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Accurate wave height prediction is significant in ports, energy, fisheries, and

other offshore operations. In this study, a regional significant wave height

prediction model with a high spatial and temporal resolution is proposed based

on the ConvLSTM algorithm. The model learns the intrinsic correlations of the

data generated by the numerical model, making it possible to combine the

correlations between wind and wind waves to improve the predictions. In

addition, this study also optimizes the long-term prediction ability of the model

through the proposed Mask method and Replace mechanism. The

experimental results show that the introduction of the wind field can

significantly improve the significant wave height prediction results. The

research on the prediction effect of the entire study area and two separate

stations shows that the prediction performance of the proposed model is

better than the existing methods. The model makes full use of the physical

correlation between wind and wind waves, and the validity is up to 24 hours.

The 24-hour forecast R² reached 0.69.
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1 Introduction

Wind waves are waves generated by and influenced by the

local wind (Barnett and Kenyon, 1975). It is characterized by

often sharp wave crests, very irregular distribution on the sea

surface, short crest lines, and minor periods. When the wind is

strong, the phenomenon of breaking waves often occurs, and

water splashes are formed. In general, wind disturbance of the

sea surface causes capillary waves (ripples) so that the wind

further provides the necessary roughness for delivering energy to

the sea surface. Then, the waves continue to be fueled by the

pressure of the wind on its surface (Longuet-Higgins, 1963;

Kirby, 1985), causing the wind waves to grow (Phillips, 1957).

Wind waves dominate the motion of the sea for a short period.

Therefore the study of wind waves has implications for many

applications such as navigation safety and coastal engineering.

Waves also define air-sea fluxes and interact strongly with

surface currents, upper ocean turbulence, and sea ice.

Understanding and accurately predicting waves are very

beneficial to humans.

In the past few decades, researchers have made great strides

in studying the causes of wind waves and the correlation between

wind and waves (Barnett, 1968). In order to analyze the wind

waves field, Sverdrup andMunk (1947) first used an empirical or

semi-analytical approach. However, the method has obvious

limitations (Kamranzad et al., 2011). Hasselmann (1968) has

also studied the evolution of the wind waves’ power spectrum in-

depth and demonstrated a strong correlation between both wind

and wind waves.

At this stage, the mainstream forecasting idea for

oceanographers to forecast wind waves is to use numerical

models. The numerical model uses oceanic elements such as

wind as input and solves complex equations to produce wave

forecasts. The most widely used models include the National

Weather Service’s (NWS) WaveWatch III (WW3) (Tolman

et al., 2009), Simulating Waves Nearshore (SWAN) (Booij

et al., 1999) developed by the Delft University of Technology,

etc (Zheng et al., 2016). Traditional numerical model forecasting

methods combine the advantages of physical simulation and

data-driven approaches to make forecasts with high spatial and

temporal resolution (Wei et al., 2013). This hybrid approach of

physical simulation and data-driven prediction is theoretically

sound. However, it has significant limitations in practical

offshore industry applications: the time lag and its accuracy

cannot be guaranteed. In addition, the expensive computational

and maintenance costs of the numerical model make it a prudent

consideration as an operational application (Song et al., 2022).

In recent years, the application of Artificial Intelligence (AI)

in marine and atmospheric sciences has developed rapidly (Van

Aartrijk et al., 2002; Bolton and Zanna, 2019). AI can naturally

process many data sources, such as numerical forecast results,

radar, satellite, station observations, and even decision data

(natural language), which is almost impossible for existing
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coupled sea-air numerical models. Some studies have even

found that AI models outperform existing numerical models

for short-term wind waves prediction (James et al., 2018). Berbić

et al. (2017); Callens et al. (2020) predicted the significant wave

height within 3-hour accurately using Random Forest (RF) and

Support Vector Machine (SVM), respectively. Fan et al. (2020)

used the Long Short Term Memory Network(LSTM) algorithm

to predict the significant wave height of several stations for 6-

hour, and the results were satisfactory. Song et al. (2020) uses

merged-LSTM to mine the hidden patterns in short time series

to solve the long-term dependence of series variability and to

make compelling predictions of sea surface height anomaly

(SSHA). Meng et al. (2021) proposes a bi-directional gated

recurrent unit (BiGRU) network for predicting wave heights

during tropical cyclones (TCs). Artificial intelligence has the

advantage of solid data drive and a high potential for model

optimization, which can theoretically solve the “costly” problem

of numerical forecast models while improving the “accuracy”

of forecasts.

Although the application of AI in wave height prediction is

becoming more and more widespread, most of them are limited

to single-site forecasting. However, wind wave fields are two-

dimensional fields, so predicting wave height at a point is not

only a matter of time series but should also consider the spatial

correlation with other surrounding points (Jönsson et al., 2003;

Gavrikov et al., 2016). In addition, most current AI applications

for predicting wave height use single-factor forecasting, treating

each ocean variable individually, which ignores the correlation

between different ocean elements and lacks physical meaning

(Fu et al., 2019). Only the wave field factor is applied to forecast

the wave field. The physical correlation between wind and wind

waves is ignored. Zhou et al. (2021) established A two-

dimensional SWH prediction model based on convolution

Long and Short-term memory (ConvLSTM). However, the

model only considers the wave and ignores the influence of

wind. The mean absolute percentage errors of 6-hour, 12-hour,

and 24-hour advance are 15%, 29%, and 61%, respectively.

