S profiles based on the machine

learning method had sufficient accuracy. On this basis, we

fur ther conducted the fo l lowing three groups of

assimilation experiments.
4.1 Quantitative analysis

In order to make the RMSE statistically significant, we

selected a relatively large area for the assimilation experiment.

The RMSEs of the assimilation experiment results of each case

relative to the EN4.2.1 in-situ T/S profiles are exhibited in

Figure 7. In terms of temperature, ExpA1 has an error of more

than 2°C at the thermocline, while ExpA2 has a reduced error at

the 100-1100m depth layer. Compared to MODAS, ExpA2

shows higher accuracy at the thermocline and 300-800 m. The

depth means of RMSE show that ExpA2 improves the

simulation accuracy by 6.2% and 26.0% compared to MODAS

and ExpA1, respectively (Figure 7A). From the perspective of

salinity, compare with ExpA1, the experiment results of

synthetic profiles not only reduce the error at the thermocline,

but also have higher simulation accuracy at other depths with
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improvements in the simulation accuracy by 23.1%. The depth

means of RMSE for ExpA2 andMODAS are basically equal (0.10

and 0.09, respectively), which shows that their simulation

accuracy is comparable, and it may be related to both

assimilating synthetic salinity profiles (Figure 7B).
4.2 Qualitative analysis

4.2.1 Region one
The results of the error analysis show that the assimilation of

synthetic profiles can improve the simulation accuracy of the

model underwater structure compared to the direct assimilation

of the satellite observations. In section 4.2, the impact of the

synthetic profiles on the model underwater structure is assessed

from the qualitative analysis. Figure 8 shows the temperature

anomaly and salinity sections along the observation route. The

temperature anomalies were obtained by subtracting the

WOA13 climatology data from the in-situ survey data,

MODAS data, and the experimental results of ExpB1 and

ExpB2. In terms of temperature, the shape characteristics of

ExpB1 were inconsistent with the in-situ section structure and

the distribution of the temperature anomaly in the deep layer

was also relatively higher than any other data. Both ExpB2 and

MODAS data simulated a cold eddy structure similar to the in-

situ one in the corresponding position, but the shape feature of

ExpB2 was more consistent with the in-situ one (Figures 9A–D).

From the perspective of salinity, compared with MODAS data

and the experiment results of ExpB1, the salinity section

structure of ExpB2 was more consistent with the in-situ

measurements in terms of depth distr ibution and

microstructure (Figures 9E–H).

4.2.2 Region two
The section where the red dots in Figure 10 are located was

taken as the research section. Figures 11A–D reveal the

temperature anomaly sections of the in-situ survey data,

ExpC2, MODAS data, and ExpC1, respectively. Taking the

depth of 200 m as the dividing line, an obvious dual-core

structure can be observed in the in-situ temperature anomaly

section structure. Compared with the assimilation results of

ExpC1, both ExpC2 and MODAS data simulated a dual-core

structure, but the strength of the cold eddy structure is not in line

with the actual measurement. From the perspective of salinity

anomaly sections, we can see in Figures 11E–H that there is a

low-salinity center near 400 m in the in-situ salinity anomaly

section. The salinity anomaly section structure of ExpC1 did not

simulate a single-core structure in the deep layer, and the salinity

anomaly value of ExpC1 near the sea surface was much larger

than that of the in-situ survey data. The cold eddy structure

could not be simulated by MODAS data, and the salinity
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FIGURE 6

The distribution of the anomaly fields of dynamic height, temperature and salinity from the synthetic fields and on May 13, 2019. From left to
right: 100m, 300m, 500m, and 800m. (A–D) the dynamic height anomaly fields of the synthetic fields, (E–H) the temperature anomaly fields
of the synthetic fields, (I–L) the salinity anomaly fields of the synthetic fields. The circles in the figure are mesoscale eddies identified by
satellite SLA.
A B

FIGURE 7

RMSEs of ROMS in nowcasting all the available EN4.2.1 T/S profiles. (A) temperature and (B) salinity (black line: MODAS data; red line: the
experiment results of assimilating the synthetic T/S observations; blue line: the experiment results of assimilating sea surface observations).
Numbers represent depth means of the RMSEs.
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anomalies at almost all depths were near 0 psu. This indicated

that the salinity field of MODAS data was not much different

from the WOA13 salinity background field. Differently, ExpC2

simulated an obvious single-core structure, but the depth range
Frontiers in Marine Science 11
covered by the structure was larger than that by the in-situ

salinity anomaly section.

