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Seasonal dissolved copper
speciation in the Strait
of Georgia, British
Columbia, Canada

Lori-jon C. Waugh1*, Iselle Flores Ruiz1, Cheng Kuang1,
Jian Guo1, Jay T. Cullen2 and Maria T. Maldonado1

1Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia,
Vancouver, BC, Canada, 2School of Earth and Ocean Sciences, University of Victoria,
Victoria, BC, Canada
The Strait of Georgia (SoG) is a semi-enclosed, urban basin with seasonally

dependent estuarine water circulation, dominantly influenced by Northeast

Pacific waters and the Fraser River. To establish a baseline and understand the

fate and potential toxicity of Cu in the SoG, we determined seasonal and spatial

depth profiles of dissolved Cu (dCu) speciation, leading to estimates of the free

hydrated copper (Cu2+) concentrations, as a proxy for Cu toxicity. The

concentration of dCu was largely controlled by conservative mixing of the

ocean and freshwater endmembers in the SoG. In all samples, ligand

concentrations exceeded dCu, by a ratio greater than 1.5, resulting in the

complexation of 99.98% of the dCu by strong binding organic ligands. The

concentrations of Cu2+were less than 10-13.2 M, significantly lower than thewell-

established Cu toxicity threshold (10-12 M Cu2+) for microorganisms. Our results

indicate that ambient Cu-binding ligands effectively buffer Cu2+ concentrations

within the Strait of Georgia, posing no threat to marine life. In almost 90% of the

samples, the ligands were best classified as a single ligand class, with a

logKcond
CuL,Cu2+ between 12.5 and 14.1. The concentrations of these single class

ligands were greatest in warm, low salinity, nutrient depleted waters, suggesting

that either terrestrially sourced ligands dominate dCu speciation in the SoG, or

freshwater sources in the SoG establish the conditions that promote the

production of Cu binding ligands in its surface waters. The remaining 10% of

the samples were from the euphotic zone, where we detected a stronger ligand

class, L1, of logK
cond
CuL1,Cu

2+ between 13.5 and 14.3, and a weaker ligand class, L2, of

logKcond
CuL2,Cu

2+ between 11.5 and 12.3. In these surface samples, logKcond
CuL1,Cu

2+ and

logKcond
CuL2,Cu

2+ were positively correlated with temperature, while L2
concentrations were positively correlated with chromophoric dissolved

organic matter of terrestrial origin. This study is the first to perform hierarchal
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clustering of a trace metal speciation dataset and enabled the distinction of 6

clusters across season, depth, and region of the SoG, highlighting the influence

of freshwater and open ocean ligand sources, conservativemixing dynamics, and

particulate Cu concentrations on dCu speciation within estuarine basins.
KEYWORDS

copper speciation, trace metals, organic ligands, estuary, Strait of Georgia,
hierarchical clustering, copper
Introduction

While copper (Cu) is a metabolically essential micronutrient

to marine biota, facilitating electron transfer in many biological

processes (Manahan and Smith, 1973; Palenik and Morel, 1991;

Peers et al., 2005; Maldonado et al., 2006; Peers and Price, 2006;

Guo et al., 2010; Glass and Orphan, 2012), Cu can also become

toxic at relatively low concentrations. Elevated Cu

concentrations have been shown to influence marine food

webs by inhibiting algae growth (Brand et al., 1986),

increasing domoic acid production (Maldonado et al., 2002),

bioaccumulating (DeForest et al., 2007), biomagnifying

(Cardwell et al., 2013), and promoting stress responses in

certain vertebrates (Ransberry et al., 2015) and other marine

biota (Sunda et al., 1987). Copper toxicity depends not on total

dissolved Cu concentrations (dCu), but rather the concentration

of the most bioavailable Cu species, free hydrated Cu2+. Toxicity

thresholds for Cu2+ vary between phytoplankton species and

between coastal and oceanic strains of the same genus (Brand

et al., 1986); however, Cu2+ concentrations greater than 10-12 M,

or a pCu2+ (i.e. pCu2+ = - log[Cu2+]) less than 12, are considered

toxic to marine food webs, as these concentrations can inhibit

cyanobacteria growth rates (Mann et al., 2002), decrease the

viability of other phytoplankton species (Brand et al., 1986;

Croot et al., 2000), and inhibit the reproduction of copepods

(Sunda et al., 1987).

Presumably, more than 99% of dCu in the marine

environment is complexed by a heterogeneous pool of natural

organic ligands, which form stable, less bioavailable organic

complexes that buffer against Cu toxicity (Barber and Ryther,

1969; van den Berg et al., 1987; Buck et al., 2007). Complexation

depends on the concentration (Li) and conditional stability

constants (Kcond
CuLi ,Cu2+

) of the ligand pool, typically subdivided

into two ligand classes (L1 and L2), where the stronger ligand

class, L1, has a logKcond
CuL1,Cu2+

between approximately 13 and 16

and the weaker ligand class, L2, has a logKcond
CuL2,Cu2+

between

approximately 10 and 13 (Buck and Bruland, 2005; Bundy

et al., 2013; Whitby, 2016). Cu binding ligands are often

produced by phytoplankton, in response to toxic Cu

concentrations (Moffett and Brand, 1996; Dupont et al., 2004),
02
Cu limitation (Kim et al., 2005; Walsh et al., 2015), or are of

terrestrial origin, such as humic substances in river water (Kogut

and Voelker, 2001; Voelker and Kogut, 2001; Whitby and van

den Berg, 2015) and biological macromolecules carried by

municipal wastewater (Sedlak et al., 1997).

The Strait of Georgia (SoG) is a coastal seawater basin

between the British Columbia (BC) mainland and Vancouver

Island and is part of the network of coastal waters within the

Salish Sea. The estuarine circulation of the SoG is driven by

surface freshwater that flows toward the ocean from the BC

mainland and intermediate NE Pacific water that enters the SoG

at depth via Juan de Fuca and Haro Strait (Li et al., 2000). During

the summer, prevailing wind-driven coastal upwelling brings

high nutrient Pacific water, with a dCu concentration of 1.4 nM

(Whitby et al., 2018), into the Juan de Fuca’s deep basin, where a

fraction is brought to the surface via tidal mixing within Haro

Strait. The bulk of upwelled Pacific seawater remains in the

SoG’s intermediate (50-200 meters) and deep waters (>200

meters) (Li et al., 2000; Pawlowicz et al., 2019). Within the

SoG, estuarine circulation allows nutrients in intermediate

depths to be entrained into surface waters, where high primary

productivity supports a diverse ecosystem (Yin et al., 1997;

Masson and Perry, 2013). The SoG’s main freshwater source is

the Fraser River, with seasonal variability in dCu concentration,

between 29.7 nM during April to 12.5 nM during February

(Buoy BC08MH0453: Government of Canada, 2022), and peak

freshet―or spring thaw―flows in early June (Halverson

and Pawlowicz, 2008), which discharges into the southern SoG

and forms a thin plume over surface waters (Wang et al., 2019).

Copper toxicity is an important concern in coastal regions,

such as the SoG, as anthropogenic Cu inputs, from municipal

effluents (Johannessen et al., 2015), mining (Chretien, 1997),

antifouling agent-coated ships (Carić et al., 2021), and urban

stormwater (Barałkiewicz et al., 2014), can elevate local dCu to

concentrations possibly toxic to the biota (Moffett et al., 1997).

Near the SoG is Metro Vancouver, which discharges

approximately 4.5 x 1011 L of municipal wastewater into the

SoG annually, over 50% of which only receives primary

treatment (Metro Vancouver, 2018). Metro Vancouver’s

municipal wastewater may act as a point source for heavy
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metals, such as Pb, Cr, Cd, Ni, Ag, and Cu (Sedlak et al., 1997;

Karvelas et al., 2003; Johannessen et al., 2015; Metro Vancouver,

2018), as well as metal binding ligands, within wastewater

organic matter (WWOM) (Kunz and Jardim, 2000; Buck et al.,

2007; Katsoyiannis and Samara, 2007). Currently, BC-approved

water quality guidelines have thresholds for short-term

maximum and long-term average total dCu concentrations in

estuarine environments, 47.2 nM and 31.5 nM, respectively

(Government of Canada, Ministry of Environment & Climate

Change -Water Protection & Sustainability Branch Strategy,

2019). However, total dissolved metal concentrations do not

provide sufficient information into the bioavailability of heavy

metal species; the complexation capacity of the receiving SoG

water body is required to understand the speciation,

bioavailability, and toxicity of dissolved heavy metals.

In collaboration with Metro Vancouver’s Georgia Strait

Ambient Monitoring Program, here we attempt to understand

the seasonal and spatial speciation of dCu in the SoG. To do so,

we characterized some of the ligands governing Cu speciation in

the SoG by determining depth profiles of Li and logK
cond
CuLi ,Cu

2+ at 4

stations in August 2018. Additionally, this work considered

seasonal variability of depth profiles of Li and logKcond
CuLi ,Cu

2+ at

the time series station S4-1.5 in the Southern SoG (SG), by

measuring Cu speciation in September (i.e., during a fall bloom),

December (i.e., winter baseline conditions), April (i.e., during a

spring bloom), and June (i.e., the peak of the Fraser River

freshet). To shed light on the biological, chemical, and

physical processes that influence the coastal Cu binding ligand

pool, Cu speciation results were compared with salinity, density,

temperature, irradiance, percent surface irradiance (light level),

chromophoric dissolved organic matter (CDOM), CDOM

spectral slope (Sl), phytoplankton composition and

abundance, nutrients, and chlorophyll a (Chl a). In addition to

relating dCu speciation to the seasonal water circulation within

the SoG, the dataset underwent principal component analysis

(PCA) and was clustered to define distinct patterns of dCu

speciation between seasons and regions. This dataset can be used

as a baseline and to understand the fate and potential toxicity of

inorganic Cu in the SoG in the future.
Materials and methods

Sample collection

Samples were collected in the Strait of Georgia, B.C.

(Figure 1) during five cruises (Supplementary Table 1) and, for

the purpose of this study and discussion, are divided into two

sets of depth profiles: seasonal and spatial. Seasonal samples

were collected at the Southern SoG (SG) time series station S4-

1.5 (Pawlowicz et al., 2007), in September 2017, December 2017,

April 2018, and June 2018 on board the Canadian Coast Guard

(CCG) Hovercrafts (Siyay and Moytel). Spatial samples were
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collected, from the CCG Ship Vector, in August 2018 at station

SG, as well as three additional stations: a) the Northern SoG

(NG); b) the tidal mixing region, Haro Strait (HS); and c) the NE

Pacific water entryway, Juan de Fuca Strait (JF).