Moreover, the spatial and temporal resolution of the data

should also be considered if the deep learning approach is to

be truly applied to the problem of forecasting ocean elements.

With the deep development of ocean research, human

production life increasingly needs to understand the ocean

elements with high spatial and temporal resolution. Most of

the current deep learning wave forecasting methods are limited

to low spatial and temporal resolution conditions, and such

research can no longer meet the practical needs of society.

In this study, a deep learning model based on ConvLSTM

was developed to combine the correlation between wind and

wind waves to predict significant wave heights with high spatial

and temporal resolution in the Beibu Gulf. ConvLSTM has been

successfully applied to 2D precipitation prediction (Shi et al.,

2015). It enables the model to learn the spatial correlation of

elements through a unique convolution method, which solves
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the problem of spatial information loss in traditional LSTM and

improves the accuracy of 2D predictions. Specific modifications

to the model were made in this study to enable the model to be

adapted to the study sea area and to learn the correlation

between wind and significant wave heights in the numerical

model data. We then set up a series of experiments to evaluate

the performance and accuracy of the model. The model

successfully predicts the hourly significant wave height of 1/

40° and has an excellent long-term prediction ability. After the

model is trained, it is only necessary to provide the model with

the corresponding wind speed and significant wave height data

to obtain the required predicted significant wave height.

The rest of the paper is organized as follows: Section.2

describes the data and research area we used, and Section.3

describes the method used and the construction and evaluation

metrics of the proposed model. Section.4 shows the predictive

performance of the proposed model and corrects the problems

in the prediction process. Finally, we conclude and discuss future

research recommendations in Section.5.
2 Study area and data

2.1 Study area

In this work, the study area is the Beibu Gulf and its adjacent

waters in the South China Sea (16°N - 23°N, 105°E - 113°E), as

shown in the black box in Figure 1. It includes the shelf waters as

well as other waters around Hainan Island; the water depth

gradually deepens from the shore to the central part, with an

average depth of 42 meters and a maximum depth of more than

100 meters (Gao et al., 2015). The study area is mainly

surrounded by some cities in Guangxi, Guangdong, Hainan
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Province (China), and Vietnam, which are important ports

and good fishing grounds (Koongolla et al., 2020). The Beibu

Gulf is located in tropical and subtropical areas (Cooke et al.,

2011). In winter, it is influenced by cold air from mainland

China, with northeast winds and sea surface temperature of

about 20C. In summer, the wind comes from the tropical ocean,

mainly from the southwest, and the sea surface temperature is as

high as 30C. It is often attacked by typhoons. Generally, about

five typhoons (Shao et al., 2018) pass here every year.
2.2 Data

The data used in this study are the significant wave height

(SWH) and wind speed (WS) data. It is worth noting that the

significant wave height data we use refers specifically to the

significant wave height of wind waves. These data were provided

by the South China Sea Institute of Oceanography, Chinese

Academy of Sciences. These data are the products of the

WAVEWATCH III and COAM models. The researchers

involved have adopted the latest wind stress calculation

scheme based on the third-generation wave model WW3,

which improves the model’s prediction of wind and waves

generated by different wind speeds and wind field variations.

The model allows a better simulation of the temporal variation

of the waves, and the values obtained are closer to the observed

values than in the ERA5 reanalysis. The model can provide

hourly forecasts with a spatial resolution of 1/40°*1/40°. A more

detailed description of the data is available here (Li et al., 2021).

Due to the high accuracy of these data, they can be used as an

approximation of the observed data in the case of insufficient

actual measurement data. Since it is difficult to obtain actual

measurement data with high accuracy in the study area, we used
B

A

FIGURE 1

(A) South China Sea and the Beibu Gulf, and (B) Beibu Gulf and its adjacent waters.
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the above data as a comparison value in our study. In this study,

SWH and WS data with Spatio-temporal resolution of 1h and 1/

40°*1/40° for two years from 2018-2019 were selected, with 80%

of the data used as the training set, 10% for validation, and 10%

for testing. The maximum significant wave height in the data is

7.34m and the top wind speed is 17m/s. In Section 4, we also

compare the predictions with the ERA5 reanalysis information

used, which can be found here (www.ecmwf.int/en/forecasts/

datasets/reanalysis-datasets/era5). It is worth stating that the

high-resolution data used in this study will be open-sourced to

facilitate researchers in studying important wave height issues at

high resolution. These data are available here: citep https://doi.

org/10.5281/zenodo.6402321.
3 Methods

This study focuses on the significant wave height variation

over the entire study area rather than on specific stations.

Therefore, for each point in the study area, we need to

consider it in terms of time series and spatial relationships.