Figure 12 illustrates the horizontal distribution of

temperature and salinity anomaly at depths of 10 m, 100 m,
A B D

E F G H

C

FIGURE 9

Temperature anomaly section and salinity section along the observation route. From top to bottom: temperature anomaly values and salinity
values. (A, E) in-situ survey data, (B, F) the experiment results of assimilating the synthetic T/S observations, (C, G) the MODAS data of the
National Marine Data Center, (D, H) the experiment results of assimilating the satellite observations. The abscissa represents the distance from
the starting point of the survey data (unit: km).
FIGURE 8

The distribution of the sea surface level anomalies on November 8, 2020 (unit: m). The black line represents the observation route of the
Northwest Pacific survey data.
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FIGURE 10

The distribution of survey stations of the Northwest Pacific cyclone eddy from November 13 to 15, 2019. The red dots represent the location
of the study section, the color represents the sea surface level anomaly, and the circle in the figure is the mesoscale eddy identified by
satellite SLA.
A B D

E F G H

C

FIGURE 11

The section structure of the temperature and salinity anomaly at the position of the red dot in Figure 10. Top: temperature anomaly values;
bottom: salinity anomaly values. (A, E) in-situ survey data, (B, F) the experiment results of assimilating the synthetic T/S observations, (C, G) the
MODAS data of the National Marine Data Center, (D, H) the experiment results of assimilating the satellite observations.
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200 m, 300 m, 400 m, and 500 m. In terms of temperature

anomaly, from 100m to 200m, the slice structure of ExpC1 was

in good agreement with the in-situ data, suggesting that the

direct assimilation of satellite data had a positive impact on the

simulation of the model underwater structure at this depth layer.

However, the cold eddy structure simulated by ExpC1 gradually

disappeared in the subsequent depths. This indicated that the

positive impact of the direct assimilation of satellite data was

weakening with the change of depth, while MODAS data and

ExpC2 could maintain the cold eddy structure with the change

of depth (Figures 12A–D). From the perspective of salinity

anomaly, ExpC1 could not simulate the cold eddy structure,

and similar to Figure 11G, the salinity anomalies of MODAS

data at all depths were around zero, indicating that MODAS
Frontiers in Marine Science 13
salinity data were almost the same as WOA13 climatology

salinity data. ExpC2 simulated both the cold eddy structure

and the intensity variation trend close to the in-situ

measurement (Figures 12E–H).
5 Conclusion and discussion

Satellite data are very important for marine operational

forecasting systems, however, the traditional method of the

direct assimilation of satellite observations cannot constrain

the simulation of underwater structures well. To address this

problem, we created a machine learning-based assimilation

system. First, the historical EN4.2.1 in-situ T/S profiles and
A B D

E F G H

C

FIGURE 12

Temperature and salinity anomaly slices at 10m, 100m, 200m, 300m, 400m, and 500m. (A, E) the in-situ data, (B, F) the experiment results of
assimilating the synthetic T/S profiles, (C, G) the MODAS data of the National Marine Data Center, and (D, H) the experiment results of the direct
assimilation of satellite observations. The unit of abscissa and ordinate is km.
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historical satellite altimeter data were employed as the training

data of the FOAGRNN to construct a reconstruction model.