Water for Cu speciation samples were collected into 12 L

Teflon-coated GO-FLO (General Oceanics, FL, USA) bottles,

deployed from a synthetic Amsteel-Blue line triggered with

Teflon messengers. Cu speciation samples were gravity-filtered

through trace metal clean 0.2 mm AcroPak polyethersulfone

membrane filters (Pall Corporation), into trace metal clean (i.e.,

following section 1.3.1 of GEOTRACES (2017)) 500 mL

fluorinated linear polyethylene (FLPE) bottles and immediately

frozen at -20°C until analysis. Samples were thawed overnight at

4°C, in the dark, before the analyses. Most samples were

analyzed within 1 or 2 days after defrosting, but a handful

were measured within 6 days after thawing. dCu samples were

gravity filtered through the 0.2 mm AcroPak into 250 mL trace

metal clean HDPE bottles and acidified with 250 mL of ultrapure

concentrated HCl (Aristar Ultra grade, VWR Chemicals BDH)

to a pH of ~1.8 within 24 hours.
Supporting chemical and
biological parameters

Water properties (i.e., temperature, salinity, density,

dissolved oxygen concentrations, irradiance, transmissivity,

conductivity, and fluorescence) were measured using a Seabird

SBE25 conductivity-temperature-depth (CTD) instrument,

equipped with a SBE 43 dissolved oxygen sensor and a

Biospherical scalar irradiance sensor for photosynthetically

active radiation (PAR). Densities, calculated from pressure,

temperature and conductivity are accurate to 0.01 kg·m-3.

CTD measured oxygen concentrations were calibrated against

periodic Winkler titration analyses with bottle field samples and

with the sensor being accurate to better than 1 ml/L in absolute

terms, but better than 0.1 ml/L relative to each other. The PAR

sensor is uncalibrated but provided stable readings over the

course of the program, in mE m2 s-1. PAR was used to calculate

percent light level, as percent of PAR from 0m depth, and the

euphotic zone depth was defined as the depth of 1%

surface irradiance.

Nutrients were sampled into pre-cleaned 15 mL

polypropylene Falcon® tubes by filtering seawater through

0.45 µm Acrodisk nylon membrane syringe filters and

analyzed using a Lachat QuikChem 8500 Series 2 Flow

Injection Analysis System. Nitrate (NO−
3 ) and nitrite (NO−

2 )

concentrations were measured following the protocol in Smith

and Bogren (2003), while for phosphate (PO3−
4 ) and silicate

(SiO2) determinations, we followed the protocols in Knepel and

Bogren (2008), and Tucker (2010), respectively.

Chromophoric dissolved organic matter (CDOM) was

measured on a subset of Cu speciation sample bottles, which
frontiersin.org
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were refrozen at -20°C following speciation measurements and

thawed to room temperature in the dark prior to CDOM

analysis. Sample absorption spectra were measured, between

325 to 1100 nm, on a Genesys 30 Visible spectrophotometer with

a 100 mm path length special optical glass cell (Fisherbrand). As

in Osburn et al. (2016), CDOM is measured as napierian

absorption coefficients at 350 nm (a350), calculated from

sample absorption spectra [al=2.303 · l · pathlength-1] (Kirk,

1994), compared with Milli-Q water blanks and drift corrected

against absorption at 700 nm (Bricaud et al., 1981). The spectral

slope (Sl) was calculated by the standard slope equation

(Bricaud et al., 1981), over a 20 nm wavelength interval,

between 380 and 399 nm (S390) (Loiselle et al., 2009). This

spectral range was chosen because humic acid and fulvic acid

CDOM Sl spectra peak at 390 nm and Sl between 380 and 399

nm is sensitive to changes in humic acid CDOM due to

photobleaching (Loiselle et al., 2009). On the Genesys 30

spectrophotometer, the CDOM a350, a380, and a399 limit of

detection are 0.032 m-1, 0.032 m-1, and 0.064 m-1, respectively.

Chl a, eukaryotic phytoplankton abundance, and HPLC-

pigments derived phytoplankton community composition were
Frontiers in Marine Science 04
measured in surface water samples (< 40 m). The Chl a

concentrations were determined in 250 mL of seawater filtered

onto 47 mm Whatman GF/F filters (0.7 mm nominal pore size).

The Chl a on the filters was extracted at -20oC, in the dark for 24

h, using ice-cold 90% acetone. After extraction, the

concentrations of Chl a were determined with a Turner

Designs 10 AUTM fluorometer. Eukaryotic phytoplankton

abundance was measured by concentrating the water samples

(preserved in 4% formalin) ten times and counting cells under a

light microscope in a Sedgewick Rafter counting chamber. Note

that cell density measurements under microscope do not include

picoplankton. Phytoplankton community composition was

estimated from HPLC pigment analysis. HPLC samples were

collected by filtering 1000 mL water samples onto pre-

combusted 47 mm Whatman GF/F filters, which were then

folded in half, blotted dry, and flash-frozen in liquid nitrogen on

board the vessel and stored at -80oC until further analyses. The

sample filters were sent to the Estuarine Ecology Lab, affiliated

with the Marine Science Division of the School of the Earth,

Ocean, and Environment at the University of South Carolina, for

phytoplankton pigment HPLC analysis. Phytoplankton HPLC
FIGURE 1

Map of the Salish Sea, with sampling locations as white markers, Southern SoG (SG), Northern SoG (NG), Haro Strait (HS), and Juan de Fuca
Strait (JF). The bathymetry of the Salish Sea is shown in blue tones. Figure generated using Matlab script m_map (Pawlowicz, 2020).
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pigment results were then analyzed using a factorization matrix

program (CHEMTAX v1.95) to estimate the contribution of the

main phytoplankton taxonomic groups to total Chl a (Mackey

et al., 1996; Taylor et al., 2016). The chemotaxonomic analysis

clustered algal groups as Diatoms, Dinoflagellates, Chlorophytes,

Cyanobacteria, Prasinophytes, Cryptophytes, Pelagophytes,

Haptophytes, and Raphidophytes. Pigment ratios were kept

fixed per season and station. Initial pigment ratios (pigment:

Chl a) for each algal group were obtained from Higgins et al.

(2011) and the final pigment ratio matrix was an average of the

best 6 iterative matrices of the initial pigment ratio matrix for

each analyzed sample (Supplementary Table 2).
Dissolved copper complexation

Dissolved Cu concentrations were determined using an

automated seawater preconcentration system, seaFAST-

picoTM; Elemental Scientific, followed by ICP-MS, at the

University of Victoria, as described in Lagerström et al. (2013).

The seaFAST-picoTM system buffers acidified seawater inline

before loading onto a column, containing a high-affinity resin

with carboxymethylated polyethylenimine as the chelating

ligand to retain transition metals while allowing the bulk

seawater major ion matrix to pass through. Concentrated

samples are eluted into clean collection vials (Kagaya and

Inoue, 2014) and trace metal concentrations are determined in

the eluent by triple quadrupole ICP-MS/MS (Jackson et al.,

2018). Procedural blank solution was prepared fresh for each

batch of samples following Lagerström et al. (2013). Multiple

blanks were processed at the beginning of each preconcentration

run and then monitored every 6 samples throughout the sample

extraction sequence. The average dissolved Cu concentration

measured in blank solutions was 0.02 ± 0.01 nM (n=15). The

accuracy of our dissolved Cu measurements was validated by

analysis of nearshore seawater certified reference material CASS-

6, where we measured a concentration of 8.07 ± 0.15 nM, which

compared favorably with the certified value of 8.34 ± 0.50 nM

total Cu.

Competitive ligand exchange, adsorptive cathodic stripping

voltammetry (CLE-ACSV) is a widely used assay for the

complexation of metal ions in seawater. In CLE-ACSV, a

known concentration of an organic ligand (AL), which forms

electroactive metal complexes with known conditional stability

constants, is added to buffered seawater, to compete for the

inorganic metal of interest (Me) with the sample’s ambient

organic ligands, across a titration concentration gradient of the

metal (dMe), designed to saturate the ambient ligand pool.

Following equilibration, the concentration of the resulting Me

(AL)x complexes are determined with cathodic stripping

voltammetry (CSV). In CSV, the Me(AL)x complex is adsorbed

to the surface of a working electrode at a set voltage potential and

subsequently reduced, as the potential at the working electrode is
Frontiers in Marine Science 05
scanned in the negative direction and the reductive current

response is measured (Buck et al., 2012). The metal’s reduction

potential presents itself as a current peak, which is plotted for each

metal addition in the titration. From the peak height, the

concentration of the Me(AL)x complex is measured

proportionally by assay sensitivity, which is internally calibrated

as the slope of the ligand-saturated data points (Buck and Bruland,

2005). From this titration, the complexation parameters of a

seawater sample’s ambient metal binding ligands, as

concentration (Li) and conditional stability constant (Kcond
MeLi ,Men+ ),

can be determined by interpretation of linear and non-linear

transformations (Scatchard, 1949; Mantoura and Riley, 1975;

Ružić, 1982; van den Berg, 1982; Gerringa et al., 1995). Copper

speciation determined via CLE-ACSV, with salicylaldoxime (SA)

as the added competitive ligand, was initially detailed in Campos

and van den Berg (1994). SA is widely used in Cu speciation

studies, given its high sensitivity for Cu (Campos and van den

Berg, 1994; Buck et al., 2012).

Copper standards were prepared by dilution of copper (II)

chloride (99.999% trace metal basis, Sigma-Aldrich) in 0.024 M

HCl (Aristar Ultra grade, VWR Chemicals BDH). A series of Cu

standards were prepared, from 10 mM to 0.1 mM for Cu

additions. A stock solution of 25 mM SA (ACROS Organics)

was prepared in methanol (OmniSolv® LC-MS) and sub-stock

solutions of 2.5 mM and 10 mM SA in Milli-Q water were

prepared monthly. Samples were equilibrated at a pH of 8.2 by a

borate/ammonia pH buffer, prepared using 1 M boric acid

(99.99% metal basis, Alfa Aesar) and 0.35 M ammonium

hydroxide (Aristar Plus grade, VWR Chemicals BDH), which

was then chelated to remove contaminating metals and UV-

digested to remove contaminating organic matter, using a UV

oxidation apparatus built by Achterberg and van den

Berg (1994).