This study proposes a novel prediction method based on Mask-

ConvLSTM deep learning network and Replace mechanism. In

this study, specific modifications are made to the ConvLSTM

model, which allows the model to be adapted to our study sea

area and learn the physical correlation between wind speed and

significant wave height. The model was used to predict the SWH

conditions after a few hours. The number of layers of the

network is three, containing 6,12,2 convolutional kernels,

respectively, the size of these convolutional kernels is set to

3*3, and the step size of each move is 1. Our experiments were

conducted on a cluster of computers. This study used an

NVIDIA TeslaV100S and Intel(R) Xeon(R) Silver 4214R CPU

in terms of hardware. Regarding software, this study used

Tensorflow-2.4.1 and CentOS 7.6.
3.1 Convolutional LSTM network

The LSTM algorithm, known as Long short-term memory,

was first proposed by Hochreiter and Jürgen Schmidhuber in

1997 and is a particular form of RNN (Recurrent neural

network), while RNN is a general term for a series of neural

networks capable of processing sequential data (Hochreiter and

Schmidhuber, 1997). In 2005, Alex Graves and Jürgen

Schmidhuber proposed a bidirectional long short-term

memory neural network (BLSTM) based on LSTM, also

known as vanilla LSTM (Graves and Schmidhuber, 2005). It is

one of the most widely used LSTMmodels at present. The ability

of LSTM to remove or add information to nodes to change the

information flow state relies on the careful regulation of the gate

structure (Meng et al., 2022). Gates are nodes that can be

selected to pass information, and they consist of Sigmoid
Frontiers in Marine Science 04
complexes and point-by-point multiplication operations. The

ingenuity of the LSTM lies in the addition of input gates,

forgetting gates, and output gates for protecting and

controlling the information flow vector states. In this way, the

scale of integration can be changed dynamically at different

moments with fixed model parameters, thus avoiding the

problem of gradient disappearance or gradient expansion

(Hochreiter et al., 2001). The input gate determines how much

of the input data of the network at the current moment needs to

be saved to the cell state. The forgetting gate determines how

much of the cell state needs to be preserved in the current

moment from the last moment. The output gate controls how

much of the current cell state needs to be output to the current

output value. The computation of the LSTM layer can be

expressed as follows.

it = s Wxixt +Whiht−1 +Wci ∘ ct−1 + bið Þ (1)

ft = s Wxf xt +Whf ht−1 +Wcf ∘ ct−1 + bf
� �

(2)

ct = ft ∘ ct−1 + it ∘ tanh  Wxcxt +Whcht−1 + bcð Þ (3)

ot = s Wxoxt +Whoht−1 +Wco ∘ ct + boð Þ (4)

ht = ot ∘ tanh  ctð Þ (5)

where ti denotes the input gate, ft denotes the forget gate, Ot

denotes the output gate. Ct and Ct-1denote the state at the current

and previous moments, respectively. W is the assigned weight

for each layer, xt is the input time step at the current moment,

and b is the bias. s denotes the sigma operation. X denotes the

Hadamard product.

The internal structure of the hidden layer of the LSTM is

shown in Figure 2. The forgetting gate ft determines which

information coming from the information state ht-1 at the

previous time node needs to be discarded and which needs to

be retained. The input information xt from the current moment

and ht-1 from the previous moment are simultaneously fed into

the sigmoid activation function, and the output value is the value

of the forgetting gate ft. The value range of ft is between (0, 1),

and the closer the value is to 1 means that the information

passing through the forgetting gate should be retained, and vice

versa, it should be discarded. The input gate it controls which

new inputs will be kept in the cell state. The current moment’s

input xt and the previous moment’s information state ht-1 are

first fed to the sigmoid activation function, which adjusts the

value of the input gate it to a value between (0, 1). Then xi
and ht-1 are jointly delivered to the tanh function to create a

new candidate cell state ct for the current moment, which is

followed by the LSTM layer back to update the cell state ct for the

current moment. The forgetting gate ftis used to control which

information in the previous moment’s cell state ct-1 needs to be

discarded, and then the input gate it is used to determine which
frontiersin.org
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information in the current moment’s candidate state ctwill be

retained in the new cell state, respectively, using the product

calculation. Finally, the product of the two is summed to obtain

the cell state ct at the current moment. output gate ot controls the

output of the current information state, i.e., the information state

ht input to the next time node, which is jointly determined by x1,

ht-1, and ct.

The limitation of the LSTM application in the ocean domain

is that it can only handle time-series data from a single location.

It is well known that the ocean is a dynamically changing whole,

and different points are temporally and spatially correlated with

each other (Magdalena Matulka and Redondo, 2010). Although,

researchers can divide the complete ocean into multiple points

and use LSTM to process them one by one. However, this

approach ignores the regional characteristics of different

oceans and the interactions between neighboring points of the

same ocean. To address this problem. Shi et al. (2015) improved

the LSTM and firstly proposed the Convolutional LSTM

Network (ConvLSTM). He and his team use ConvLSTM for

rainfall forecasting. They have collected many radar plots which

give the distribution of clouds in a given region. Moreover, these

maps are changing along the time axis. So with the past timeline

and cloud cover maps, it is possible to predict where the clouds

should go at future points in time, weather changes, and the

chances of future rainfall in an area. Using traditional LSTM

models leads to the loss of geolocation information in the cloud

cover map, and therefore it is difficult to predict where the clouds

will move. The contribution of the original paper is to add the

convolution operation that can extract spatial features to the

LSTM network that can extract temporal features and propose

the architecture of ConvLSTM. ConvLSTM inherits the

advantages of traditional LSTM and makes it well suited for

Spatio-temporal data due to its internal convolutional structure.
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The computation of the ConvLSTM layer can be expressed as

follows.

it = s Wxi*Xt +Whi*Ht−1 +Wci ∘Ct−1 + bið Þ (6)

ft = s Wxf *Xt +Whf *Ht−1 +Wcf ∘Ct−1 + bf
� �

(7)

Ct = ft ∘Ct−1 + it ∘ tanh  Wxc*Xt +Whc*Ht−1 + bcð Þ (8)

ot = s Wxo*Xt +Who*Ht−1 +Wco ∘Ct + boð Þ (9)

Ht = ot ∘ tanh  Ctð Þ (10)

where * is convolution operator.