Then satellite observations (SST, SLA, SSS) were utilized as the

input data of the reconstruction model to reconstruct three-

dimensional T/S pseudo-profiles. Finally, the I4D-Var method

was used to assimilate the synthetic data into the ROMS, and

three groups of assimilation experiments were performed. A

validation of the synthetic T/S profiles and the assimilation

experiments results against the observations indicates that
Fron
1. In addition to the need to further enhance the accuracy

near the thermocline, the accuracy of the synthetic profiles

is comparable to the 5-day averaged SODA3.4.2 reanalysis

product and better than theWOA13 climatology data. The

horizontal distribution of RMSE shows that the error of the

synthetic temperature profiles is within 1°C, while the

error for salinity is within 0.15 psu. The profiles with better

quality than the SODA3.4.2 reanalysis product occupy an

acceptable proportion in total. A validation against the

GREP reanalysis products shows that the synthetic fields

have better mesoscale eddy reconstruction ability.

Moreover, the mesoscale eddies which were calculated by

each element field of the synthetic data are quite consistent

with the real sea surface eddies in both position and shape

at the selected depths.

2. A validation against the EN4.2.1 in-situ T/S profiles

(with 107 observed profiles) shows that compared

with direct assimilation of satellite remote sensing

observations, the simulation accuracy of assimilating

synthetic profiles shows a significant improvement at

the thermocline, with a 26.0% reduction for temperature

and a 23.1% reduction for salinity in RMSE. Compared

with MODAS, the simulation accuracy of assimilating

synthetic profiles is improved by 6.2% in temperature

and comparable in salinity.

3. Survey data from the Northwest Pacific were used as

independent observations for the qualitative analysis of

the assimilation effect, which demonstrates that compared

with the direct assimilation of satellite remote sensing

observations, the indirect assimilation based on machine

learning can significantly improve the simulation effect of

model underwater structure, and comparedwithMODAS,

the machine learning-based assimilation system

demonstrated a significant advantage in the simulation

of underwater salinity structure.
Compared with the direct assimilation of satellite

observations, the indirect assimilation based on the machine

learning substantially improved the simulation effect of model

underwater structures, which can provide a more accurate initial

condition for ocean models to more accurately predict ocean

phenomena, such as mesoscale eddies. Moreover, as an

application example, our study can promote more scholars to
tiers in Marine Science 14
explore the combination of machine learning and data

assimilation in different ways, especially for applications of

satellite data in the operational system. However, there is still

a lot of optimization work to be done in the future.
1. There are mainly two error sources in the salinity profile

estimation. First, the satellite SSS data still have various

types of errors from the instrument’s observations,

brightness temperature Tb reconstruction, and salinity

retrieval algorithm, especially at high latitudes. Second,

the training data of the reconstruction model were based

on years of in-situ T/S profiles, while the input data used

to construct the real-time T/S pseudo-profiles originated

from satellite observations. Different depth distributions

of salinity values will inevitably cause errors in the

synthetic profiles. Therefore, the following study can

attempt to directly use the satellite observations as

training data or to describe the characteristic of the

relationship between in-situ SSS and satellite SSS.

2. when themachine learning algorithm reconstructs the T/

S profiles in a complex stratified region, such as

mesoscale eddies, the region of the selected sample data

should be limited to a certain range. Otherwise, the

empirical relationship between surface observations and

underwater variable fields may not be representative, and

the error of the synthetic profiles may be large. However,

if the range is too small, the number of the in-situ T/S

profiles in the study area will be scarce, and an effective

reconstruction model may not be constructed. To

compensate for this deficiency, it is possible to employ

reanalysis products as training data to build a

reconstruction model since the reanalysis data of each

current platform have good simulation accuracy, which

can provide favorable preconditions for the realization of

this goal (Compo et al., 2011; Dee et al., 2011).

3. In terms of the assimilation, this study assumed that the

observation errors were uncorrelated in time and space

and prescribed a single scalar for all synthetic

observations, which simplified the construction of the

observation error covariance matrix, but in fact, the

synthetic T/S profiles had a certain correlation, and a

single scalar for all synthetic observations may cause

under/overestimation of synthetic observations in the

wrong places. Moreover, a large number of synthetic T/S

profiles, which were not sparse enough, likely affected

the assimilation efficiency.
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