The voltammetric equipment used was a BioAnalytical

Systems (BASi) controlled growth mercury electrode (CGME),

set to a static mercury drop, and interfaced with a BASi Epsilon

ϵ2 voltammetric analyzer. The reference electrode was Ag/AgCl

with a 3 M NaCl salt bridge and a platinum wire counter

electrode. Polytetrafluoroethylene (PTFE) voltammetry cells

were used during analysis, with a rotating PTFE rod for

stirring. Samples were equilibrated in 15 mL Teflon vials

(Savillex). Sample vials and voltammetry cells were treated

with 1 N HCl (trace metal grade) for at least one week at

60oC, followed by 0.1 N HCl (Aristar Ultra grade, VWR

Chemicals BDH) for at least one month, and rinsed with

Milli-Q. Sample Teflon vials were preconditioned using Ocean

Station Papa seawater (Whitby et al., 2018), with buffer, SA, and

the set Cu addition for each individual vial. These conditioned

Teflon sample vials were never treated with HCl for the

remainder of the study. However, between titrations, the

voltammetry cells were quickly rinsed with 0.01 N HCl

(Aristar Ultra grade, VWR Chemicals BDH) and Milli-Q,

followed by sample with buffer and SA.
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The concentration and conditional stability constants for

each sample’s ambient Cu-complexing ligands were estimated

via CLE-ACSV. Sample aliquots of 10 mL, treated with 0.01 M

ammonia/borate buffer, were pipetted into 22 conditioned

Teflon sample vials where CuCl2 was added to each vial in

order of increasing concentration. Usual Cu additions were 0,

0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 22, 25, 30, 40, 50, 80, and

100 nM Cu. For samples at surface depths (i.e., above 20 meters),

120 and 150 nM Cu additions were chosen instead of 0.5 and

1 nM Cu to ensure ambient ligand saturation. The vials were

then allowed to equilibrate in the dark for 1 hour. Following

equilibration, 2.5 mM SA was added to each vial and allowed to

equilibrate overnight (>12 h), in the dark, at 4oC. Following this

second equilibration, samples were left to warm to room

temperature for 30 minutes and each sample was purged with

0.22 mm filtered high purity N2 gas for 2 minutes before analysis.

To compare complexation results against a higher analytical

window, duplicates, at 0, 5, and 100 m depth in the SG

September cruise, were equilibrated with 10 mM SA.

At an applied potential of -150 mV, a deposition time of 180

seconds, and stir rate of 600 rpm, the Cu addition samples’

electroactive Cu(SA)x complexes were adsorbed to the surface of

a fresh mercury drop (size “14”). Following deposition, a quiet

time of 10 seconds took place, in which the sample is no longer

stirred. Subsequently, the samples were scanned in differential

pulse mode from -150 mV to -600 mV, at a rate of 4 mV/s (pulse

width 35 ms, pulse period 200 ms, pulse amplitude 50 mV, and

analyzer sensitivity 10 mA/V) to measure the Cu(SA)x reduction

peak. Each sample was triple scanned. The height of each Cu

addition current peak, occurring near -300 mV, was measured

using ECDSOFT and the average amongst the three scans was

plotted with respect to total dCu. Data points in which peak

heights were below the limit of detection (7.98 nA) or above the

linear threshold (800 nA; Buck and Bruland, 2005) were excluded

from titration data. For examples of Cu complexation titration

curves, see Supplementary Figure 1. The two titrations measured

per sample, along with the added ligand side reaction coefficient

(aCuAL) for CuSAx (Campos and van den Berg, 1994) and

inorganic Cu (Cu’) concentrations determined for each

individual sample, based on salinity and temperature (van den

Berg, C. M. G. Speciation.xls), were each fitted via the Langmuir/

Gerringa non-linear transformation, initially discussed in

Gerringa et al. (1995) and preferred to linear transformations

when determining a multi-ligand class model, within ProMCC

software (Omanović et al., 2015). Depending on the salinity of the

sample, logaCuAL was 4.2 - 4.3 and 5.1 - 5.2, for 2.5 mM SA and 10

mM SA, respectively. Sensitivity was measured following

Omanović et al.’s (2015) recommendation for finding the true

sensitivity. The slope from the last 3 titration points (below the

linear threshold of 800 nA) was used as the initial sensitivity, and

then ProMCC’s Auto Adjust function selected the sensitivity with

the lowest AVG error (average value of relative errors between

experimental and fitted values [([M]meas − [M]FIT)/[M]FIT
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x100%]. We determined the sensitivity within ProMCC for each

titration, with duplicate titrations per sample. The average

sensitivity amongst all sample titrations was 4.6 ± 0.9 nA nM-1

min-1. The average initial sensitivity and the average final,

internally-calibrated sensitivity chosen for each sample’s

duplicate titrations are found within this manuscript’s data

repository (https://doi.org/10.5683/SP3/6AB0JI).

To determine whether a single or two ligand model best

represents the titration curve of a sample, titration data, in the

linear Scatchard transformation and the logarithmic Langmuir

transformation, were compared to Figure 1 in Omanović et al.

(2015). In all samples, both duplicate titration curves were best

represented by the same number of ligands. Single ligand model

parameters are denoted as L and logKcond
CuL,Cu2+ , two ligand model

parameters are denoted with a subscript (i.e., L1 and logK
cond
CuL1,Cu2+

or L2 and logKcond
CuL2,Cu2+

). Complexation stability constants were

calculated with respect to Cu2+ and free ligand (L’), as

conditional constants for experimental salinity and pH. For

the September samples, which underwent Cu complexation

analysis at two analytical windows, all four titrations (two via

10 mM SA and two via 2.5 mM SA) were calibrated with the

sensitivity predetermined per titration as described above and

then combined into a unified dataset. This dataset was

introduced into ProMCC and underwent the multiwindow

detection (MWD) analysis , fol lowing the complete

complexation model protocol described in Omanović et al.

(2015). For each sample, multiple MWD runs were taken (i.e.

both the single ligand model and the two ligand model and using

the initial Cu ligand parameters from the results of both the 10

mM SA and 2.5 mM SA Langmuir/Gerringa non-linear

transformations of each of the four titrations) and the run

with the lowest AVG error was considered the best result.
Correlations and hierarchical
cluster analysis

An empirical approach was applied to identify different

potential ligand sources within the SoG. We first generated a

heatmap of the Pearson correlation coefficients between Cu

speciation parameters and parameters characteristic of water

mass endmembers, seasonality, and biota (i.e., dCu, depth,

density, temperature, salinity, irradiance, light level, CDOM

a350, S390, dissolved oxygen, nutrients, Chl a, eukaryotic

phytoplankton density, and phytoplankton community

composition). While all 65 samples with Cu speciation data

were used for the correlations, the number of observations (i.e.,

n) used for each individual correlation varied, depending on the

data available for the parameters characteristic of water mass

endmembers, seasonality, and biota (see Discussion section for

specific n).

Cu speciation parameters associated with the single ligand

class then underwent hierarchical clustering (Wishart, 1969;
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Wilks, 2019) to signify how differences in water masses, depth,

and/or seasons of the SoG estuarine circulation system influence

SoG Cu speciation profiles. The data were first preprocessed by

selecting all single ligand class observations for salinity, dCu, L,

and logKcond
CuL,Cu2+ (57 observations) and then normalizing and

standardizing the data (Supplementary Figure 2) to allow

consistent comparisons across the dataset, which includes

variables of different units and magnitudes. Then, the

normalized and standardized data underwent PCA (Jolliffe,

1990), using MATLAB’s function “pca”, to identify the key

modes of variability within the dataset (Supplementary

Figure 3). The first three modes, describing 95% of the total

variance in the dataset, were then clustered, using Ward’s

method (Ward, 1963) of hierarchical clustering, via

MATLAB’s functions “linkage” and “cluster”. In Ward’s

method, underlying dataset structure is revealed by an

unsupervised grouping of similar data points together, while

minimizing the intracluster variance, or “loss of information”, as

data points merge into groups, or clusters (Wishart, 1969).

Compared to other hierarchical clustering methods, Ward’s

method is favorable in identifying structure in known clusters

(Mangiameli et al., 1996). For our data, the number of clusters

observed using objective-function based clustering―in which

the change in dendrogram distance between cluster numbers is

maximized―was only two clusters (n = 2) (Supplementary

Figure 4). Thus, our approach was a clustering framework based

on subjective validity criteria. In essence, we visualize several

possible clustering outputs, with the number of clusters ranging

between 2 and 6; considering that the latter is the number of

boxes included in the Salish Sea Box Model described in Wang

et al. (2019). At the end, 6 clusters (n = 6) were chosen, as this

clustering enabled the surface waters of SG during the June

freshet to become a distinct cluster.
Results

Supporting chemical and
biological parameters

The seasonal SoG depth profiles of a series of physical,

biological, and chemical parameters (Supplementary Figures 5-7)

clearly show that SoG surface waters experience themost variability.

Due to the Fraser River discharge, which is at its maximum in the

summer, surface waters in SoG in June exhibit low density, warm

temperatures, salinity below 20 PSU (Supplementary Figure 7), low

nitrate and phosphate concentrations (Supplementary Figure 6),

but high CDOM content (Supplementary Figure 5), and are

distinctly different from the denser waters found throughout the

rest of the year. In December, freshwater runoff lowered surface

water density, deepening the pycnocline to 20 m, and dropping

surface water temperatures. August spatial profiles highlighted the

N. Pacific end member, where cold, salty water, with a density
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greater than 1026 kg·m-3 and dissolved oxygen concentrations less

than 100 mM, is seen in JF deep waters (Supplementary Figure 7).

The euphotic zone depth was deepest in June, at 44 m, and

shallowest in April, at 12 m (Supplementary Table 1). CDOM

S390 (Supplementary Figure 5) depth profiles have a lack of clear

structure, potentially due to the wide variation in CDOM

composition and possibly photobleaching in some samples

(Loiselle et al., 2009). CDOM S390nm had a maximum value of

0.0247 nm-1 at NG 0m, and aminimum value of 0.0048 nm-1 at HS

0 m.