The most important feature of the ConvLSTM algorithm is

that it replaces the matrix multiplication in the LSTM with

convolution operations. However, its essence is still the same as

LSTM, using the previous layer’s output as the input of the next

layer. The difference is that with the addition of the convolution

operation, the temporal relationships can be obtained, and the

spatial features can be extracted like the convolution layer. In

this way, Spatio-temporal features can be obtained. Regional

wave height forecasting is a typical Spatio-temporal problem.

Therefore, the proposed model uses the ConvLSTM algorithm.
3.2 Forecasting method

For the wind wave prediction problem with high spatial and

temporal resolution, we would like the proposed model to make

longer time predictions. However, if we perform multi-step

prediction directly, the error of the results may be unstable.

Therefore, the proposed model adopted a different approach
FIGURE 2

Internal structure of LSTM hidden layer.
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from most current forecasting methods that directly establish

correlations between specific future moments and historical

data. Instead, this study used a more appropriate forecasting

strategy to improve the long-term predictive capability of the

model. According to previous studies, the Rolling Mechanism

(RM) is more suitable for dealing with high-frequency and long-

time forecasts (Akay and Atak, 2007; Kumar and Jain, 2010).

The main idea of the RM method is to use the obtained

forecast data as the latest data and add it to the future forecast.

Figure 3 shows the process of forecasting. The small boxes

represent the data for each moment. The numbers in the small

boxes represent the moments of the data, and the large boxes

represent the historical data used for each forecast (time

window), which is of length N. Our forecast is a single-step

forecast. First, we use the historical data from T-N to the

moment T

to forecast the data for the future moment T+1. Immediately

after that, the time window is shifted down by one step. We treat

the data just obtained for T+N as known data and use the N data

from T-N+1 to T+1 to forecast the data at the moment T+2,

repeating the above process n times. We then get the data from T

+1 to T+nmoments. In this way, the prediction process of using

historical data continuously to predict the next n moments

is completed.

It is worth noting that the standard convolution operations

in deep learning algorithms such as CNN and ConvLSTM can

only act on standard rectangular areas. In our study, the study

area is not a pure sea area, but a land-sea combined area,

including Hainan Island and parts of the eastern Indo-China

Peninsula. Due to the existence of land points, the error

calculated during model training will be affected by these land

points, thus affecting the effectiveness of the model. This is not

what we expected. To solve this problem, we propose the Mask

method described below. “Mask” is an idea in deep learning. In

simple terms, it is equivalent to masking or selecting some

specific elements by putting a mask over the original tensor.
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This study proposes the Mask method by combining the

“Mask” idea.

A brief description of the Mask method is given in Figure 4.

This study generates a matrix of size equal to the input data so

that the points in the matrix can correspond to the points in the

input data one by one. It will be referred to as the Mask matrix.

The antique-white part in Figure 4 represents the land area, and

we set the value of the Mask matrix corresponding to this area to

0 and the value of the Mask matrix for the ocean part

represented by the blue part to 1. It is worth noting that, in

practice, the land-sea distribution of the study area is much more

complicated than in Figure 4. But because of the specificity of the

right-angle grid data. We can still build the corresponding Mask

matrix according to the idea in Figure 4. During the model’s

training, the model determines the direction of the subsequent

gradient descent by calculating the average error between the

results and the labels. To implement our Mask method, we

rewrite the loss function for network training according to

Eqs.11 and 12 during network training.

Focean = U −Fland (11)

loss = o
n
0( X tð Þ − Ytð Þ ∘Mask)2

N
N ∈ Foceanð Þ (12)

where U denotes the ensemble of points in the study region,

Flanddenotes points in the land region, andFocean denotes points

in the ocean region. X(t) denotes the output matrix of the

prediction at this time. Yt denotes the corresponding factual

matrix, and N is the number of points in the ocean area.

In this way, during the training process of the network, the

result X(t) of each prediction is subtracted from the control value

Yt and then dotted multiplied with the Mask matrix. Since the

result is dot multiplied by Mask, and the value of the land part in

the Mask matrix is zero, the error of the corresponding land part

in the error matrix will also be zero. Therefore, the network only

considers the error value of the ocean part in the loss value
FIGURE 3

The prediction method integrated with RM.
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calculated in each iteration. In this way, the influence of the land

region on our experiments is eliminated.
3.3 The proposed model

The wind and wind wave data used in this study have a

spatial resolution of 1/40°*1/40° and a temporal resolution of 1

hour. Such high spatial and temporal resolution data means that

the degree and speed of sea state variability are much more

significant than other slightly lower resolution data. It increases

the difficulty of forecasting. As mentioned earlier, there is a

strong correlation between wind and wind waves in physical

oceanography. If we want to exploit this correlation, we need to

have both wind speed and significant wave height as inputs to

the model and to have the two dependent on each other. So we

need a multi-input network structure to capture this physical

correlation and the subtle sea state variations. In this study, we

combine the Mask method with ConvLSTM and change the

number of input channels of the model to dual channels. It

enables the model to meet our needs. The structure of the model

proposed in this study is given in Figure 5.