The seasonal depth profiles in SG show that the

phytoplankton biomass in this temperate region was greatest

during the April spring bloom, with 5.91 mg Chl a·L−1 at 5 m,

decreasing to 0.22 mg Chl a·L−1 by 30 m (Supplementary

Figure 5). The eukaryotic phytoplankton abundance in April

was 1.39 x 106 cells·L−1 at 5 m, decreasing to 4.60 x 104 cells·L−1

by 30 m (Supplementary Figure 5), and diatoms accounted for

96% of the HPLC-pigment derived phytoplankton composition

(Supplementary Table 3). April and September experienced the

most variation in Chl a with depth, due to spring and fall

phytoplankton blooms, respectively, while December

experienced the least. In September, a fall bloom was observed

with a maximum chlorophyll of 2.65 mg Chl a·L−1 at 0 m, and

eukaryotic phytoplankton cell densities of 7.80 x103 cells·L−1 at

2.5 m (Supplementary Figure 5). In December, maximum

chlorophyll was 0.44 mg Chl a ·L−1 at 0 m, with eukaryotic

phytoplankton abundances of 2.66 x104 cells·L−1 and with a

community composition dominated by diatoms and

prasinophytes (Supplementary Table 3). In June, maximum

Chl a (i.e., ~ 0.94 mg Chl a·L−1) was observed between 5 and

10 m, with a maximum eukaryotic phytoplankton abundance

(i.e., 1.94 x105 cells·L−1) at 0 m, and a dominance of diatoms,

cyanobacteria and raphidophytes (Supplementary Table 3).

Among the four SoG stations sampled in August 2018,

phytoplankton biomass (i.e., 3.22 mg Chl a ·L−1) and

eukaryotic phytoplankton abundance (5.83 x104 cells·L−1) were

greatest at HS (Supplementary Figure 5), and were dominated by

diatoms (Supplementary Table 3). At the JF station, the

phytoplankton community was also dominated by diatoms,

with maximum Chl a and eukaryotic phytoplankton

abundance at 10 m depth (i.e., 1.37 mg Chl a ·L−1 and 4.43

x104 cells·L−1, respectively). Both SG and NG experienced

maximum chlorophyll at 5 m, with 3.06 and 1.68 mg Chl a

·L−1, respectively (Supplementary Figure 5). At SG, eukaryotic

phytoplankton abundance was maximum at 0 m, with 5.21 x104

cells·L−1, with a community composition that was dominated by

diatom, dinoflagellate, and cyanobacteria in surface waters. The

Northern SoG station, NG, had a eukaryotic phytoplankton

abundance of 2.24 x104 cells·L−1 at 5 m, where prasinophytes

dominated (Supplementary Table 3). The spatial summer algal

group variability in the SoG aligns with the interannually

consistent biological zones and associated physical drivers

identified by Jarnıḱová et al. (2022), where Juan de Fuca Strait,
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with episodic summer mixing, enables higher summer diatom

abundance and the central SoG, with shallower haloclines and

stronger summer stratification, enables a higher summer

flagellate abundance (i.e., prasinophytes, and dinoflagellates).
Spatial dissolved copper speciation

In August 2018, dCu and organic Cu binding ligand

concentration depth profiles (Figure 2) vary among SoG

stations, where dCu is inversely correlated with salinity depth

profiles (Pearson r = -0.84, p value< 0.001, n = 41) with the NE

Pacific water as the high salinity endmember, in the deep waters

of Juan de Fuca Strait (JF), and the Fraser River as the freshwater
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endmember, nearest SG. In the vast majority of the samples, only

one ligand class was detected, with concentrations ranging

between 4.2 and 30.1 nM, and a logKcond
CuL,Cu2+ between 12.5 and

14.1. The exception was the 30 m sample at HS, where two

ligand classes, L1 and L2, were detected (see below).

Farthest from the Pacific water endmember, the NG dCu

depth profile (Figure 2) averaged 4.06 ± 0.21 nM and was

uniform with depth. Within the Northern SoG, tidal currents

can be extremely fast, resulting in a well-mixed water column

(Pawlowicz et al., 2007), which can explain the lack of structure

in L concentrations with depth, averaging at 13.14 ± 3.32 nM

across the water column. However, there is an increase in

logKcond
CuL,Cu2+ profiles with depth, from 13.2 ± 0.1 at 0 m to

13.6 ± 0.1 at the 50 m depth.
FIGURE 2

Spatial dCu concentrations (grey) and Cu speciation depth profiles of Li (yellow-orange) and log Kcond
CuLi ,Cu

2+ (blue) for stations NG, SG, HS, and JF,

in August 2018, plotted with salinity depth profiles (black). Speciation parameters related to single ligand class L, two ligand class L1, and two
ligand class L2 are represented as circle (●), diamond (♦), and star (★), respectively. Grey boxes, between 50 and 200 m, in NG and SG
represent SoG intermediate waters. Black dashed lines in HS and JF correspond to dCu averaged between 100 m to 200 m at Line P4 (Whitby
et al., 2018). Speciation parameter error bars represent average 95% confidence intervals of two replicate titrations of the same sample and dCu
error bars represent one standard deviation.
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In the southern SoG, SG (Figure 2), the surface 0 m sample

had the greatest dCu, at 4.67 ± 0.16 nM, where salinity was lowest,

at 27.7 psu. dCu averages 3.67 ± 0.29 nM below 50 m. Ligand

concentrations were greatest in surface waters, with 28.3 ± 1.44

nM at 0 m and 25.9 ± 1.2 nM at 5 m, and decreasing between 5

and 10 m, to an average of 13.1 ± 1.4 nM between 10 and 50 m.

Likewise, logKcond
CuL,Cu2+ is lowest in the surface, at 12.86 ± 0.06, and

increasing between 5 m and 10 m to an average of 13.4 ± 0.1,

between 10 and 50 m. This suggests an influx of weak ligands to

the surface waters of SG, where both the Fraser River and Metro

Vancouver are in proximity. Meanwhile, the average logKcond
CuL,Cu2+

at SG below 10 m is the same as the average logKcond
CuL,Cu2+ across the

water column in HS, where SG’s intermediate waters are sourced.

Within HS (Figure 2), dCu averages at 3.57 ± 0.28 nM above

100 m, dropping to a value of 2.23 ± 0.10 nM at 200 m depth. The

same trend occurs in L concentrations which average 12.7 ± 2.1

nM above 100 m, dropping to a value of 6.6 ± 0.6 nM at 200 m

depth. However, logKcond
CuL,Cu2+ remains relatively constant with

depth, averaging at 13.4 ± 0.2. Within the Haro Strait basin,

Pacific water from Juan de Fuca enters at depth, where strong tidal

currents vigorously mix the entire water column, explaining the

decrease in dCu concentrations and the presence of fewer ligands,

from surface to deep (Thomson, 1981; Pawlowicz et al., 2019). At

30 m in HS, two distinct ligand classes were identified, with an L1
of 9.2 ± 2.1 nM, logKcond

CuL1,Cu2+
of 13.9 ± 0.2, and an L2 of 14.9 ± 1.9

nM, logKcond
CuL2,Cu

2+ of 12.3 ± 0.3. Given logKcond
CuL1,Cu

2+ at 30 m is

similar to logKcond
CuL,Cu2+ across depths (13.4 ± 0.2) and logKcond

CuL2,Cu2+

is objectively less than logKcond
CuL,Cu2+ across depths (13.4 ± 0.2),

input of L2 may be possibly the cause of the detection of two

ligands. While Haro Strait is only weakly stratified, a small

pycnocline is observed between 30 and 50 m depth, with a

density change of 0.7 kg·m-3 (Supplementary Figure 7).

In JF (Figure 2), dCu was maximum in surface waters, at

2.88 ± 0.09 nM, converging to an average of 1.53 ± 0.03 nM

below 60 m, with a salinity of 33.9 psu. This is consistent with

NE Pacific Line P dCu concentrations, at the continental shelf

station (P4) with a salinity of 33.9 psu, where dCu

concentrations, between 200 and 300 m, was between 1.4 to

1.6 nM in August 2012 (Whitby et al., 2018), averaging at 2.6 nM

in August 2011, between 200 and 300 m (Posacka et al., 2017).

Within JF, ligand concentrations were highest in the surface, at

30.2 ± 2.7 nM, decreasing to 7.6 ± 0.7 nM by 40 m, while JF

logKcond
CuL,Cu2+ increases from 12.5 ± 0.1, in the surface, to 13.5 ± 0.3

by 50 m. Interestingly, at 140 m, ligand concentration is only 4.2

± 0.4 nM, with a logKcond
CuL,Cu2+ of 14.1 ± 0.8. This indicates that

very strong Cu binding ligands, at low concentrations, enter the

deep Juan de Fuca Strait. Whitby et al. (2018) also detected a low

concentration of very strong ligands, with logKcond
CuL,Cu2+ of 16, at

200 m in station P4, using an analytical window set to 10 mM SA.

While the Cu speciation analytical strengths differ between

methods, making the intercomparison of results difficult,

similarities in dCu concentrations and evidence of strong

binding organic Cu ligands between the deep Juan de Fuca
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Strait and the continental shelf of the NE Pacific aligns with our

understanding that NE Pacific intermediate water enters Juan de

Fuca Strait at depth (Pawlowicz et al., 2007).
Seasonal dissolved copper speciation

The seasonal profiles of dCu concentrations (Figure 3) show

variations that relate to salinity (Pearson r = -0.71, p value<

0.001, n = 48). Cu speciation parameters follow salinity trends as

well (L: Pearson r = -0.87, p value< 0.001, n = 35; logKcond
CuL,Cu2+ :

Pearson r = 0.57, p value< 0.001, n = 35). The greatest Cu

speciation variations between seasons in SG were at depths< 50

m, where two distinct ligand classes were often detected at

depths shallower than 10 m (Supplementary Figure 8), and

above the pycnocline (Supplementary Figure 7) and the

euphotic zone depths (Supplementary Table 1). Within surface

depths, the stronger binding L1 concentrations ranged between

10.5 to 15.7 nM, with logKcond
CuL1,Cu2+

values between 13.5 and 14.3

(Supplementary Figure 8) . The weaker binding L2

concentrations ranged between 30.9 and 107.7 nM, with

logKcond
CuL2,Cu

2+ values between 11.5 and 12.3.

In September, average dCu, L, and logKcond
CuL,Cu2+ below 50 m

were 3.85 ± 0.42 nM, 11.0 ± 2.6 nM, and 13.2 ± 0.2, respectively.

At the surface, dCu and L increased to 4.85 ± 0.05 nM and 24.4 ±

1.5 nM, respectively, while logKcond
CuL,Cu2+ decreased to 12.8 ± 0.1.

At 5 m depth, two ligand classes were detected, with a

logKcond
CuL1,Cu2+

of 13.8 ± 0.2 and logKcond
CuL2,Cu2+

of 12.2 ± 0.1. This

suggests a potential input of both L1 and L2 ligands near the

surface during the fall bloom, as both logKcond
CuL1,Cu2+

and

logKcond
CuL2,Cu2+

differ from logKcond
CuL,Cu2+ near surface (12.8 ± 0.1).