The input data for the model are Xt-N to Xt. Each input data

consists of the wind speed (blue quadrilateral in Figure 5) and

significant wave height data (green quadrilateral in Figure 5) at

that moment. The data N is the length of the time window we

choose. The size of these input data is (321*281) and after

combining them into dual-channel data, each input X has a

dimension of (321*281*2). These input data enter the

regularization layer for regularization and are then fed to the

three Mask-ConvLSTM layers. Between each Mask-ConvLSTM

layer, model use relu as the activation function. During the

model training process, the network then learns the Spatio-

temporal correlation of the input data and the physical
Frontiers in Marine Science 07
correlation between SWH and WS. Then, the size of the

output data that we need to obtain is controlled by

the convolution layer(Conv3D). In this way, we obtain the

predicted data at Xt-N moments and then add the obtained

predicted data at Xt+N moments to the RM module to achieve

rolling forecasts.
3.4 Evaluation metrics

In order to evaluate our model reasonably, this study

selected a variety of evaluation metrics commonly used to

evaluate the significant wave height prediction problem,

including Root Mean Square Error (RMSE), Scatter Index (SI),

and R Square (R²). In this, the SI can measure the percentage of

RMSE relative to the average actual value. However, due to the

specificity of the study sea area, we make some modifications to

these standard evaluation metrics to match our problem. We

combine the indicator RMSE,SI with our Mask method to make

it possible to focus only on the error situation in the marine area.

It ensures no disturbances from the terrestrial values in the area

and that there are no erroneous undercounts due to incorrect,

missing point counts. The mathematical equation for these

evaluation indicators is as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

0 (X − Y)2

N

s
(13)

SI =
RMSE

�Y
(14)

Mask − RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

0 ( X − Yð Þ ∘Mask)2

N N ∈ Foceanð Þ

s
(15)
FIGURE 4

Idea of Mask method. The antique-white areas represent land areas and the blue areas represent ocean areas.
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Mask − SI =
Mask − RMSE

�Y
(16)

R2 = 1 −o
N
0 (X − Y)2

oN
0 (Y − �Y)2

(17)

where X represents the predicted value, Y represents the

corresponding value, and N is the number of points in the

taken region.
4 Results

The effect experiments are based on the significant wave

height and wind speed data for 2018-01 to 2019-12 mentioned in

Section 2. In order to test the performance of the model, this

study conducted multiple sets of controlled experiments. The

forecast tests were conducted in the validation set that did not

participate in the training.
4.1 Performance study

In order to verify the superiority of the proposed model for

the high-resolution significant wave height prediction problem,

this study compares several published significant wave height
Frontiers in Marine Science 08
prediction methods. The compared methods include the

traditional machine learning methods RF (Callens et al., 2020)

and SVM (Berbić et al., 2017)mentioned in Section 1 and the

LSTM (Fan et al., 2020), GRU (Meng et al., 2021) algorithms in

deep learning. Five sets of experiments, including the model

proposed in this study, used the same training data, and their

performance is shown in Figure 6.

Firstly, this study conducted effect experiments for three

different forecast lengths of 1 hour, 3 hours, and 6 hours. To

more visually show the comparison of the effects between

different methods, we chose two sites, siteA(17°N, 110°E) and

siteB(19°N,108°E)(shown in Figure 2), to conduct our

experiments. Figures 6A, D) show that at a forecast length of

1-h, there is little difference between the predicted and

comparison values of the five methods. When the time grows

to 3-h, the results of the RF methods show significant differences

from the comparison values, especially in the case of low wind

waves (Figure 6E). Although the SVM algorithm can predict the

trend of data variation, the difference in values is significant.

When it comes to 6-h, the RF and SVM methods have

completely lost their forecasting ability. The effect of the three

groups of deep learning algorithms also appears to be very

different. Although LSTM, GRU, and ConvLSTM all capture

the change in significant wave height, ConvLSTM has more

accurate numerical magnitude predictions than the other two.
FIGURE 5

Architecture of the proposed model.
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To avoid the effect of chance, we performed the above

experiments for all points in the sea area and averaged the

results of the comparisons, which are shown in Figures 7, 8.

Figure 7A shows the variation of RMSE for the five groups of

algorithms. It can be seen that the RMSE of the SVMmethod has

reached about 0.18 at a prediction time of 1 hour. We can also

visualize it in Figure 8B. The SVM algorithm lost effectiveness

when the predicted large wave height was below 0.5 m. The

remaining groups of algorithms do not differ much. The

prediction effectiveness of the conventional machine method

decays severely with time. Especially for smaller apparent wave

heights, both SVM and RF show different degrees of inaccuracy.