In December, average dCu, L, and logKcond
CuL,Cu2+ below 50 m

were 4.22 ± 1.15 nM, 11.6 ± 4.07 nM, and 13.2 ± 0.1,

respectively. At the surface, dCu and L increased to 7.9 ± 0.05

nM and two ligand classes were detected, with a logKcond
CuL1,Cu2+

of

13.6 ± 0.3 and logKcond
CuL2,Cu2+

of 12.0 ± 0.2. This indicates a

potential input of L2, given surface logKcond
CuL1,Cu2+

and deep

logKcond
CuL,Cu2+ (13.2 ± 0.1) are indistinguishable, at the same time

as cold, freshwater input mixes in surface waters.

In April, average dCu, L, and logKcond
CuL,Cu2+ below 50mwere 4.76

± 0.92 nM, 10.1 ± 2.5 nM, and 13.4 ± 0.2, respectively. At surface, L

increased to 20.4 ± 1.4 nM, while logKcond
CuL,Cu2+ remains relatively

unchanged, at 13.1 ± 0.1. Between 0 and 50 m, there is a spike in

dCu concentrations, averaging at 8.06 ± 0.48 nM, near which

springtime snowmelt input in the Fraser River mixes into the upper

50 m of the SoG. There is another spike in dCu concentrations at

200 m depth, with a dCu concentration of 6.51 ± 0.14 nM.

Furthermore, at 5 m, two ligand classes were detected, with a

logKcond
CuL1,Cu2+

of 13.7 ± 0.1 and logKcond
CuL2,Cu2+

of 12.0 ± 0.2. This

suggests a potential input of L2, given that the surface logKcond
CuL1,Cu2+

and the deep logKcond
CuL,Cu2+ (13.4 ± 0.2) are indistinguishable.

In June, average dCu, L, and logKcond
CuL,Cu2+ at 50 m were 3.78 ±

0.13 nM, 10.1 ± 0.6 nM, and 13.1 ± 0.1, respectively. Meanwhile,
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the maximum dCu concentration of all seasonal SG data is at the

very surface in June, at 9.76 ± 0.15 nM. During June, the Fraser

River freshet is at its maximum, due to snowpack melting, which

results in high freshwater discharge into the SoG, near the SG

station (Pawlowicz et al., 2007; Halverson and Pawlowicz, 2008).

In June surface waters, two ligand classes were detected, with a

logKcond
CuL1,Cu2+

of 14.3 ± 0.6 and logKcond
CuL2,Cu2+

of 12.3 ± 0.1. This

indicates a potential input of L1, given that surface logKcond
CuL1,Cu2+

is objectively greater than deeper values of logKcond
CuL,Cu2+ (13.1 ±

0.1). However, L1 concentration in surface waters (i.e., 11.9 ± 2.7

nM) is indistinguishable from L concentration at 50 m (10. 1 ±

0.6 nM). An input of L2 is also plausible, given logKcond
CuL2,Cu2+

is

objectively lower than deeper values of logKcond
CuL,Cu2+ (13.1 ± 0.1)

and L2 concentrations spike in June surface waters, to 56.3 ±
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3.4 nM at 0 m and 107.7 ± 6.2 nM at 5 m depth. During June,

56% of river discharge comes from the Fraser River, whereas

Fraser River input only accounts for 35% in other seasons

(Pawlowicz et al., 2019).

Below 50m, dCu and salinity remain uniform with depth and

seasons, averaging 4.20 ± 0.81 nM and 30.1 ± 1.77 psu,

respectively (Figure 3). This is consistent with the upper 100 m

of the August HS, averaging 3.57 ± 0.28 nM dCu and 30.48 ± 1.04

psu (Figure 2), the source of the intermediate and deep waters of

the Strait of Georgia, SG station. In intermediate depths, between

50 m and 200 m, ligand concentrations and binding strengths are

also relatively constant between depths and seasons, with average

L concentration of 11.3 ± 1.7 nM and logKcond
CuL,Cu2+ of 13.2 ± 0.1,

similar to the L found in August at HS (Figure 2).
FIGURE 3

Seasonal 2017-2018 dCu concentrations (grey) and speciation depth profiles of Li (yellow-orange) and log Kcond
CuLi ,Cu

2+ (blue) for station SG, plotted

with salinity depth profiles (black). Speciation parameters related to single ligand class L, two ligand class L1, and two ligand class L2 are
represented as circle (●), diamond (♦), and star (★), symbols respectively. Grey boxes, between 50 and 200m, represent SoG intermediate
waters. Speciation parameter error bars represent average 95% confidence intervals of two replicate titrations of the same sample and dCu error
bars represent one standard deviation.
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This nicely agrees with the SoG estuarine circulation pattern,

where the intermediate layer (between 50 to 200 m) receives

water from Haro Strait year-round (Pawlowicz et al., 2019).
Discussion

Dissolved copper endpoints between NE
Pacific and Fraser River

Dissolved Cu is known to act both conservatively and non-

conservatively within estuary environments (Cutter, 1991).

Whether dCu behaves conservatively within the SoG, between

16.3 to 33.9 psu, appears seasonally dependent. For most of the

year, the dominant control on dCu in the SoG estuary system is

conservative mixing of N. Pacific and Fraser River endmembers,
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as indicated by the linear relationship between dCu and salinity

(Figure 4). For non-April samples, regression of all dCu

observations against salinity yields a strong and significant

correlation (Figure 4), which aligns with the conservative

mixing line between NE Pacific incoming waters and the

Fraser River (Figure 4). This indicates that the dominant

source of dCu within the SoG is the Fraser River plume.

In contrast, the April samples, particularly those in surface

waters, do not strongly follow linearly with salinity (Pearson r =

0.56, p value = 0.058, n = 12), nor does the regression align

particularly well with the conservative mixing line between NE

Pacific incoming waters and the Fraser River. One possible

explanation is that, while the Fraser River discharge is greatest

in June, the greatest dCu concentrations in the Fraser River are

seen in the spring, when the first snow melt washes off winter-

accumulated lithogenic matter into the Fraser River (Kuang,
FIGURE 4

Dissolved Cu (dCu) concentrations, encompassing the entire dataset (n = 89), along the salinity gradient between the N. Pacific (34 psu) lower
dCu baseline input, 1.4 nM dCu (Whitby et al., 2018) and the Fraser River (0 psu) at Gravesend Reach (Buoy BC08MH0453: Government of
Canada, 2022). Red outlined points represent the April SG depth profile. The red line indicates the average (from all April measurements
between 2010-2020) gradient of conservative mixing during April [y = -0.83 x + 29.7], where the average Fraser River concentration is 29.7 nM.
The red dashed (- - -) line indicates the steepest conservative mixing gradient measured during April [y = -1.57 x + 54.9], between 2010-2020,
where the Fraser River concentration is 54.9 nM. The continuous black line indicates the 2010-2020 average gradient of conservative mixing
during the rest of the year [y =-0.47 x + 17.30], with an average Fraser River concentration of 17.3 nM. The blue line indicates regression [y =
-0.46 x + 17.52, p value< 0.001, Pearson r = -0.93, n = 77] across non-April dCu concentrations with respect to salinity.
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2019), thus a second conservative mixing line is required to

understand the conservative mixing in the April SG dataset.

To determine the Fraser River plume dCu concentration in

April, an average of seven measurements, taken between 2010

and 2020 at the Fraser River Gravesend Reach (Buoy

BC08MH0453: Government of Canada, 2022), was used (i.e.,

average = 29.7 nM; range 18.4 and 54.9 nM dCu). Since we did

not measure dCu in the Fraser River during April 2018, the

average and maximum mixing line we calculated were used to

examine our April dataset (Figure 4). Given that April surface

waters more closely aligns with the mixing line associated with

the maximum Fraser River concentration [y = -1.57 x + 54.9], it

is likely that the Fraser River dCu concentration in April 2018

was near 54.9nM. Conservative mixing trends are often observed

for dCu in estuary environments, and most variation is often

detected closer to the freshwater endpoint (Illuminati et al.,

2019; Hollister et al., 2021). Thus, these higher and more variable

concentrations of dCu during spring, associated with the first

snow melt, may explain the deviation observed in April.

Another possible explanation for the April dCu data is that

dCu behaves non-conservatively in spring due to sediment fluxes

(Cutter, 1991; Laglera and van den Berg, 2003). Thomas and

Grill (1977) measured dCu close to the mouth of the Fraser

River, in May, and found that dCu concentrations peak in waters

between 25 and 28 psu, which are located adjacent to the sloping

banks near the Fraser River delta. They suggested that sediments

escaping deposition on the delta flats were responsible for the

release of dCu via adsorptive exchange equilibrium. Thus, it is

possible that the elevated dCu concentrations in April are due to

suspended sediment, which peaked in the Fraser River during

April (Buoy BC08MH0453: Government of Canada, 2022), and

released dCu into the SoG. While this was not observed in non-

spring samples, the SoG dataset only comprises salinities as low

as 16.3 psu, with only two measurements below 20 psu. Thus, we

are unable to detect any non-conservative dCu behavior at

salinities below 20 psu, in contrast to other studies (Byrd et al.,

1990; Laglera and van den Berg, 2003).
Copper complexation on
bioavailable Cu2+

In all samples, ligand concentrations exceed dCu by a ratio

greater than 1.5, 4.0 on average, indicating that the complexation

capacity of organic Cu binding ligands in the SoG is greater than

required to buffer [Cu2+] below toxic levels (i.e., 10-12 M). With

dCu concentrations in the range of 1.49 to 9.76 nM, pCu2+ (i.e.,

pCu2+ = -log[Cu2+]) would fall between 9.2 and 10.0 in the

absence of organic ligands, greatly exceeding the traditional

toxicity pCu2+ threshold of 12 (Brand et al., 1986). However,

across all depths and seasons sampled during our SoG study,

pCu2+ was well below the toxicity threshold, with an average,

maximum, and minimum of 13.6, 14.3, and 13.2, respectively
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(Data Repository: https://doi.org/10.5683/SP3/6AB0JI).

Ambient organic Cu complexing ligands, given their

concentration and binding affinity, are complexing more than

99.98% of the dCu in SoG, preventing toxic conditions.

Especially considering that coastal phytoplankton are more

tolerant to Cu2+ than the traditional toxicity pCu2+ threshold

suggests; studies observing the reduction in growth and motility

of coastal species of dinoflagellates (Anderson and Morel, 1978),

cyanobacteria (Stuart et al., 2009), and diatoms (Miao et al.,

2005) report toxic pCu2+ values of 9.7, 10, and 9.2, respectively.