The RMSE of the SVM algorithm reaches about 0.3 for 3 hours
Frontiers in Marine Science 09
and even 0.7 for 6-hour forecasts, while the RMSE of RF also

reaches about 0.6. Two groups of deep learning methods, LSTM

and GRU, have acceptable performance in the early stage

(Figure 8A, C. However, the error after 6 hours is also much

higher than that of the ConvLSTM method, with the RMSE

increasing to more than 0.4 and the SI reaching 0.2. The

comparison of the SI of different experimental groups in

Figure 7B also shows the superiority of the ConvLSTM

algorithm in this study. As we mentioned in Section 3, when

dealing with such high spatial and temporal resolution data if

only the temporal correlation of one point is considered without

considering the spatial relationship of each point. It would be

difficult for the model to predict the sea state changes within the
B

C

D

E

F

A

FIGURE 6

The differences in prediction effects of different algorithms at sites (A, B): (A, D) 1h, (B, E) 3h, (C, F) 6h. Sample number indicates the time
sample number.
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sea area accurately. It may be the reason for the poor

performance of the LSTM and GRU algorithms in this study.
4.2 Ablation study

In order to verify the advantages of the wind and wind waves

dual-channel compared to the wave-only single channel and the

effectiveness of introducing the Mask mechanism, we set up four

different sets of experiments. First, a single-channel experiment

using only significant wave height data for training and no Mask

method (Single-channel). Second, single-channel experiments

use only significant wave height data for training but with the

Mask method (Single-channel & Mask). Third, experiments

using significant wave height and wind speed data for training

but without using the Mask method (Dual-channel). Finally,

experiments using the significant wave height and wind speed

for training with the Mask method (Dual-channel & Mask). It is

worth mentioning that the results obtained by the dual-channel

network during the prediction process are also dual-channel,

containing both the prediction results of the significant wave

height and the wind speed. This study aim to study the network’s

prediction of the significant wave height. Therefore, we take only

the significant wave height prediction results from the dual-

channel network forecast results when comparing different

groups of experiments.

To ensure the validity of these four sets of experiments. The

hyperparameters of the four sets of experiments will be set to the

same set of values. We randomly selected a period of history and

made a 6-hour forecast downward using each of the four models.

Figure 9 shows the results of our experiments. It can be seen that

the error of the dual-channel network is significantly smaller

than that of the single-channel network when only the number

of channels is considered, and this situation persists with

increasing forecast time. It proves the advantage of the dual-

channel network. With the introduction of wind speed, the
Frontiers in Marine Science 10
network takes advantage of the physical correlation between

the two to improve our forecasting results for the significant

wave height. Similarly, we can see that after the Mask method is

used. When the channels are the same, the Mask-RMSE in the

two groups of experiments using the Mask method is smaller

than in the other two groups of experiments without the Mask

method. However, we noticed a particular case. Before 3-h, the

error of the single-channel network with the Mask method is

smaller than that of the dual-channel network without the Mask

method. It may be because the Mask mechanism can dominate

the error situation brought by the forecast in the short term.

However, this slowly disappears as the forecast time goes on, and

both sets of dual-channel experiments slowly outperform the

two sets of single-channel experiments. The above findings

demonstrate the superiority of the wind and wind waves dual-

channel network compared to the wave single-channel network

and the effectiveness of the Mask method in this experiment.
4.3 Conventional forecast

After completing the training process of the model, we first

explore the performance of the proposed model on intermediate

time scales. As input data, we use 6 hours of data from 00:00-

12:00 on August 28, 2019. To more visually demonstrate the

ability of the proposed model to predict the high-resolution

significant wave height of the study sea, we plot the results.

Results and error statistics are shown in Figure 10 and Table 1.

In Figure 10, the three subplots (a), (d) and (g) on the left

side represent the significant wave height forecasts for 1,3,6-h,

respectively. The numerical model data at the corresponding

time are shown on the right side. Their evaluation indicators are

shown in Table 1. We can see from Figures 10A, B that our

model accurately captures the distribution of the significant

wave height at 1-h with a Mask-RMSE of only 0.08 and

accurately predicts the higher wind waves in the northwestern
BA

FIGURE 7

The difference in prediction effect of different algorithms: (A) RMSE of different algorithms varies with the forecast time, and (B) SI of different
algorithms varies with the forecast time.
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part of Hainan Island. After increasing the time to 3-h, the

proposed model still has high accuracy and low error value, and

the R² value can be maintained at 0.98. It also has a good

prediction ability for distributing significant wave height and

wave height size in the region. However, numerically, the

predicted values for the western part of Hainan Island in

Figure 10D are smaller than the corresponding values. When

the time window comes to 6-h, although our model can still

capture the significant wave height distribution in the sea, there

is a significant difference in the values(Figures 10G, H). Mask-

RMSE increases to 0.27. However, this value is perfectly
Frontiers in Marine Science 11
acceptable for such high spatial and temporal resolution data.

Overall, the forecasting effect of our model is excellent.
4.4 Analysis of error sources
and treatment

The model we use is a dual-channel network. In the

prediction process, both SWH and WS channels generate

errors. Because the network considers the characteristic

correspondence between wind and wind waves, if the error in
B

C D

E F

A

FIGURE 8

Scatter plots of five groups of algorithms in different forecast times: (A, B) 1 h, (C, D) 3 h, (E, F) 6 h.
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one channel is too large, it will also decrease the prediction of the

other channel. In order to study the variation of the error of the

two channels with the forecast time during the forecast, we

extended the forecast time to 12-h in Section.4.3 and analyzed

the error sources.