Important to note is that, while the organic complexation of Cu

in the SoG reduces Cu toxicity for Cu-sensitive phytoplankton,

some eukaryotic marine phytoplankton can assimilate

organically complexed Cu (Quigg et al., 2006; Guo et al., 2010;

Semeniuk et al., 2015) and whether organically complexed Cu in

SoG is bioavailable remains to be determined. Furthermore, even

though some studies have measured pCu2+ concentrations

(pCu2+ = 15) in the North Pacific that could potentially limit

phytoplankton growth (Peers et al., 2005), the pCu2+ levels we

determined (average of 13.6) for SoG are optimal for

phytoplankton growth.
Analytical window comparison

Copper complexation results must be operationally defined

by the selected analytical window. For example, in estuaries, the

heterogeneity of the samples―which contain a variety of

organic ligands that may complex Cu with a range of binding

strengths― results in a range of stability constants of Cu

ligands that may need to be resolved using a variety of detection

windows (van den Berg and Donat, 1992; Gerringa et al., 2014).

Thus, in addition to the seasonal and spatial depth profiles of

SoG ligand data that we measured using 2.5 µM SA, three

September SG depths were measured at a 10 mM SA

competition strength (Table 1). Changing the competition

strength of the added ligand from 2.5 mM to 10 mM SA

increases the binding strength of the detected ligand class, as

observed in Buck and Bruland (2005); Bundy et al. (2013), and

Wong et al. (2018). Higher competitive ligand concentrations

are best to detect the strongest L1 class; however, can fail to

resolve the weaker L2 class, which is important when considering

the partitioning of dCu between inorganic and organic

complexes (Buck and Bruland, 2005).

To focus on the high terrestrial input of weaker ligands

within estuary samples, a lower competition strength, like 2.5

mM, increases the likelihood of detecting two ligand classes

(Buck and Bruland, 2005). Even when using 2.5 mM SA, for

many of the SoG samples, we were only able to fit a single ligand

class to the titration data. Therefore, if we were to use a 10 mM
SA competition strength for all SoG samples, we would have

likely detected two distinct ligand classes in even fewer samples.

Furthermore, choosing a 10 mM SA analytical window for
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estuary samples can result in insufficient curvature in the

titration data and prevent fitting data in ProMCC, as

experimental error is weighed more heavily in the model as

the analytical window increases (Hollister et al., 2021). For

example, when sampling the Amazon River estuary for Cu

binding organic ligands, Hollister et al. (2021) found that, with

a 10 mM SA analytical window, 20% of their titrations could not

successfully determine ligand concentration and strength, due to

fitting data challenges in ProMCC. Thus, even though an

underestimation of the strongest Cu binding organic ligands

may occur, choosing a lower analytical window is prudent for Cu

speciation in estuarine environments. In addition, certain ligand

classes may not be detected within CLE-ACSV when a) strong

ligand concentrations are below that of dCu (L1< dCu) (Ndungu,

2012); b) multiple ligands with similar side reaction coefficients

(aCuL) combine into one detectable ligand class; or c) when

ligands are too similar in strength to- or weaker than-the added

ligand (when aCuL approaches aCuAL), resulting in an

insufficient analytical signal (van den Berg, 1995; Laglera and

van den Berg, 2003; Gerringa et al., 2014).

We combined titrations from both analytical windows, 2.5

and 10 mM SA, enabled MWD analysis, and provided some

insight into the distribution of the Cu ligand pool (Table 1). For

example, the 0 m and 5 m September samples’ MWD analysis

aligns with the Cu complexation results using the single window

detection of 2.5 mM SA. However, the 100 m September sample’s

MWD results suggest that separate classes of ligands are

detected, depending on the analytical window; strong L1
ligands are detected at 10 mM SA, weaker L2 ligands are

detected at 2.5 mM SA, and unifying the titrations with MWD

detects both ligand classes―with concentrations not unlike

the concentrations determined in single window detection

results. This finding supports the results of an intercomparison

between CLE-ACSV data analysis methods, which found that
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the most accurate results arise from a unified analysis of MWD

titration curves, including a better estimate of the true pCu2+

value, which is sensitive to methods bias on the binding strength

detected (Pižeta et al., 2015). Using multiple analytical windows

also enables us to predict the impact of increasing dCu

concentrations and allows a more comprehensive interrogation

of the Cu ligand pool (Moffett et al., 1997; Croot, 2003; Buck and

Bruland, 2005; Ndungu, 2012; Bundy et al., 2013).

However, when sample volumes may limit the number of

analytical windows for the measurements, 5 mM SA may prove

the best choice for CLE-ACSV in estuarine samples, enabling the

detection of strong L1 ligands without preventing fit in ProMCC

(Wong et al., 2018). Alternatively, one could focus on one

analytical window (i.e., 2.5 or 5 mM SA) and select some

representative samples to be analyzed in a second analytical

window (i.e.,10 mM SA), as done in this study and that of

Santos-Echeandıá et al. (2013).

Typically, the guiding distinction between L1 and L2 is a

logKcond
CuL,Cu2+ of 13. However, an absolute threshold fails to

consider that the ambient Cu binding ligand pool is

characterized by a continuum of binding strengths, comprising

a heterogeneous ligand pool that may have multiple binding sites

and a variety of Cu binding functional groups (Moffett and

Brand, 1996; Boiteau et al., 2016). Regardless of competition

strengths, pCu values should remain relatively consistent, given

its dependence on the ambient ligand side reaction coefficient,

which remains balanced between decreasing Li and increasing

Kcond
CuLi ,Cu2+

as SA concentration increases (Bruland et al., 2000).

By including Cu speciation measurements under a

competition strength of 10 mM SA in our study (Table 1), SoG

ligand parameters are made analytically comparable to other

data, such as those from P4, a continental shelf station within the

NE Pacific Line P transect (Whitby et al., 2018). For P4, Whitby

et al. (2018) measured relatively low L1 concentrations (i.e.,
TABLE 1 Copper binding ligand concentrations (Li), conditional stability constants (Kcond
CuLi,Cu2+

), pCu2+, and the ligand side reaction coefficient

(aCuL= oLiK
cond
CuLi,Cu2+ ) from two analytical windows ([SA]= 2.5 mM as logaCuAL =4.2 - 4.3; [SA]= 10 mM as logaCuAL =5.1 – 5.2), and the multiwindow

detection (MWD) using titrations from both analytical windows, for September 2017 SG samples.

Depth (m) dCu (nM) [SA] (mM) L (nM) log Kcond
CuL,Cu2+

L1 (nM) log Kcond
CuL1,Cu2+

L2(nM) log Kcond
CuL2,Cu2+

pCu2+ logaCuL

0 4.85 ± 0.05 2.5 24.4 ± 1.5 12.8 ± 0.1 13.4 ± 0.2 5.2

10 15.6 ± 4.2 13.8 ± 0.2 14.2 ± 1.0 6.0

MWD 22.7 ± 6.7 12.8 ± 0.3 13.5 ± 1.5 5.2

5 4.48 ± 0.04 2.5 10.5 ± 2.6 13.8 ± 0.2 30.9 ± 2.3 12.2 ± 0.1 14.1 ± 1.0 5.8

10 20.5 ± 2.2 13.9 ± 0.1 14.6 ± 0.4 6.3

MWD 8.9 ± 2.9 14.4 ± 0.7 32.4 ± 19.1 12.2 ± 0.4 14.6 ± 5.6 6.4

100 3.72 ± 0.06 2.5 13.9 ± 2.9 13.0 ± 0.2 13.5 ± 0.9 5.1

10 4.6 ± 0.5 15.0 ± 0.3 14.5 ± 1.2 6.6

MWD 3.4 ± 1.2 15.4 ± 1.5 17.2 ± 12.7 12.4 ± 0.6 14.4 ± 5.9 6.9
front
At P4, L1 have been measured between 1.2 and 3.4 nM, with a log Kcond
CuL1 ,Cu2+

between 15.4 and 16.5 (Table 1, Whitby et al., 2018). Error bars represent averaged 95% confidence windows for

duplicate titrations, in regards to data at [SA]= 2.5 mM and 10 mM, and 95% confidence windows for one multwindow detection fitting in ProMCC, in regards to MWD data.
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ranging between 3.4 and 1.2 nM), with a strong binding capacity,

logKcond
CuL1,Cu2+

, (i.e., ranging between 15.4 and 16.5; see Table 1 in

Whitby et al., 2018). While these high logKcond
CuL1,Cu2+

values could

be partially attributed to inert colloidal Cu fractions (Kogut and

Voelker, 2003), or Cu adsorption to Sterilin (polystyrene) vessels

during equilibration with SA (Barus et al., 2021), the detection of

a low concentration of strong ligands at intermediate depths of

the NE Pacific is supported by the Cu complexation results of the

100m September SG sample, measured at 10 mM SA. In this

September samples, we detected a strong ligand concentration of

4.6 nM and a strong binding capacity, logKcond
CuL,Cu2+ , of 15.0,

supporting current understanding of SoG estuarine circulation,

where offshore NE Pacific water between 100 and 200 m travels

into the SoG’s intermediate water year-round through Juan de

Fuca and Haro Strait. While variations in salinity and

equilibration times can impact comparisons between trace

metal speciation studies (Buck and Bruland, 2005; Genovese

et al., 2022), deep SoG waters and P4 have comparable salinities

(ie., 31.8-34.5 psu for P4 and 30.4 in 100 m Sept) and

equilibration times (i.e., > 8 hours for P4 and >12 hours for

100 m Sept).
Possible ligand sources in SoG

In almost 90% of the samples, the ligands were best classified

as a single ligand class, with logKcond
CuL,Cu2+ between 12.5-14.1,

average 13.2. The strong and significant anticorrelation (i.e., p<

0.001, n = 57; Figure 5) between single ligand class L

concentrations and nutrient concentrations (i.e., Pearson r =

-0.75, -0.62, and -0.79 for PO3−
4 , SiO2, and NO2 + NO3,

respectively), density (Pearson r = -0.76) and salinity (Pearson

r = -0.73); as well as the positive and significant correlation

between single ligand class L concentrations and dissolved

oxygen (i.e., Pearson r = 0.67, p< 0.001, n = 57; Figure 5)

suggest that Cu binding ligands are most abundant in the

nutrient depleted, fresher, and less dense waters of the SoG,

where dissolved oxygen concentrations are highest. These

environmental conditions are satisfied best in spring and

summer surface waters, during the Fraser River freshet and

indicates that freshwater sources in the SoG input, and/or

establish the conditions for production of, Cu binding ligands

in the surface waters of SoG.

In only 7 of the 64 measured samples were we able to

determine two distinct classes of ligand, with a stronger ligand

class, L1, of logK
cond
CuL1,Cu2+

between 13.5-14.3, and an average of

13.8, and a weaker ligand class, L2, of logK
cond
CuL2,Cu2+

between 11.5-

12.3, and an average of 12.1 (Figures 2, 3, and Supplementary

Figure 8). Six of these 7 two ligand class samples were collected

in the euphotic zone, suggesting that the surface waters are a

source of ligands to the ligand pool, L1 in June and L2 in

September, December, and April (see section 3.3). However,

we were unable to determine two classes of ligands in 15
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measured samples which were collected at depths shallower

than 10 m. Another apparent commonality amongst all two

ligand class samples is their presence above the pycnocline,

suggesting that stratification mediates the accumulation of a

ligand pool with two distinct classes. Identifying the sources of

the SoG Cu binding ligands in the two-ligand model dataset and

comparing parameters related to these sources with the single

ligand class samples may explain when and where in the SoG

two ligand classes are detectable. Possible sources of ligands

within the SoG include WWOM (Sedlak et al., 1997), terrestrial

and marine-derived humic substances (Laglera et al., 2007;

Whitby and van den Berg, 2015), and phytoplankton exudates

(Moffett and Brand, 1996; Dupont et al., 2004; Kim et al., 2005;

Walsh et al., 2015).

Wastewater, discharged from urban cities, may contain non-

biodegradable DOC, anthropogenic ligands like EDTA, and

biopolymers from activated sludge (Buck et al., 2007;

Katsoyiannis and Samara, 2007). This WWOM can have a

logKcond
CuLi ,Cu2+

of up to 14.5 (e.g., 13 for EDTA; Sedlak et al.,

1997), on par with single ligand class logKcond
CuL,Cu2+ at 50 m in SG,

across seasons (13.2 ± 0.1). In SoG, the Iona Outfall (a discharge

point from a primary wastewater treatment plant) accounts for ~

45% of the total wastewater discharge in Metro Vancouver, with

its terminus located at 100 m depth, ~20 km west of station SG

(Metro Vancouver, 2018; Kuang, 2019). Once released, the

wastewater discharge rises to 50 m depth (i.e., where it reaches

neutral buoyancy), and by the time it reaches station SG, it has

been diluted more than 5000x with ambient seawater (Kuang,

2019). However, given that Cu ligand concentrations at 50 m

(Figure 3) are not significantly different from the ligand

concentrations throughout the entire intermediate layer (50 m

to 200 m), the contribution to the Cu ligand pool fromWWOM

must be negligible.

The concentration of L2 ligand class and CDOM

significantly correlate (e.g., Pearson r = 0.81, p value = 0.028,

n=7; Figure 5). Much of the CDOM in estuaries is sourced from

terrestrial runoff and is often used as a proxy for terrestrial

dissolved organic matter (DOM) (Coble, 2007; Bowers and

Brett, 2008; Osburn et al., 2016). Strong correlations between

dCu binding ligand parameters and terrestrial DOM have been

documented in other estuaries (Tang et al., 2001; Shank et al.,

2004; Muller and Batchelli, 2013; Dulaquais et al., 2020),

specifically DOC derived from humic substances (Shank et al.,

2004). The link between humic substances and Cu binding

ligands, as both L1 and L2 ligands (Xue and Sunda, 1997;

Kogut and Voelker, 2001; Voelker and Kogut, 2001; Whitby

and van den Berg, 2015; Dulaquais et al., 2020), suggests that the

correlation between L2 concentrations and CDOM may be due

to the incorporation of Fraser River derived humic substances

into the Cu ligand pool of the SoG, decreasing the overall

logKcond
CuL,Cu2+ , with decreasing salinity. In addition, there is a

significant negative correlation between single ligand class

concentrations and salinity (i.e., Pearson r = -0.73, p value<
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0.001, n = 57), and a significant positive correlation between

single ligand logKcond
CuL,Cu2+ and salinity (i.e., Pearson r = 0.50, p

value< 0.001, n = 57), suggesting that freshwater adds weaker

ligands―on par with humic substances and L2 within the two

ligand class observations―to the Cu ligand pool, decreasing

the logKcond
CuL1,Cu2+

, when ligand parameters are observed as a

single ligand class. However, without complementary

concentrations of humic substances, DOM, and perhaps a

wider wavelength range of CDOM (i.e., between 280-320 nm

can enable an assessment of CDOM quality; Helms et al., 2013;

Heller et al., 2016), it is difficult to confirm whether terrestrially

derived humic substances are a significant source of ligands

within the SoG.

Strong Cu binding ligands are extensively described and

documented to be of biological origin (Gonzalez-Davila et al.,

1995; Moffett and Brand, 1996; Gledhill et al., 1999; Croot et al.,
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2000; Gordon et al., 2000; Rijstenbil and Gerringa, 2002; Dupont

et al., 2004; Dupont and Ahner, 2005; Kim et al., 2005), with thiols,

in particular, acting as strong Cu binding ligands, as both L1 and L2
(Laglera and van den Berg, 2003). Previous work, characterizing Cu

binding ligands within the SoG, isolated and identified thiol

functional groups (Ross et al., 2003), indicating the presence of

thiol Cu binding ligands within the SoG. As well, within our

voltammograms, a broad peak (i.e., peaked at -520 to -530 mV,

depending on the sample and Cu addition) was prevalent amongst

most samples; such peaks are often associated with thiols, such as

glutathione (Laglera and Tovar-Sánchez, 2012; Whitby et al., 2018).

While L and L1 concentrations do not strongly correlate to any of

the biological complementary parameters, logKcond
CuL1,Cu2+

correlates

positively with temperature (i.e., Pearson r = 0.77; p value = 0.044,

n=7) and negatively with phosphate concentrations (i.e., Pearson

r = -0.80, p value = 0.032, n = 7), indicating that a stronger L1 ligand
FIGURE 5

Heatmap of the Pearson correlation coefficient, r, across ligand parameters and salinity, CDOM a350, CDOM S390, density, dissolved oxygen
concentrations, temperature, PAR irradiance, light level, nutrient concentrations, Chl a, eukaryotic phytoplankton abundance (Euk. Abun.), and
HPLC phytoplankton community composition. Correlations deemed statistically significant, with a p value less than 0.05 are indicated with *.

aCuL is equal to oLiK
cond
CuLi ,Cu

2+ . Black boxes represent comparisons with no data for correlations. n varies between correlation, depending on data

available for the parameters characteristic of water mass endmembers, seasonality, and biota (see Discussion section for specific n).
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pool is found in warm, phosphorus deficient waters, from either

direct inputs of the Fraser River (i.e., 0.5 mM and 0.05 mM for total

dissolved phosphorus and orthophosphate, respectively, Buoy

BC08MH0453: Government of Canada, 2022) or low salinity,

stratified surface waters in SoG during spring or summer, which

may promote the production of Cu binding ligands by

phytoplankton (Croot et al., 2000; Dryden et al., 2007). The

inability to find a correlation between biological parameters and

ligand parameters (Figure 5) is possibly due to time lags between

changes in the phytoplankton community and the Cu binding

ligand pool, on time scale of days (Leal et al., 1999) to weeks

(Dryden et al., 2007).

Because the CLE-ACSV assay is unable to characterize ligands

by chemical structure, ligand source discussions are based on the

reported average logKcond
CuL1,Cu2+

values for Cu binding ligands in the

SoG and correlations between complexation parameters and other

physical, chemical, and biological parameters from the stations.

These comparisons are heavily impacted by analytical window

bias, as well as experimental error, in which case the variability

within ligand concentrations and binding strengths may be

attributed to the environment sampled, or experimental error

(Gerringa et al., 2014). Furthermore, given the small range in

logKcond
CuL,Cu2+ , logK

cond
CuL1,Cu2+

, and logKcond
CuL2,Cu2+

in our study (i.e.,

12.5- 14.0, 13.5- 14.3, and 11.5-12.3, respectively), it is challenging

to attribute a correlation in the SoG Cu speciation dataset to

specific sources. Nor are we able to decouple the conditionality

effect that salinity has on logKcond
CuL,Cu2+ from changes to ligand

species between water masses of different salinities. Additionally,

CLE-ACSV does not take into consideration inert colloid

complexes, which can inadvertently result in elevated

logKcond
CuL,Cu2+ values, given these inert species are unexchangeable

between the natural Cu pool and SA within the timescales that

CLE-ACSV samples are equilibrated (Kogut and Voelker, 2003;

Moriyasu and Moffett, 2022). The low correlation between dCu

and L concentrations (Figure 5), yet strong correlations

individually to the same parameters (i.e., CDOM a350, oxygen,

PO3−
4 , and NO−

2 + NO−
3 ), suggests that some ligand pool variability

may be due to loss of ligands via photodegradation, while dCu

remains. While there is no strong correlation between ligand

parameters and light level or CDOM S390 to support

photodegradation of ligands (Loiselle et al., 2009) within the

SoG, photooxidation occurs in timescales of hours to days,

which is not captured by our one-day sampling per season

(Laglera and van den Berg, 2006; Brooks et al., 2007).

To structurally characterize and confirm potential sources of

Cu binding organic ligands in the SoG, CLE-ACSV (i.e., under

multiple detection windows) should be combined with other

techniques, such as HPLC-ESI-MS (McCormack et al., 2003;

Ross et al., 2003; Nixon and Ross, 2016), allowing comparisons

of speciation data from field samples and those from

phytoplankton and bacteria cultures (Whitby et al., 2018).

Additionally, ligand parameters should be complemented with

concentrations of potential ligands, such as thiols and humic
Frontiers in Marine Science 16
substances (Laglera and Tovar-Sánchez, 2012; Whitby et al.,

2018), as well as DOC, CDOM across a wider range of

wavelengths, suspended particulate matter, colloidal trace

metal fractions (Bertine and VernonClark, 1996; Kogut and

Voelker, 2003; Moriyasu and Moffett, 2022) and other proxies,

while considering time delays between biological parameters and

Cu ligand parameters (Dryden et al., 2007), informed by cell

cultures (Leal et al., 1999; Gordon et al., 2000).
Cu speciation clusters for the single-
ligand class within the SoG

Performing hierarchal clustering on the single ligand dataset

and identifying the spatial and seasonal characteristics of the

clusters may hint at reasonable assignation of reservoirs for a

Salish Sea Cu speciation box model and identify how differences

in the water masses of the SoG estuarine circulation system,

involving region, season, and depth, can influence SoG Cu ligand

pools. In recent years, the hierarchal clustering of physical and

biogeochemical ocean models and datasets has become more

common (e.g., Follows et al., 2007; Sonnewald et al., 2020; Sun

et al., 2021), including within the SoG (Jarnıḱová et al., 2022).