For the experimental results in Section.4.3, we analyze the

error variance of the two channels in the prediction process

separately. The yellow line in Figure 11 shows the trend of the

prediction error of WS over time, and the blue line shows the

trend of the error of SWH. It can be seen that the Mask-RMSE of

both channels increases with the prediction time due to the

rolling mechanism. However, on the way up, the blue line shows

a steady upward trend over time, while the yellow line shows a

strong upward trend, especially after 6 hours. It shows that the

predictive validity of the WS channel drops significantly after 6

hours. The correlation between the two channels is considered in

the model prediction process. The sharp increase in the error of

the WS channel will directly lead to an increase in the error of

the SWH channel, increasing the total error of the prediction

results. We pioneered a new mechanism called Replace and

added the Replace mechanism to the RM process to solve

this problem.

The core idea of the Replace mechanism is to replace the

predicted wind speed values of the wind speed channel in the

network with the wind speed of the numerical model. As shown

in Figure 12, the model is run to get the forecast output Xt+1, and

the RM mechanism uses the obtained Xt+1 to continue the

rolling forecast to get the output results for the next n-1

moments. The black dashed box in Figure 12 explains the

specific steps of the Replace mechanism. As we mentioned

before, the forecast results of each step of the model include
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forecast SWH and forecast WS. However, the error of WS

increases sharply during the rolling forecast process

(Figure 11), leading to an increase in the error of SWH

associated with it. Suppose we can solve the problem of a

sharp increase of WS in this process. Then the forecast results

will be improved. To solve this problem, we perform the

following operation for each model and RM mechanism

forecast result Xt+m: replace the WS obtained from the

network forecast with the WS of the numerical model to form

a new Xt+m consisting of the numerical model WS and the

network forecast SWH (red dashed box in Figure 12). This data

is used to replace the original Xt+m for RM processing.

To verify the effectiveness of the Replace mechanism, we

conducted a set of controlled experiments. The error profiles of

SWH before and after adopting the Replace mechanism are

shown in Figure 13. The yellow line is the error plot of SWH

after adopting the Replace mechanism, and the blue line is the

forecast error without the Replace mechanism. It can be seen

that the adoption of the Replace mechanism significantly

reduces the overall forecast error, especially in the medium

and long time scales. Compared to the previous one, the

Mask-RMSE is even reduced by up to 50%.
4.5 Long time scale forecasting

In previous deep learning wave height forecasting studies.

Within the margin of error, the effective forecast duration

obtained using hourly data was typically limited to 6-12 hours.

If the data resolution is increased, this time will be further

shortened. To investigate whether the proposed model can make
FIGURE 9

Mask-RMSE of the four groups varied with the forecast times.
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predictions on long time series after using the Replace

mechanism, we set up two sets of experiments. One group had

Replace mechanism, and the other group had no Replace

mechanism. We adjusted the timestep to 12 and retrained the

model using previous data from each set of experiments. The

results of the two experiments are shown in Figure 14, where (a)

is the numerical model data, (b) is the prediction result of the

model with the Replace mechanism, and (c) is the prediction

result of the model without the Replace mechanism.

We predicted the significant wave height for the next 24-hour

using the data from 12:00-24:00 on August 2, 2019. The variation

of each indicator with time is shown in Table 2. It can be seen that

the two sets of experiments still maintain good performance at 1-

hour and 3-hour (Figures 14B, C). The significant wave height and

the distribution of wind waves in the sea still have a good

forecasting effect. When the time reached 8-hour, the effects of
Frontiers in Marine Science 13
the two groups of experiments began to show more apparent

differences. The network without the Replace mechanism has a

higher prediction of the significant wave height in the eastern part

of Hainan Island. In contrast, the network with the Replace

mechanism can still predict the change of the significant wave

height in the sea more accurately, but the distribution has slightly

deviated. When we increase the prediction scale to 12-hour, it can
B C

D E F

G H I

A

FIGURE 10

Comparison of forecast effect of the model under different forecast times. (A, D, G) are the predicted significant wave height effect diagrams for
1h, 3h, and 6h, respectively. (B, E, H) is the significant wave height diagram of the numerical model at the corresponding time. (C, F, I) is the
difference error between forecasting and comparison.
TABLE 1 The evaluation metrics of the model at different forecast time.

Time (h) Mask-RMSE Mask-SI R²

1h 0.08 0.05 0.99

3h 0.16 0.10 0.98

6h 0.27 0.17 0.96
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FIGURE 11

The Mask-RMSE of significant wave height and wind speed changes with increasing forecast time.
FIGURE 12

The idea of Replace Mechanism. The black dotted box represents the core steps of the RM mechanism, and the red box represents the data
obtained through the RM mechanism.
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be seen that the model without the Replace mechanism has a

significant prediction error for the change of significant wave

height in the sea, and R² drops to 0.75, basically losing the

accuracy of the forecast. However, the model with the

replacement mechanism still has good forecasting ability, with a

Mask-RMSE of 0.29. Although there are some regions where the

significant wave height values are under-predicted, the overall

distribution can still be predicted more accurately. When the
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prediction scale is expanded to 16-hour, the model without the

replacement mechanism has lost its predictive power, with R²

dropping to 0.62. The model with the replacement mechanism

also shows a decrease in accuracy. Although the high wind and

wave area near Hainan Island can be predicted, the magnitude of

the significant wave height obtained from the prediction has been

significantly different, with R-squared dropping to 0.78. When the

time reaches 24-hour, the model without the replacement
B

C

A

FIGURE 14

24-hour forecast results of significant wave height. (A) is the significant wave height diagram of the numerical model. (B) is the predicted
significant wave height diagram after Replace mechanism is adopted in the model. (C) is the predicted significant wave height diagram without
Replace mechanism.
FIGURE 13

Comparison diagram of Mask-RMSE changes of the model before and after using the RM mechanism.
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mechanism already shows confusion in the forecasts. The

forecasts obtained from the predictions have little to no

relationship with the contrasting values (Figure 14A). Although

the model with the replacement mechanism can predict the

distribution of significant wave heights in the sea area, the

prediction of the magnitude of significant wave heights in the

whole sea area also shows a more noticeable difference, and the R-

squared drops to 0.69. Through the above experiments, we can see

that: the Replace mechanism is very effective in improving the

forecasts of the dual-channel network. In particular, it can

effectively reduce the forecast error in a more extended time

range. With the Replace mechanism, the long-time forecasting

capability of the network is substantially improved, and the

significant wave height at high spatial and temporal frequencies

within 24 hours can be predicted more accurately.

In order to verify the stability of the model’s forecasting ability,

this study selected the data of SiteA and SiteB for the whole of

October 2018, with a total of 744 samples. Moreover, forecast tests

with different lengths were conducted using these data, and the

results are shown in Figure 15. The red line in Figure 15 represent

the comparison values. The yellow line represents the ERA5

reanalysis data. The blue line represents the forecast values of the

model. It can be seen that the model has an excellent forecasting

effect within 6-h. Both the magnitude and the trend of the values

differ very little from the comparison values. When the time comes

to 12-h, the model can predict the trend of the significant wave

height. However, the values are not stable. When the time comes to

24-h, The model can predict the primary trend, but the values are

much different in some cases. It may be because our forecasts are

regional, focusing on the trend of the significant wave height within

the whole region rather than the significant wave height at a single

point. In addition, the insufficient amount of data in this study,

which only used two years of data, might be another reason.
5 Conclusion and discussion

The main work of this research is to combine the laws of

physical oceanography and use the deep learning method to
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predict the significant wave height of the entire Beibu Gulf with

high spatial and temporal resolution. This study uses a modified

ConvLSTM network to explore the Spatio-temporal correlation

of historical data and the physical correlation between different

marine elements. By comparing with other methods, we show

the advantages of the proposed model in dealing with Spatio-

temporal data. By introducing a two-dimensional wind speed

field, the significant wave height prediction capability of the

network is greatly improved. At the same time, this study

proposes a Mask method to solve the problem of wave height

prediction in sea areas with land areas. This study uses high-

resolution wind speed and significant wave height data from

2018 to 2019 to conduct forecast experiments on different

forecast time scales. The validity of the model is demonstrated

by comparison with the numerical model. The R-squared for the

6-hour forecast reached 0.96. We analyze the error generation

during the prediction process and propose an alternative

mechanism to alleviate the error diffusion problem of the

proposed model and prolong the effective prediction time of

the network. The effective forecast time reaches 24 hours. Most

importantly, the proposed model has practical application value.

We know that numerical models predict waves with the wind as

input. The method of this study can also utilize these wind data

for wave forecasting and compare the results with short-term

numerical models. It will significantly reduce the cost issues

associated with numerical models. Typically, the time cost for a

numerical model run to complete a prediction is over several

hours and requires supercomputer support. In contrast, the

model proposed in this study can be run on an ordinary PC,

and the time needed for prediction is only a few seconds. It

is worth pointing out that the present study was conducted

for wind waves. The method proposed in this study may

not be effective for a region where the wavesare mainly

swell-dominated.

The proposed method also has specific problems. The first

is that the RM mechanism leads to the accumulation of errors

in the prediction process, and our proposed replacement

mechanism can alleviate this problem to some extent.

However, it cannot fundamentally solve this problem.
TABLE 2 The Evaluation index of the two model at different forecast time.

Forecast time(h)

Evaluation index 1h 3h 8h 12h 16h 24h

Long time forecast with Replace mechanism Mask-RMSE 0.09 0.15 0.25 0.29 0.40 0.49

R² 0.99 0.98 0.96 0.88 0.78 0.69

Mask-SI 0.06 0.10 0.19 0.23 0.29 0.36

Long time forecast without Replace mechanism Mask-RMSE 0.10 0.18 0.35 0.45 0.63 0.81

R² 0.99 0.97 0.86 0.75 0.62 0.51

Mask-SI 0.06 0.12 0.27 0.36 0.45 0.59
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Secondly, although the proposed model can learn some

physical laws of wind speed and significant wave height, it

does not really incorporate the dynamic process of the ocean in

a sense. How to combine deep learning with the dynamic

processes of the ocean is a problem we need to solve in the

future. Thirdly, this study is only for the significant wave

height, but there are other elements such as wave direction

and period. If possible, we will follow up on these elements as

well. Finally, we will open up the high spatial and temporal

resolution data used in this work. These data will beof great

help for subsequent studies.
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