However, this approach has never been applied to trace metal

speciation data, because these datasets are often not large enough

to warrant clustering (Buck et al., 2007; Boiteau et al., 2016;

Whitby et al., 2018) or trends in large datasets are simplified by

water masses (Buck et al., 2015; Ruacho et al., 2020). However,

trace metal speciation dynamics in estuary systems are

particularly challenging to interpret by water bodies alone,

given the closely adjacent sources of terrestrially- and

anthropogenically-derived ligands, such as wastewater

treatment plants, mixing with the open ocean ligand pool

occurring in tandem with large seasonal variability in

biological productivity and algal groups within the estuary

(Buck et al., 2007).

Given that single ligand class concentrations vary with

parameters that follow seasonal SoG water circulation patterns

(e.g., density, salinity, temperature, nutrients, and dissolved

oxygen), the Cu binding ligand pool may follow similar trends

as those accounted for in the Salish Sea Box Model described in

Wang et al. (2019). The model divides the SoG into 6 boxes of 3

locations: Strait of Georgia, Haro Strait, and Juan de Fuca Strait,

which are further divided into two depths: upper, as the top 50 m

depths, and lower, as all depths below 50 m. But, grouping SoG

Cu speciation parameters by water body, according to the 6

boxes outlined in Wang et al. (2019) only accounts for

conservative mixing between regions of the SoG and ignores

changes in biological production across depth and season, Cu

transfer between dissolved and particulate phases, particulate

resuspension, and Cu binding ligand stability across the salinity

gradient. Thus, given the extent of seasons (4), depths (12), and

regions (4) included in this study, encompassed in 64 samples,
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57 of which are described as single ligand complexation,

performing hierarchical clustering is warranted.

Before hierarchical clustering, PCA was performed to

determine the most efficient set of statistical modes

representing the seasonal and spatial variability of the single

ligand class Cu complexation dataset (i.e., dCu, salinity, L, and

single logKcond
CuL,Cu2+ ) with 57 observations (Supplementary

Figure 3). Within the PC results, mode 1 follows decreasing

salinity, increasing dCu concentrations, increasing ligand

concentrations, and decreasing logKcond
CuL,Cu2+ , where the greatest

PC score is in June surface waters―when the Fraser river’s

freshwater contribution to the SoG is the greatest―and the

greatest negative PC score is in Juan de Fuca, at 140 m depth.

This suggests that mode 1 explains the variability between a high

concentration of weaker ligands from a freshwater source and a

low concentration of stronger ligands from seawater sourced

from the NE Pacific into SoG. Mode 2 follows increasing dCu

and logKcond
CuL,Cu2+ , where PC scores are elevated in April surface

waters, suggesting a seasonal presence of stronger ligands during

the springtime phytoplankton bloom. In mode 3, eigenvectors

follow increasing salinity and decreasing logKcond
CuL,Cu2+ , where the

PC scores are greatest in depths below 200 m in April, suggesting

an input of stronger ligands from N. Pacific waters during

summer deep water renewal (Masson, 2002).

Hierarchical clustering of the first three PCA modes

resulted in 6 distinct clusters, projected in Supplementary

Figure 4. Projecting these clusters over depth profiles from all

8 cruises (Supplementary Figure 9) results in a harmonized

schematic of the SoG ligand pool, shown in Figure 6.
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Determining the Cu speciation characteristics of each cluster

(Figure 7) enables us to decipher sources of Cu binding ligands

into the SoG and how these various ligand pools behave as

water circulates in the SoG.

Cluster 1 (magenta, Figures 6, 7), consisting of a single data

point, defines the behavior of the incoming intermediate NE

Pacific water into deep Juan de Fuca, with a low concentration of

dCu and the strongest Cu binding ligands in the SoG. Cluster 2

(blue, Figures 6, 7) encompasses the ligands carried to the deep

SoG during summer deep water renewal. Cluster 3 (teal,

Figures 6, 7) includes SoG intermediate water, received from

well mixed Haro Strait surface waters. Cluster 4 (green,

Figures 6, 7) specifies April SG surface and intermediate water,

where elevated dCu concentrations are evident, and which

would not have been accounted for by a conservative mixing

model between Fraser River freshwater and the NE Pacific

waters within Juan de Fuca. Instead, cluster 4 aligns with

regions of high particulate Cu concentrations in spring SG

waters, near surface and 200 m depth (see Figure 22b in Flores

Ruiz, 2020). The high Cu particulate load in April in surface

waters may be attributed to higher concentrations of particulate

Cu within the Fraser River plume, due to the springtime snow

melt washing off winter accumulated lithogenic matter into the

Fraser River (Kuang, 2019). Similarly, the elevated particulate Cu

concentrations at 200 m depth (see Figure 22b in Flores Ruiz,

2020) may be due to scavenging of remineralized Cu onto

sinking particles (Bruland, 1980; Little et al., 2013). However,

since Haro Strait water, high in particulate matter, discharges

into the SoG between 100 to 200 m, these local particulate Cu
A B C

FIGURE 6

Schematic water circulation diagram of the Salish Sea, adapted from Pawlowicz et al. (2019), showcasing hierarchical clustering on single ligand class

dissolved Cu speciation parameters (i.e. salinity, dCu, L, and log Kcond
CuL,Cu2+ ) into 6 clusters, 1 (magenta), 2 (blue), 3 (teal), 4 (green), 5 (yellow), and 6

(orange). This diagram is complementary to Figure 7, and the clustered depth profiles in Supplementary Figure 9. Clusters describing the September and
December SG cruises (A) are shown over the schematic of Salish Sea water circulation during non-summer conditions, when the SoG’s deep water is
stagnant. Clusters describing the April SG (B), June SG (C), August SG (C), August NG (C), August HS (C), and August JF (C) cruises are shown over the
schematic of Salish Sea water circulation during summer conditions, when the deep water of the SoG is actively renewed.
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maxima in SoG may also reflect lateral transport of HS

particulate matter (Johannessen et al., 2006; Kuang, 2019).

While Cu2+ concentrations fall below the toxicity threshold

throughout all SoG samples, dCu concentrations most closely

approach L concentrations within cluster 4, suggesting that April

surface and intermediate waters are at most risk of Cu toxicity.

Cluster 5 (yellow, Figures 6, 7) includes Juan de Fuca Strait

surface water, as well as SG and NG surface water samples (ie.,

above 30 m) other than high particulate Cu April waters and

samples taken directly within the Fraser River plume. The

distinction of cluster 5 is possibly due to either biologically

derived ligands in sunlit depths, or the addition of terrestrial

ligands from freshwater inputs. Cluster 6 (orange, Figures 6, 7) is

comprised of the single freshest sample in our dataset, as the

strongest Fraser River plume signal, signifying the highest

contribution of Cu binding ligands, with a logKcond
CuL,Cu2+ value

of 13.0. These 6 clusters enable key regional and temporal

distinctions between ligand concentrations and stability

constants, allowing resolved values for Cu speciation for

seasons and SoG regions. For example, if modelling Cu

bioavailability within the coastal NE Pacific, the ligand
Frontiers in Marine Science 18
parameters of cluster 5 are more applicable than those

calculated by averaging across the entire SoG ligand dataset.
Conclusion

Conservative mixing between freshwater sources and the N.

Pacific largely controls the seasonal and spatial distributions of

dCu within the Salish Sea. In the SoG, Cu speciation is

dominated by Cu complexing organic ligands, which complex

greater than 99.98% of dCu, resulting in Cu2+ concentrations

suitable for the growth of healthy and robust phytoplankton

communities, regardless of season or location within the SoG.

Possible ligand sources were discussed via correlation with

supporting physical, chemical, and biological parameters, where

a strong correlation was found between high concentration of

single ligand class L and warm, low salinity, high dissolved

oxygen, and nutrient-depleted waters. A stronger ligand class,

L1, of logK
cond
CuL1,Cu

2+ between 13.5 and 14.3, and a weaker ligand

class, L2, of logK
cond
CuL2,Cu2+

between 11.5 and 12.3, were detected in

surface waters of the Southern SoG, but only in 7 samples out of
A B DC

FIGURE 7

Boxplots of salinity (A), dCu concentration (B), L concentration (C), and log Kcond
CuL,Cu2+ (D) for 6 clusters; 1 (n=1), 2 (n=10), 3 (n=28), 4 (n=4), 5 (n=13),

and 6 (n=1). This diagram is complementary to Figure 6, and the clustered depth profiles in Supplementary Figure 9. On each box, the central black
mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The dashed whiskers
extend to the most extreme data points not considered outliers, and the black markers are outliers.
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our 64 sample dataset. The two-ligand model dataset was used to

isolate specific sources of the SoG Cu binding ligands. A

relationship was found for two-ligand class logKcond
CuL1,Cu2+

and

logKcond
CuL2,Cu2+

with temperature, in the absence of correlation with

Chl a and eukaryotic phytoplankton density, while a correlation

was found between two-ligand class L2 concentrations and

CDOM. This suggests that a warm freshwater terrestrial

source to the Cu binding ligand pool dominates any possible

biological source signal. Future studies should measure DOC

and humic substance concentrations, include more

phytoplankton composition observations within the Cu

binding ligand dataset, characterize ligands using HPLC-ESI-

MS concentrations, and utilize multiple analytical windows

within CLE-ACSV to corroborate conclusions surrounding the

dominant source of the SoG’s ligand pool.

Spatial ligand and dCu depth profiles support the current

understanding of the water circulation pattern within the SoG,

detecting traces of NE Pacific water along the depths of Juan de

Fuca Strait, Haro Strait, and the Southern SoG. Furthermore,

hierarchal clustering enables us to distinguish unique features of

surface waters, affected by strong seasonality, and identifying

changes in Cu speciation in regions and depths with high

particulate Cu concentrations and that ligand parameters

require a shallower distinction for surface water than the

currently described 50 m shallow-intermediate depth. This

study is the first to perform hierarchal clustering analysis on a

trace metal speciation dataset to describe the dynamics of the Cu

ligand pool within an estuary environment. Future studies

should expand the SoG ligand pool dataset to test the clusters

established in this study, as well as investigate particulate Cu

speciation and changes in the phase of total Cu within Spring

SoG waters to better understand how freshwater lithogenic input

affects dCu speciation.
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